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ABSTRACT

Software is increasingly deployed in vehicles as demand for
new functionality increases and cheaper and more power-
ful hardware becomes available. Likewise, emerging wireless
communication protocols allow the integration of new soft-
ware into vehicles, thereby enabling time-bounded adaptive
response to changes that occur in mobile environments. Ex-
amples of time-bounded adaptation include adaptive cruise
control and the dynamic integration of location-aware ser-
vices within fixed time bounds.

This paper provides three contributions to the study of
time-bounded adaptation for automotive system software.
First, we categorise automotive systems with respect to re-
quirements for dynamic software adaptation. Second, we
define a taxonomy that captures various dimensions of dy-
namic adaptation in emerging automotive system software.
Third, we use this taxonomy to analyse existing research
projects in the automotive domain. Our analysis shows that
although time-bounded synchronisation of applications and
data is a key requirement for next-generation automotive
systems, it is not adequately covered by existing work.

Categories and Subject Descriptors

D11 [Software/Software Engineering]: Software Archi-
tectures; A1 [Introductory and Survey]: Survey

General Terms
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1. INTRODUCTION
The amount and complexity of automotive software has

risen dramatically during the past several decades due to de-
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creasing hardware costs, increasing computing/communica-
tion power, and growing demand for new vehicle functional-
ity [15]. Modern vehicles contain over 2,000 individual func-
tions, such as airbag control software, X-by wire applica-
tions, and infotainment applications [35]. Software has thus
become a dominant factor of the automotive industry [6].

Moreover, emerging wireless communication protocols, e.g.,
dedicated short range communications (DSRC) [4], enable
vehicles to interact with each other and with their surround-
ing environment. These protocols allow the integration of
applications and data into vehicles from vehicular and/or
infrastructure networks. Automotive services and systems
that were traditionally vehicle-centric are thus becoming
inter-vehicle and vehicle-to-infrastructure-centric [9].

Next-generation automotive systems (e.g., computer-as-
sisted vehicles) will run in highly dynamic environments
(e.g., inter-vehicle coordination) and will need to adapt their
behaviour at runtime (e.g., in response to frequent chan-
ges in their environment). Possible adaptations include the
dynamic allocation of resources, adaptation of (multime-
dia) content, and the adaptation of software structure and
functionality. Resource adaptation is concerned with the
proactive allocation of resources for better quality of service
(QoS) [13], whereas content adaptation involves transform-
ing content to adapt to device capabilities (e.g., transcoding
of content based on display resolution and processing capa-
bilities [21]). Software adaptation, in contrast, involves the
dynamic introduction of software modules and reconfigura-
tion of software architectures, as well as changing parame-
ters that affect automotive system software [23].

In general, the goal of software adaptation is to make au-
tomotive systems more evolvable, intelligent, and useful to
drivers [11]. For example, future driver information sys-
tems can dynamically integrate software modules, such as
a location- and price-aware lodging discovery service based
on driver preferences. Other software adaptation use cases
include reconfiguring a vehicle control system to operate
through partial failures.

In automotive systems, software adaptations must often
be time-bounded since stale information could trigger im-
proper driver reactions. For example, a driver information
system should update a display within a bounded time to
ensure drivers are not informed about traffic jams that no
longer exist. Likewise, adaptations should minimise soft-
ware update times to ensure that software applications and
data are fully integrated into vehicles before they are used.

Next-generation automotive systems differ in their need
for dynamic adaptation support. This paper identifies the



software adaptation requirements of the following four clas-
ses of automotive systems: (1) vehicle-centric systems,
whose dynamic adaptation needs are limited, e.g., handling
error conditions [37], (2) driver information systems,
which require the dynamic adaptation of content, as well
as periodic update of vehicle software to better reflect the
current environmental conditions, (3) cooperative driv-
ing systems, which adapt their behaviour according to the
surrounding vehicles and road conditions, and (4) vehicu-
lar sharing systems, which use the processing power and
data transmission of multiple vehicles to perform distributed
computations.

After discussing the software adaptation requirements of
these four classes of systems we define a taxonomy that char-
acterises various dimensions of their dynamic adaptation,
including binding time, constraints and type of adaptation,
timeliness requirements, and adaptation trigger. We then
use this taxonomy to classify existing projects and reveal
gaps in this work that require additional research on time-
bounded integration of software modules.

