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Abstract: Heart rate forecasting in cycling is most effective when it is personalized and course-specific to account for the
influence of individual and terrain factors. This paper empirically assesses various personalized and course-
specific heart rate forecasting models based on four machine learning models, including random forest, feed
forward neural networks (FFNNs), recurrent neural networks (RNNs), and long short term memory (LSTM).
The mean square error (MSE) is selected as the metric for model comparison. The results of our experiments
show that despite the severely overfitted random forest models the LSTM models have the lowest MSE in the
heart rate forecasting on our test dataset.

1 INTRODUCTION

1.1 Background

Monitoring exercise intensity during cycling is impor-
tant. While insufficient exercise may slow improve-
ment in an athlete’s performance, excess exertion can
result in over-training or even muscle damage. Over-
training in cycling can result in a debilitating syn-
drome that degrades the performance of cyclists for
several months and may ultimately result in failure
to meet competition goals (Gleeson, 2002). More-
over, over-trained athletes—especially those involved
in endurance sports like cycling—are susceptible to
infections and require significantly longer time for
recovery than non-athletes (Gleeson, 2002; Nieman,
1994).

Several metrics are available to estimate exer-
cise intensity, including heart rate, power output,
and V̇ O2max. According to Jeukendrup et al’s
study (Jeukendrup and Diemen, 1998), heart rate is
a reliable indicator of cycling exercise intensity since
it is largely independent of a specific course. How-
ever, heart rate can be affected by terrain factors, such
as grade of the hill, which varies on different riding
courses.

Predicting heart rate at different points in time on
a cycling course is hard since heart rate is affected by
course-specific features, as well as other personalized
physiological factors. Research has shown that a cy-
clist’s heart rate drifts upwards after exercising for 20

to 60 minutes despite unchanged work loads (Le et al.,
2009), which is a condition called “cardiac drift.”

Cardiac drift is associated with an increase of
core body temperature during exercise (Dawson et al.,
2005; Collinson et al., 2001), which may cause ath-
letes to lower their speed to maintain their heart rate.
On the other hand, higher speed can yield a higher
heart rate in a given condition (Le et al., 2009). More-
over, heart rate responses vary with a cyclist’s individ-
ual factors, such as gender and age (Le et al., 2009),
as well as their cadence on different parts of a given
course.

It is hard to predict heart rate on a specific point
in a course at a target speed. Training plans therefore
focus on setting target heart rate or power goals (e.g.,
power applied to the pedals by the rider) and riding as
fast as possible without exceeding those targets. Ide-
ally, training plans could be developed where heart
rate at a given speed and point in a course is predicted
and riders are given a set of target speeds to ride in-
stead. Achieving this ideal, however, requires build-
ing heart rate forecasting models that are personalized
and course-specific, which yields the following bene-
fits:

• Achieve speed goals without over-training. A
personalized performance forecasting model for
specific courses is vital for cyclists to establish
achievable speed goals at different courses in ad-
vance and maximize training effects without over-
training.



• Improve course-specific estimation accuracy.
Riders can accurately estimate how much faster
they could ride in different sections of the course,
yet still remain within heart rate targets. For ex-
ample, a rider who has only ridden a course at
70-80% of max heart rate could estimate how fast
they would ride at a race intensity of up to 90%
of max heart rate. This estimate could give them
a benchmark of what they could currently achieve
without actually riding the course and potentially
over-exerting themselves.

A biker may need to climb up on a steep uphill
trail on uneven terrain with 6-8in rocks, which re-
quires significantly slower speeds and greater inten-
sity than a similar climb on smooth ground. Similarly,
a high-speed downhill ride on smooth terrain will
place less stress on a rider’s core muscle groups com-
pared to the same downhill speed across tree roots.
The individual terrain features, turns, gradients, and
other aspects of a course significantly impact a rider’s
speed and intensity, but current models are mainly
course-independent.

To maximize their efficacy, personalized and
course-specific heart rate models should be easily
trainable from limited data—ideally a single test ride
of a course by an athlete. If an athlete rides a course
multiple times at multiple target heart rates, they are
less likely to need a predictive model since they al-
ready know the course well. Therefore, new courses
(i.e., where the athlete has limited knowledge) are
those where personalized and course-specific predic-
tive models are most valuable. Ideally, a cyclist
should be able to ride a course once and then predict
how different target speeds would impact heart rate at
different points on the course.