The remainder of this paper is organised as follows: Sec-
tion 2 motivates software adaptation in automotive systems
via a managed highway scenario; Section 3 summarises prior
efforts to classify adaptive automotive systems; Section 4
identifies four automotive system classes and their charac-
teristics with regards to dynamic adaptation; Section 5 de-
fines a taxonomy of the identified characteristics; Section 6
categorises existing research projects in terms of this taxon-
omy; and Section 7 presents concluding remarks and identi-
fies promising areas of research.

2. MOTIVATING EXAMPLE FOR TIME--

BOUNDED ADAPTATION
Managed highway scenario. To make our software adap-
tation discussions concrete, consider the following example
from the domain of intelligent lane reservation system for
managed highways. The goal of a managed highway is to
reduce congestion, enable vehicles to maintain safe speeds,
and allow emergency vehicles to arrive safely and faster at
accidents [33]. One way to schedule and enforce vehicle QoS
on a managed highway is to allow drivers to reserve lanes
“slots.” Moreover, lanes can be partitioned (e.g., low vs.
high priority QoS) and can be priced differently. For ex-
ample, travellers could reserve slots on low priority lanes
cheaper than travellers willing to pay extra for slots in a
high priority lane that allow them to drive faster and reach
their destination sooner.

In this managed highway scenario, vehicles indicate their
destination and potential constraints or desires on their way
points. To ensure proper admission control, vehicles wait in
a queueing lane for their reserved slot to become available
before entering the highway (c.f., Figure 1). A highway en-
trance assistance system (e.g., a tollgate) uses short-range
communication and relays between queued vehicles to en-
sure proper software versions and necessary hardware are
installed before allowing vehicles to enter the highway. Ex-
ample software could include warning applications, secure
payment algorithms, and infotainment applications, such as
hotel and restaurant finder or car-to-car gaming; hardware
could include road condition and vehicle motion sensors and
sufficiently powerful on-board computers.

Figure 1: Managed Highway Scenario

Software adaptation mechanisms. The managed high-
way scenario described above motivates the need for various
software adaptation mechanisms. For example, the assis-
tance system could use an adaptation scheduling mechanism
to determine which modules to download and integrate dy-
namically into vehicles based on global and/or local adapta-
tion policies. These policies can specify the actions (e.g., in-
tegration, upgrade, downgrade or deinstallation of software
modules) to execute on the vehicle, as well as the proper-
ties with which (e.g., version numbers or priorities) these
modules must comply.

One adaptation policy involves the integration of all high-
priority modules, e.g., warning and security applications
have higher priorities than infotainment applications and
hence must be integrated before a vehicle enters the high-
way, whereas lower-priority modules are optional. Another
adaptation policy involves the dynamic update of an exist-
ing module to a newer version that is located at the assis-
tance system, e.g., updating a secure payment algorithm.
Yet other adaptation policies include the downgrading and
de-installation of modules due to expirations of licences or
the change of vehicle ownership [3].

The adaption process itself is time-bounded since the de-
cision process of which modules to download and integrate
and the actual download of the modules itself must be exe-
cuted before the vehicle can enter the highway. These adap-
tation policies can be influenced by the available memory on
a vehicle platform, module interdependencies, and version-
ing of the modules. For example, all necessary high-priority
modules may not be downloadable due to timing or memory
constraints, in which case a new time slot may be needed for
the vehicle. Likewise, the integration of a secure payment
algorithm might trigger an additional integration of digi-
tal signature algorithms and secure communication modules
that increase the overall adaptation time and might cause
an overrun on the overall time bound.

3. RELATEDWORKONCLASSIFICATION

OFADAPTIVEAUTOMOTIVE SYSTEMS
Relatively little prior work has classified software for auto-

motive systems and existing classifications focus mainly on
embedded systems. For example, Karjalainen classified em-
bedded control systems into six categories, ranging from mi-
crocontrollers to special purpose control systems [18]. Each
taxonomy category is identified by eight characteristic groups,
e.g., hardware architecture and processor capabilities.

Many automotive systems have stringent real-time require-
ments that can be classified according to their time con-
straints, i.e., process execution behaviour, timing constraints,
and degree of timeliness that they provide [5]. This classi-



fication focuses largely on developing integrated schedulers.
Other classifications target coarse-grained distributed sys-
tems and their characteristics [34]. These characteristics are
based on an explicit model of the time constraints as a path
(the so-called path-based paradigm) and comprise granular-
ity, triggering causes, and classes of data streams.

Dynamic adaptation of general (i.e., non-automotive) soft-
ware systems is discussed extensively in the literature. An
overview is presented in [23], which focuses on compositional
adaptation (i.e., reconfiguring the software architecture it-
self) and classifies projects with regards to their support of
compositional adaptation. This taxonomy comprises three
dimensions: (1) where to compose, (2) the point in time of
composition, and (3) the techniques used. The authors also
highlight challenges, such as assurance and decision making,
that an adaptation technique must consider.

Aksit and Choukair summarise approaches for deploying
and dynamically adapting applications and software plat-
forms [1]. They distinguish between approaches that deal
with the dynamic reconfiguration of component architec-
tures (i.e., introduction and deletion of components) and
dynamic adaptability (i.e., the fast adaptation of applica-
tion behaviour without reconfiguration). They list many
technical challenges and solutions (such as maintaining ap-
plication consistency) to address both approaches.

Although time-bounded adaptation is key to automotive
system software, this topic is largely absent from existing
surveys and taxonomies. The remainder of this paper there-
fore presents a taxonomy of adaptive automotive systems
with regards to time-bounded adaptation and compares this
taxonomy with existing research projects.

4. CLASSIFICATION OF ADAPTATION

REQUIREMENTS FOR AUTOMOTIVE

SYSTEMS
This section presents the results of an extensive domain

analysis of existing and emerging automotive systems aimed
at classifying these systems in terms of their level of support
for—and characteristics of—dynamic adaptation.

4.1 Vehicle-centric Systems
Vehicle-centric systems assist in the control of a vehicle’s

behaviour, such as braking or steering. This category con-
tains all safety-critical systems, such as electronic braking
systems and X-By-Wire [10]. These systems have stringent
safety and reliability requirements since they directly or in-
directly affect vehicle behaviour.

In the case of a component failure, safety critical function-
ality must continue to operate. One way to ensure continued
operation is to downgrade a system configuration to a fail-
safe state while disabling non-critical functionality [37]. For
example, critical functionality, such as a vehicle dynamics
controller, can be degraded to a less sophisticated version,
whereas climate control can be disabled. In this context,
adaptation can be viewed as an error handling mechanism.

All component variants should exist at design time to en-
sure validity and safety of overall system behaviour. Adapta-
tion should then choose a suitable configuration at runtime.
Since components can have different importance levels the
decision process may need to take their priorities into ac-
count, i.e., the adaptation of the vehicle dynamics controller
should be performed before disabling the climate control.

Adaptation timeliness is also important since adaptations
should execute quickly to ensure the safe application oper-
ation, e.g., disabling climate control in a best-effort time
bound. Safety-critical applications may even require adap-
tation within hard real-time bounds, e.g., downgrading the
vehicle dynamics controller within milli-seconds.

4.2 Driver Information Systems
Driver information systems provide information about the

vehicle’s surrounding environment and the vehicle itself, us-
ing internal and external sources. This category comprises
a wide range of applications, including navigation guidance,
warning about approaching emergency vehicles, and provid-
ing information about the vehicle’s state. We categorise
these systems into the three following sub-classes:

• In-vehicle entertainment systems, which provide
passengers with audio and video data obtained from other
vehicles (e.g., via DSRC [4])) or the infrastructure (e.g., via
802.11p [22] or GSM [29]). Due to the instability of con-
nections in vehicular ad hoc networks and the heterogeneity
of in-vehicle entertainment systems, different data resolu-
tions are needed to suit device and network capabilities [21].
In this context, adaptation is concerned with changing the
video data resolution and modifying compression rates of
audio and video data based on current network conditions.

• Warning applications, which expand a driver’s hori-
zon by providing information about future hazardous road
conditions, erratic drivers, and prioritised vehicles (such as
emergency vehicles). These systems use information ob-
tained from internal sensors, such as engine temperature sen-
sors, as well as information obtained from other vehicles or
the infrastructure, such as the number of neighbouring cars
or current weather conditions. Since these systems execute
in a mobile environment, information changes continuously,
so applications must adapt the displayed information dy-
namically to accurately reflect environmental conditions. In
this context, adaptation involves executing actions depend-
ing on the current situation.

• Travel information systems, which perform naviga-
tion tasks, such as helping drivers locate optimal routes.
This category also includes other services, such as hotel,
restaurant, and parking space locators. These services are
location-based and display information based on vehicle ge-
ographic location. Like warning applications, the software
execution in these systems is affected directly by the exter-
nal environment. In this context, adaptation involves the
change of software parameters, by using either rule-based
approaches or the Strategy pattern [12].

Future driver information systems will communicate with
the transportation infrastructure and other vehicles to dy-
namically integrate new features into vehicles or update older
features. For example, at a national border crossing specific
types of modules could be installed in driver assistance sys-
tems of all vehicles to display additional information about
the current country, e.g., maximum allowed speed and spe-
cific road signs. In this context, adaptation involves struc-
tural and functional software changes that users can trigger
explicitly (e.g., when connected to a 3G network) or implic-
itly (e.g., by communication between other vehicles and the
transportation infrastructure).