1.2 Research Question

This paper presents our research on comparing per-
sonalized multivariate models to forecast the heart
rate of a cyclist on a specific course using data from
a single ride. These models consider course-specific
factors at each part of the course (such as the grade
of road and the altitude), as well as current rider de-
tails (such as the cadence), and then forecast the heart
rate of the athlete based on them. We compare the re-
sults of heart rate forecast by the following machine
learning models from a single ride and report which
models perform best:

• The first type of model experimented with is ran-
dom forest, which is a traditional machine learn-
ing model. Forecasting results show that random
forest models have severe overfitting and there-

fore cannot be utilized in heart rate forecasting
from a single ride.

• To mitigate the random forest overfitting prob-
lem, we implement feed forward neural networks
(FFNNs). FFNNs do not exhibit overfitting prob-
lems on the dataset, though their forecasting ac-
curacy is lower. In particular, FFNNs do not
consider historical information when forecasting
heart rate.

• To address the limitations with FFNNs, we also
implemented two other types of neural networks:
simple recurrent neural networks (RNNs) and
long short term memory (LSTM) networks.

We empirically compare all these models via ex-
periments in our testbed. The results of these exper-
iments indicate that the LSTM models have the low-
est mean square error among machine learning mod-
els despite severely overfitted random forest models
and produce predictions that closely match real-world
heart rate sequences.

1.3 Paper Organization

The remainder of this paper is organized as follows:
Section 2 describes prior work on heart rate forecast-
ing; Section 3 reviews the data processing methods
and all the models applied in this paper, including ba-
sic concepts of each model and their pros and cons;
Section 4 describes how we built random forest, feed
forward neural network (FFNN), recursive neural net-
work (RNN), and long short term memory (LSTM)
models to forecast the heart rate of athletes on a spe-
cific route and then compares the best models among
these four types with two course-independent models
(FitRec (Ni et al., 2019) and Minmin’s LSTM-based
model (Luo and Wu, 2020)); Section 5 presents con-
cluding remarks and outlines future work.

2 RELATED WORK

Researchers have built various models to predict the
performance of elite cyclists. Le et al. (Le et al., 2009)
proposed a mathematical model to evaluate athletes’
heart rate response under moderate exercise intensity
based on physical and physiological principles. Lu-
cia et al. (Lucı́a et al., 2001) analyzed the preferred
cadence of elite cyclists and found that on flat stages
they tend to adopt higher cadences (around 90 rpm)
while on mountain ascents cadences are around 70
rpm. However, their models focus on laboratory con-
ditions. Course-specific factors, such as the slope of
the road in real courses, are not consider, though these



factors significantly influence a cyclist’s heart rate re-
sponse.

Due to the advent of wearable devices, large
amounts of data can be collected and processed via
mobile devices, which offers an opportunity to build
personalized performance forecasting models. Xiao
and Ming et al. (Ming and Jun, 2008; Xiao et al.,
2010) used an FFNN to investigate the relationship
between heart rate and physical activity in daily life
with the help of a wearable physical activity recorder
that monitors the 3-D accelerations of the body.

RNNs exhibit sequential correlation and can
seamlessly model problems with multiple inputs.
These models are therefore widely used in natural
language processing and time series prediction (Cho
et al., 2014). In athletic performance forecasting,
RNN based models can take personalized factors
(such as blood pressure and running speed during ex-
ercise) to make a heart rate predictions. Ni et al. (Ni
et al., 2019) proposed an LSTM-based model to learn
a user’s heart rate profile during exercise and offer
workout route recommendation and short term heart
rate prediction. Luo et al. (Luo and Wu, 2020) also
proposed an LSTM-based model to predict heat rate
based on heart rate signal, gender, age, accelerations
and mental state.

In summary, although there are other performance
forecasting models, most studies focus on the heart
rate profile collected either during daily activities or
under laboratory conditions. There are few models
that are course-specific and personalized to forecast
a cyclist’s heart rate. However, such models can be
beneficial to both cyclists and coaches.