Most software adaptations in driver information systems
should execute in bounded time to ensure the validity of the



information. Adaptations may also depend on priorities be-
tween various systems. In the case of software integration,
memory constraints and inter-dependencies between mod-
ules should be considered.

4.3 Cooperative Driving Systems
Cooperative driving systems require vehicle-to-vehicle and

vehicle-to-infrastructure coordination. Examples include adap-
tive cruise control, platooning, and adaptive steering. When-
ever a system parameter changes, such as the distance to the
leading car, cooperative driver systems must react accord-
ingly, e.g., by accelerating or braking. Adaptive cruise con-
trol involves maintaining a safe time-headway distance be-
tween vehicles to ensure emergency braking does not cause
collisions between cars. The headway calculation system
adapts a vehicle’s headway by accounting for changed envi-
ronmental conditions, vehicle dynamics, and safety consid-
erations [17].

In this context, adaptation involves changing behavioural
parameters of a single car to ensure the coordinated be-
haviour of the group of vehicles to which it belongs. The
behaviours of the collaborating vehicles should respond to
constraints imposed from other vehicles and from the en-
vironment (such as the weather) [16]. This type of adap-
tation is considered semi-dynamic since the system adjusts
its behaviour (i.e., the actions to take) by changing system
parameters (e.g., the longitudinal control is determined by
the distance and the time gap to the next vehicle).

4.4 Vehicular Sharing Systems
Vehicular sharing systems distribute data or computations

on vehicles and are comprised of inter-vehicle sharing sys-
tems. For example, an environmentally-conscious vehicular
sharing system could measure the aggregate carbon foot-
print of a road in real-time using distributed vehicle comput-
ing resources. If the footprint reached a critical threshold,
vehicles could adapt their behaviour to reduce the pollution
level, e.g., by switching off their climatisation system, re-
ducing speed, or shutting down engines in traffic congestion.
In this context, a vehicular network serves as a closed-loop
control system, where disseminated messages trigger a cor-
responding response.

Data can also be distributed and shared amongst vehicles.
In this context, the vehicular network can be viewed as a
sensing and relaying network, e.g., delivering audio or video
data to passengers on long journeys. These types of systems
implement resource adaptation, e.g., they provide facilities
for monitoring and controlling dynamic resource usage of
activities within a system [13].

5. A TAXONOMY OF AUTOMOTIVE

SYSTEM ADAPTATIONS
Based on an extensive literature survey we defined a tax-

onomy that divides the dynamic adaptation requirements of
automotive systems into five dimensions: (1) binding time,
(2) adaptation timeliness requirements, (3) adaptation type,
(4) adaptation constraints, and (5) adaptation trigger. Each
dimension can take a finite number of values, which we refer
to as characteristics.

This section uses Kiviat diagrams [20] to (1) visualise the dif-
ferent dimensions of our taxonomy and their possible char-
acteristics and (2) depict the adaptation requirements of the
four classes of automotive systems presented in Section 4.

5.1 Taxonomy Dimensions

5.1.1 Binding Time

Binding time is defined as the point in time when the
adaptive behaviour is composed with the business logic of an
application [23]. Static binding time is used when all forms
of adaptability are hardwired with the application, i.e., all
possible configurations and resource allocations are deter-
mined at design time of the application. A change in the
adaptive behaviour triggers application reengineering and
recompilation.

In semi-dynamic adaptations, all possible configurations
of an application are determined at design-time. Depend-
ing on the current situation, however, a configuration can
be dynamically chosen at runtime. Dynamic binding is the
most flexible approach since it allows the introduction and
alteration of software modules and the reconfiguration of
the existing software architecture during runtime without
stopping/restarting the application.

5.1.2 Type of Adaptation

The type of adaptation defines what is being adapted. Re-
source adaptation dynamically allocates resources based on
current conditions. Content adaptation determines how to
adapt content to better suit device and network capabilities.

Software adaptation is a category that comprises param-
eter adaptation, functional adaptation, and structural adap-
tation. Parameter adaptation involves modifying variable
values that determine program behaviour. Functional adap-
tation allows application interfaces to remain constant and
changes only implementations, e.g., updating of an existing
software module to a newer version. Structural adaptation
changes the actual architectural parts of an application, e.g.,
by replicating objects or introducing new software modules.

5.1.3 Timeliness Requirements

The timeliness requirements of an adaptation characterise
the time constraints under which the adaptation is executed.
Hard real-time constraints require the execution of adapta-
tion within a firm execution deadline. Adaptations executed
under soft real-time constraints minimise the adaptation ex-
ecution and blackout time (which is the time the application
is unavailable due to state transfer and reconfiguration). Un-
bounded adaptations are executed without any time bounds.

5.1.4 Constraints of Adaptation

This dimension comprises the various constraints that might
affect an adaptation. Memory constraints impose a limit on
the size of software modules that can be integrated, which is
particularly relevant in automotive embedded systems. Pri-
orities between modules imply an ordering of adaptations
since high-priority modules should be adapted before low-
priority modules. Likewise, dependencies between software
modules can affect adaptation since adapting one module
can trigger an update of other modules.

5.1.5 Adaptation Trigger

These characteristics describe what triggers an adapta-
tion. Internal triggers occur inside the system itself, e.g.,



due to the occurrence of a fault. External triggers, such as
vehicle-to-infrastructure or vehicle-to-vehicle, are based on
external information, either obtained by sensors or commu-
nication events with other vehicles or the infrastructure.

5.2 Automotive Systems Diagrams
We use Kiviat diagrams [20] to visually present the re-

quirements of the four automotive system classes on adap-
tation. Dimensions of the taxonomy represent axes of the
Kiviat diagrams and characteristics of the dimensions repre-
sent the set of differentiating values. The characteristics are
ordered by flexibility, from the least flexible characteristic
to the most flexible one.

There is no containment priority between the characteris-
tics of a dimension in a Kiviat diagram, i.e., the outermost
characteristic does not automatically include the other ones.
Since each class has different requirements, they all exhibit
different Kiviat profiles and can therefore be compared eas-
ily. These diagrams also allow developers of automotive soft-
ware to visually map the characteristics of their applications
to one of the diagrams, which helps identify dynamic adap-
tation requirements.

Below, we present the representations in Kiviat diagrams
of the four classes of automotive systems from Section 4 and
describe their corresponding characteristics in terms of the
taxonomy dimensions from Section 5.1. If a resulting dia-
gram supports more than one characteristic in a dimension,
the outermost characteristic defines the diagram.

5.2.1 Vehicle-Centric Systems

Figure 2 depicts the Kiviat diagram for vehicle-centric
systems. These systems require functional adaptation (e.g.,

Figure 2: Kiviat Diagram of Vehicle-Centric Sys-
tems

downgrading and switching off functionality when a fault oc-
curs), so the adaptation trigger is internal. Moreover, since
these systems are safety-critical, a static or semi-dynamic
approach for dynamic adaptation is appropriate and adap-
tation actions should be executed within bounded time. Pri-
orities and dependencies between modules affect adaptation
in these systems.

5.2.2 Driver Information Systems

Since driver information systems comprise a wide range
of applications, we divided them with regards to their adap-
tation type. In-vehicle entertainment systems support con-
tent adaptation and the Kiviat diagram for these systems
is shown in Figure 3. Since the resulting actions are deter-

Figure 3: Kiviat Diagram of In-Vehicle Entertain-
ment Systems

mined at design-time of a system (e.g., using event-condition-
action rules) the adaptation is semi-dynamic. The execution
time of the adaptation should be minimised to ensure the
freshness of the displayed information. Adaptation is con-
strained by the available capabilities of the display device
and current network conditions.

Warning applications and travel information systems sup-
port the whole range of software adaptation, i.e., adaptation
of parameters and also the integration of new services from
the infrastructure and other vehicles. The profile of these
systems is depicted in Figure 4. This adaptation can be
triggered internally by drivers, as well as by inter-vehicle or
vehicle-infrastructure communication as software modules
are downloaded and integrated via communication links.
The binding time of this adaptation is dynamic since new
configurations are determined during system runtime. The
duration of the adaptation should be executed in soft real-
time, i.e., best effort adaptation within time bounds. Adap-
tation itself can be influenced by the available memory space
on the vehicle’s software platform. Dependencies between
modules and priorities can also influence the scheduling and
determination of which and how modules are integrated into
the system.

5.2.3 Cooperative Driving Systems

The Kiviat diagram of cooperate driving systems is de-
picted in Figure 5. This adaptation concerns the change of
parameters, such as speed, acceleration, and distance. It can
be triggered by inter-vehicle and vehicle-to-infrastructure
communication and the internal sensing of the current state
of the vehicle.