For example, a cyclist needs a model to establish
various speed goals at different parts of a course be-
fore a competition or predict their heart rate based on
given speed goals. A coach can use such a model to
evaluate the heart rate of a given athlete on a given
course at a given speed to ensure the exercise inten-
sity and avoid over-training. Likewise, when given
specific heart rate goals, these models can be used to
predict how fast a cyclist can/should ride at different
parts of a course.

3 METHODOLOGY

To address the limited understanding of personal-
ized and course-specific heart rate forecasting from
a single ride, we evaluated the performance of prior
course/cyclist-independent models, course/cyclist-
specific traditional machine learning models, and
course/cyclist-specific neural networks on forecasting
rider heart rate on a single ride of a course. These

comparisons allowed us to investigate a number of
important research questions and collect important
lessons learned to guide future research, as discussed
in this section.

3.1 Key Research Questions

The key research questions we investigated in our
study include the following:

• Are current models that do not consider course-
specific features as good as models that consider
specific features, such as location?

• Which machine learning approaches perform best
for personalized course-specific heart rate predic-
tion from a single ride?

• For traditional machine learning models, which
features are most salient for learning?

3.2 Experimentation Approach

We began our study by surveying prior work on heart
rate forecasting. We then selected and applied both
traditional machine learning models and neural net-
works to a cycling dataset that we collected. Impor-
tant cyclist and course-specific factors must be con-
sidered for cycling performance forecasting. It is nat-
ural to consider multivariate models for performance
forecasting, e.g., random forest and neural networks
are popular machine learning algorithms because they
work for both regression and classification and can
handle multiple inputs.

According to Leijnen et al. (Leijnen and van Veen,
2020), there are 13 major neural network architec-
tures used by researchers. Among all these neural net-
works, three of them are widely used in performance
forecasting, including feed forward neural networks
(FFNN) (Ming and Jun, 2008; Xiao et al., 2010),
basic recurrent neural networks (RNN) (Chowdhury
et al., 2019), and long short term memory (LSTM)
(Bian et al., 2019; Ni et al., 2019) models. We there-
fore selected these three neural networks and random
forest and built a personalized model to predict the
performance of a cyclist on a specific routes. LSTM
is a special type of RNN, so to distinguish these two
models we call basic RNN models ”simple RNN”
models in this paper.

Pruning irrelevant features to an athlete’s perfor-
mance can reduce model overfitting and improve fore-
casting accuracy. Traditional machine learning mod-
els such asrandom forest models are sensitive to data
variation, so small differences in the dataset can cause
a large variance in the prediction. Neural networks
have built-in mechanisms to mitigate overfitting and



perform feature selection by assigning significant fea-
tures larger weights. This process, however, con-
sumes a large amount of time and requires a large
amount of data. Removing less important factors can
accelerate the training process of traditional machine
learning models and neural networks and reduce the
amount of data needed. This paper therefore uses fea-
ture selection for all four types of models.

In statistics, a correlation coefficient is used to
characterize how strong a relationship is between two
variables. Two common correlation coefficients are
widely used: the Pearson correlation coefficient and
the Spearman’s rank correlation coefficient. Accord-
ing to Bishara et al. (Bishara and Hittner, 2017), cal-
culating Spearman’s correlation coefficient for non-
normal data may be an optimal strategy when the
data size is larger than 20. Therefore, for heart rate
forecasting, Spearman’s rank correlation coefficient
is more suitable for calculating the correlation coef-
ficient, so we therefore select this approach to filter
the personalized and terrain factors.

3.3 Overview of Our Dataset

For heart rate forecasting, the dataset used in this pa-
per contains the grade of course, speed, heart rate, al-
titude, cadence, and distance at each second. We are
interested in understanding how course-specific fea-
tures impacted forecasting performance. We therefore
use mountain biking data from trails in the Nashville,
Tennessee, USA region.

Our dataset was collected on a Ripmo AF moun-
tain bike instrumented with a Garmin 830 biking
computer connected to an accelerometer-based speed
sensor mounted to the front hub of the bike. The
bike’s crank arms included a Quarq Sram XX1 Eagle
Dub power meter that used embedded strain gauges
to measure the power applied to the pedals within +/-
2%. The Quarq power meter directly measured the
rider’s pedaling cadence from accelerometers embed-
ded in the crank arms. The Garmin 830 included GPS
positioning and improved location tracking using a
fusion of wheel rotation, speed, and GPS fix data. Fi-
nally, a Wahoo Tickr elctrode-based chest strap was
used to measure heart rate and communicate the data
to the Garmin 830.