In cooperative driving systems, actions are determined a
priori since they may have safety-critical effects on the adap-
tation. Hence, the binding time is semi-dynamic or even



Figure 4: Kiviat Diagram of Warning Applications
and Travel Information Systems

Figure 5: Kiviat Diagram of Cooperative Driving
Systems

static. All adaptations should therefore execute within a
bounded amount of time and are at least soft real-time con-
strained. In addition to coordination constraints, adaptation
can be affected by priorities of triggered actions, e.g., lon-
gitudinal control of a vehicle should be adapted before lane
change control to avoid rear-end collisions.

5.2.4 Vehicular Sharing Systems

Figure 6 presents the Kiviat diagram of vehicular shar-
ing networks. These systems require dynamic allocation of

Figure 6: Kiviat Diagram of Vehicular Sharing Sys-
tems

resources (such as load balancing and membership mecha-
nisms) since the underlying topology of the network changes
continuously. Adaptations are triggered by messages re-
ceived from other vehicles or from the infrastructure itself.

The binding time of adaptations for vehicular sharing sys-
tems is dynamic since new memberships and data or compu-
tational loads are dependent on the current status of the net-
work. The nodes in these systems are mobile, so these adap-
tations should be performed within stringent time bounds.
Resource constraints (such as available memory, computa-
tional power and bandwidth) impose constraints on the adap-
tation decision process.

6. APPLYING THE TAXONOMY TO

CLASSIFY EXISTING PROJECTS
This section investigates existing research projects and

maps them to our taxonomy from Section 5. For each au-
tomotive system class described in Section 4, we identified
a research project that supports the most suited approach
and use Kiviat diagrams to show their degree of adapta-
tion support. We also discuss gaps in these projects with
regards to their support of time-bounded dynamic software
adaptation.

6.1 Vehicle-Centric Systems
The MARS [37] research project investigates dynamic re-

configuration in embedded automotive systems, e.g., vehicle
stability control systems. The approach supports dynamic



adaptation at different levels, from coarse-grained reconfigu-
ration of service providers at the system level to fine-grained
configuration of behaviour variants. The Kiviat diagram
for this system is shown in Figure 7. The adaptation itself

Figure 7: Kiviat Diagram of Mars

is triggered by faults occurring during runtime of the sys-
tem. MARS handles inter-dependencies between software
modules by explicitly modelling and analysing all possible
configurations statically at design time of the system. This
approach focuses on developing the analysis and modelling
techniques for dynamic adaptation, however, rather than
developing further adaptation techniques.

The Dynamically Self-Configuring Automotive Systems
(DySCAS) [3] project focuses on self-configurable embedded
vehicle control systems that are based on existing middle-
ware technologies and feedback control theories. In addition
to structural and parameter adaptations, DySCAS supports
closed reconfiguration, i.e., graceful degradation in the pres-
ence of component failures. DySCAS is based on policies for
achieving the self-management of the system. Policy reason-
ing includes the selection of the most appropriate reconfig-
uration in terms of priorities and urgency level. Space con-
straints can also be specified inside policies. The DySCAS
project is still in an early stage, however, so no empirical
results are yet available.

6.2 Driver Information Systems
Various driver assistance systems are available, includ-

ing navigation guidance and value-added location based ser-
vices, as well as safety-enhancing applications, such as emer-
gency vehicle and road warning applications [28].

TrafficView defines protocols and algorithms for the dis-
semination of information about vehicles on the road [24].
The system provides a dynamic view of the road traffic to
help drivers in difficult conditions. The graphical user inter-
face periodically displays all validated data sets, i.e., data
that is neither conflicting nor outdated. Adaptation here
involves updating the display, e.g., when a change in the
validated data sets happens. It is triggered when messages
from other vehicles are received. TrafficView only supports
static binding time, however, and does not mention any con-
sideration of constraints, such as dependencies.

The Safe speed and safe distance (Saspence) project is
designed to provide suggestions of the proper velocity and
headway based on the current driving conditions [2]. The
project uses internal sensors, such as long- and short-range
radar, as well as information obtained from the infrastruc-
ture and other vehicles, such as localisation and speed lim-
its. Saspence dynamically adapts its warning suggestions
based on the current deduced situation. The system fol-
lows a three-layered approach with (1) sensors providing in-
put data, (2) specific algorithms processing the sensor infor-
mation, and (3) human-machine-interfaces forwarding the
warning messages to the driver. The algorithm processing
should be executed within soft real-time bounds since oth-
erwise vehicle safety cannot be ensured. This project, how-
ever, is still defining functional requirements.