For our study, we selected 8.71 miles of riding on
a 10-mile courses in the Nashville area. The rider
was a 40-year old male weighing approximately 210
pounds.1 The dataset and all the source code we

1Our current work focuses on a single rider to maxi-
mize understanding of how course-specific features could
be learned since individual riders have been more thor-
oughly studied in prior work.

used to evaluate the machine learning and neural net-
work models discussed in this paper is available from
github.com/EricXQiu/SportDataProcessing.

3.4 Feature Selection

The first step in our dataset processing involved se-
lecting features for model training. Before selecting
these features their significance must be determined.
Spearman’s correlation coefficients (ρ) for each se-
quence are listed in Table 1. This table shows that the

Table 1: Spearman Correlation Coefficient Between Factors
and Heart Rate

Features Spearman correlation
coefficient

speed 0.1826
grade of course 0.2524

cadence 0.2389
distance 0.0466
altitude 0.2586

grade of course, cadence, speed, and altitude signifi-
cantly influence heart rate more than the other factors.
We therefore selected these four factors as the features
for our heart rate forecasting model.

We split the dataset between a training set and test
set. A window average is carried out to metigate the
mesurement error of heart rate. By convention, we
used an 80% vs 20% train-test split ratio to split data
into the training set and test set. For the LSTM-based
model, the training set was the first 80% of the data
and the test set was the remaining 20% rather than
a random selection to account for the order depen-
dence in heart rate data. To compare the results with
LSTM-based models, the same train-test split process
was also performed for the random forest model and
neural networks.

4 HEART RATE FORECASTING
MODEL COMPARISON

This section describes how we applied four machine
learning models (random forest, feed forward neu-
ral networks, simple recurrent neural networks, and
long short term memory) to build heart rate forecast-
ing models that predict an cyclist’s heart rate on a
given course. The results of applying these heart rate
forecasting models are then analyzed. We also com-
pare the mean squared error (MSE) of all four mod-
els to glean insights into which models perform best
and whether they have severe overfitting. Finally,
we compare our models with other models (i.e., Ni’s



model (Ni et al., 2019) and Luo’s model (Luo and
Wu, 2020)) that are not course-specific, but which we
trained on our dataset described in Section 3.3.

4.1 Random Forest Heart Rate Model

We used the scikit-learn library (Pedregosa et al.,
2011) to construct the heart rate forecasting models
based on random forest. The criterion is MSE and
the number of decision tree regressors can be modi-
fied. The number of decision trees regressors of four
random forest models are 5, 10, 15, and 20.

Each decision tree regressor uses all factors in
regression. Among them, model 1 with 5 decision
tree regressors shows the best performance. Its MSEs
are 0.455 bpm2 and 125.15 bpm2 on the training set
and test set respectively. The maximum depth of tree
depth is 31.

For all four models, the MSE on the test set is hun-
dreds of times larger than on the training set, which
shows that these random forest models have severe
overfitting. The depth of decision tree regressors is
approximately six times larger than the number of fac-
tors. This result indicates some factors are split mul-
tiple times, which increases the complexity of the de-
cision tree, thereby yielding severe overfitting of the
random forest model.

The heart rate forecasting result of model 1 is cho-
sen and shown in Figure 1. The predicted value fol-
lows the trend of the heart rate and shows the model
learned some patterns in the heart rate sequence due
to the course. However, the predicted heart rate shows
a large error around time 8,900s. Moreover, the pre-
dicted heart rate remains stable for the time range
from 8,600s to 8,700s, whereas the real heart rate
shows a sharp decreasing trend. The error in percent-
age between predicted heart rate and real heart rate
shows a similar trend as the forecasting result.

Figure 1: Heart Rate Forcasting of Random Forest Model

To investigate the structure of random forest
model, the Gini importance2 of each factor is calcu-

2The Gini importance is the average decrease of vari-
ance, which indicates the probability of whether there is a

lated. A factor with large Gini importance means that
more nodes are split by this factor in the decision tree
and therefore this feature is considered significant.