The content adaptation of in-vehicle entertainment sys-
tems can be adopted from more general approaches, such
as [21], which uses a decision engine to adapt content to
fit the current capabilities of the device and network. This
engine considers the user’s preferences and devices’ capa-
bilities, provided in the format of the W3C Composite Ca-
pabilities/Preference Profile [19]. Based on the current net-
work conditions and device capabilities, the content is trans-
formed accordingly, e.g., reduction of colour, scale of images,
and use of various transcoding mechanisms.

Driver information systems not only handle adaptation of
multimedia content, but also support software adaptation.
Future use-cases for these systems require the dynamic inte-
gration of software into running systems. Application devel-
opers for these systems can leverage automotive middleware
systems, such as AUTOSAR [27] and OSGI [31], that encap-
sulate the heterogeneity of computing platforms and com-
munication protocols. These systems support the dynamic
integration and reconfiguration of software.

For example, DynamicCon builds upon OSA+ [36], which
is a scalable middleware for distributed real-time and em-
bedded systems that support the dynamic deletion, addi-
tion, and replacement of services. It minimises application
blackout time by allowing state transfer while the old ser-
vice is still running. Their approach assumes, however, that
the software being integrated or updated is locally available
and hence they do not consider fully dynamic adaptation
as required by this class of systems. Its Kiviat diagram is
shown in Figure 8.

The OSGI platform [31] provides a Java-based service
platform that supports the remote installation, update, and
lifecycle management of Java based applications. In this
sense, the platform supports fully dynamic adaptation of
application components. The OSGI platform, however, only
supports the adaptation of Java-based applications and hence
does not support the integration or reconfiguration of het-
erogeneous software modules.

Fully dynamic adaptation is also supported by applica-
tion and data synchronisation systems that support the re-
mote integration and update of existing software and data.
Platform-dependent approaches, such as Active Sync [25]
and LDAP content synchronisation [30], support the syn-
chronisation of information between devices. These appro-
aches, however, only support data synchronisation, e.g., Ac-
tive Sync synchronises personal information (PIM) and LDAP
maintains a copy of a fragment of the directory tree.

SyncML [32] is a platform-independent information syn-
chronisation standard that supports the integration and up-



Figure 8: Kiviat Diagram of OSA+

date of data, as well as software applications and firmware.
It uses XML to specify the messages exchanged between
clients and servers in the synchronisation protocol. It also
provides multiple synchronisation modes, e.g., oneway client-
or server-side synchronisation and twoway client/server syn-
chronisation.

Current approaches for synchronising data and software
binaries, however, lack support for time-bounded adaptation
and do not address other adaptation constraints, such as
memory, module inter-dependencies, and priorities.

6.3 Cooperative Driving Systems
The Auto21 project is investigating many ways of cooper-

ative driving for fully autonomous vehicles [26]. The authors
propose a three-layered architecture to realise decentralised
coordination of (autonomous) vehicles [16]. The lowest layer
senses the state of a vehicle and is responsible for a vehi-
cle’s behaviour. The upper layers, management and traffic
control, determine the movement of each vehicle under the
cooperative driving constraints.

Adaptation is executed on the longitudinal and change
lane actuators, based on information obtained from the traf-
fic and management layer. The longitudinal actuator uses
either distance or time-based information to change a ve-
hicle’s speed, whereas the change lane actuator follows a
pre-defined lane function. The behaviour of both actuators
is pre-determined and consists of static rules. The over-
all adaptation is executed within soft real-time constraints.
Due to adaptation being related to parameter changes, it
does not account for any constraints, such as memory or
module interdependencies (c.f., Figure 9).

Adaptive cruise control systems can be realised by dis-
tance policies [17]. In this approach, vehicles move within a
safe distance to the vehicle in front of them to ensure that
no collisions occur if that vehicle brakes suddenly. This dis-
tance must be adapted continuously to reflect environmental
conditions, e.g., icy roads, vehicle dynamics, and safety con-
siderations.

Adaptation in an adaptive cruise control system can be ex-
ecuted by the vehicle control system, which is divided into
two parts: (1) the upper level calculates the desired con-

Figure 9: Kiviat Diagram of Auto21

trol effort based on the current conditions and (2) the lower
level computes the corresponding throttle commands. The
commands execute pre-defined adaptation steps. This ap-
proach is local and decentralised, i.e., no information from
other vehicles or the environment is considered. Likewise,
the adaptation itself is executed without considering any
constraints.

6.4 Vehicular Sharing Systems
Vehicles equipped with storage capabilities can act as a

store-and-forward mobile router for disseminating data, such
as traffic information or audio and video data [7]. For exam-
ple, next-generation vehicle entertainment systems assume
video or audio files can be stored among several vehicles [14].
Depending on their current location, only a subset of these
files are accessible for a vehicle and hence a policy frame-
work is needed to predict whether and/or when a file will be
available.

The framework leverages existing wireless cellular network
infrastructures and is dynamically adapted to the number
of vehicles and the available files inside a network cell. This
information is continuously monitored and broadcasted to
the decision making process residing locally on each vehicle.
It does not appear, however, that the adaptation process
takes space/time constraints into account.

Within a geographic area, vehicles equipped with process-
ing power can form an ad hoc grid computer that can au-
tonomously solve distributed traffic flow control problems,
such as lane merging. An example of such a system is
VGrid [8], which is a grid computer and is realised by a
four-layer protocol architecture in which the grid computing
interface serves as a bridge between the applications and the
network layers. This interface is responsible for allocating
tasks based on the current network topology, e.g., a criti-
cal task is replicated to a number of vehicles. A resource
management layer controls the access to local resources on
the vehicles. Task allocation takes computational time into
account since nodes can move out of range before their com-
putations are finished.

VMesh is a vehicular wireless mesh network that serves
as a dynamic sensor network, e.g., for monitoring and col-



lecting vehicular emissions [7]. The Kiviat diagram for this
approach is shown in Figure 10. A key design challenge in

Figure 10: Kiviat Diagram of VMesh

VMesh is determining the penetration rate (i.e., the num-
ber of vehicles in the network), which should adapt dynam-
ically to the number of vehicles available. This approach
considers memory constraints at nodes to achieve a desired
data throughput rate. It does not appear, however, that the
adaptation itself supports timeliness, i.e., is executed within
a specific time bound.

7. CONCLUDING REMARKS
The prevalence of automotive software—combined with

emerging wireless communication protocols—is enabling the
dynamic integration of applications and data into vehicles
from the infrastructure or other vehicles. These trends, in
turn, motivate a new generation of vehicle software that
needs to adapt at runtime to respond to changes occurring
in highly mobile environments. To ensure the validity of
information adaptations must execute in a timely manner.

This paper analysed four classes of automotive systems
and identified their software adaptation requirements, in-
cluding degradation strategies in vehicle-centric systems and
dynamically inserting components into software applications.
We also defined a taxonomy to characterise various dimen-
sions of dynamic adaptation, including binding time, adap-
tation type, timeliness requirements, adaptation trigger, and
adaptation constraints. Kiviat diagrams were used to rep-
resent this taxonomy, compare existing research projects of
automotive system software, and categorise existing research
projects in the automotive domain in terms of this taxon-
omy. By comparing these diagrams to the diagrams of our
four classes of automotive systems, we identified the follow-
ing key gaps in existing approaches:

• Dynamic adaptation in vehicle-centric systems is
restricted to at most the dynamic choice of a suitable
configuration at runtime. Since hard real-time systems
must ensure the safety and consistency of their execution
behaviour at all times, the dynamic insertion and recon-
figuration of software modules is traditionally not allowed.
Existing approaches, such as MARS and DySCAS (c.f., Sec-

tion 6.1), provide the required runtime adaptation as they
change the existing configuration of the system after a fault
and additionally can also include new devices and software
into vehicle electronic systems at runtime. They do not,
however, support time bounds of their adaptations.

•Driver information systems require not only adap-
tation of multimedia content, but they also need
support for software adaptation, e.g., dynamic integra-
tion of software into a running system. Developers of driver
information systems can leverage TrafficView and OSA+,
but these approaches assume that the software to integrate
or to update is locally available. Saspence and OSGI of-
fer full support for dynamic adaptation and SyncML pro-
vides data and software binaries integration, but they do not
adapt or update software in time bounds. Moreover, these
solutions do not account for time and space constraints as
required by driver information systems.

• Cooperative driving systems need time-bounded
coordination between vehicles. Existing approaches,
such as the Auto21 project [26], provide safety critical co-
ordination. They do not, however, support stringent QoS
constraints, such as available memory space, for the under-
lying platform.

• Vehicular sharing systems need time-bounded al-
location of resources and membership management.
These systems must also monitor the space storage and com-
putational power of the vehicles before distributing applica-
tions and data between vehicles (c.f., Section 4.4).

To address these gaps in prior work, research is needed
on techniques, tools, and platforms for composing automo-
tive software under time constraints. For example, when
deciding which modules to integrate or upgrade into vehi-
cle, time and space constraints should be considered. Our
future work is therefore defining a domain-specific modelling
language and a QoS-enabled middleware execution platform
that enables time-bounded composition and deployment of
automotive system software.
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