The average Gini importance of factors (in the or-
der of time, grade, speed, cadence, altitude) of model
1 is 0.294, 0.0376, 0.531, 0.028, 0.108 respectively.
It shows that speed, time, and altitude are three major
factors used to split nodes in the first several layers
of decision tree. Likewise, the table also shows the
influence of cadence and grade are less important in
decision tree construction.

We hypothesize that the source of the error may
occur for the following reasons:

• The dataset only indirectly measures course fea-
tures via speed and position, so it does not ef-
fectively learn course-specific influences on heart
rate.

• There may be some internal rider conditions, such
as the mental activities of the cyclist over time.
For example, a cyclist may be anxious due to
the terrain difficulty, thereby increasing their heart
rate. All these features can influence heart rate,
though they are hard to measure and express quan-
titatively.

• The random forest models may overfit on the
training set and provide erroneous predictions.

4.2 The FFNN Heart Rate Model

Due to the overfitting problems of the random forest
models, we built feed forward neural network (FFNN)
models with different hyper-parameters. Two of them
have two dense layers and the other two have three
dense layers.

An important phase of training a neural network
involves finding a proper learning rate. To search
the learning rate systematically, we employed Smith’s
method (Smith, 2017) and utilized learning rate finder
implemented by Pavel Surmenok et. al (Surmenok
and Mackenzie, 2017). By running at each learning
rate for 10 epochs, the optimal start learning rate for
these four FFNN models is 3×10−2.

Figure 2 shows the predicted heart rate and the real
heart rate of the model applied to the same sample as
the random forest.

The sample shows that the FFNN model can fol-
low the trend of the cyclist’s heart rate on the specific
course. The FFNN model shows large errors from
8,500s to 9,000s. To investigate the error source, The
MSEs of the training set and test set are calculated.
The MSE on the training set and test set are 262 bpm2

and 364 bpm2.

split on this feature (Menze et al., 2009).



Figure 2: Heart Rate Forecasting of FFNN Model

Compared with the random forest model, the vari-
ances of the FFNN model on the training set and test
set are much closer, indicating less overfitting sever-
ity. We therefore expect the FFNN model to general-
ize better than the random forest model because they
do not incur such severe overfitting.

4.3 The Simple RNN Model

Unlike FFNNs, recurrent neural networks (RNNs)
can utilize heart rate data in the past to forecast the
heart rate at the current moment. The architecture of
a simple RNN model for heart rate forecasting con-
sists two parts: 1. one or two Simple RNN layers 2.
several dense layers for output.

Simple RNN Models with different hyper param-
eters were built and four groups of hyper-parameters
are experimented. The models with one layer of Sim-
ple RNN layer perform dramatically better than mod-
els with two Simple RNN layers. The optimal start
learning rates were identified via Smith’s method and
an exponential decay learning rate function was uti-
lized for learning rate searching. With Keras learning
rate finder (Surmenok and Mackenzie, 2017), the op-
timal start learning rate was selected as 2×10−1.

The result of heart rate forecasting model with the
highest accuracy is predicted in Figure 3. The MSEs
on the training set and test set are 275.11 and 248.83
respectively. Compared with FFNN models, simple
RNN Models exhibit fewer errors and the forecasting
results are closer to the real heart rate sequence. The
reason of limited improvement may be ascribed the
gradient vanishing and gradient exploding problem in
Simple RNN.

4.4 The LSTM Model

Simple RNN models can suffer from vanishing gra-
dient problems, which limits their application when
the sequence of input data items is very long. To ad-
dress this issue, we implemented LSTM models. Four
sets of hyper-parameters are experimented and mod-
els with one LSTM layer model performs dramati-

Figure 3: Heart Rate Forecasting of Simple RNN Models

cally better than models with two LSTM layers. This
may also indicate that the simple one-dimensional
signals of speed, position, and cadence are insufficient
to learn course-specific heart rate variation.

With the help of keras learning rate finder (Sur-
menok and Mackenzie, 2017), the optimal start learn-
ing rate for models with one LSTM layer (i.e., Models
1 and 3) is selected to be 1×10−1.

The models with two LSTM layers show large
MSE on the test set and they do not learned the
general pattern of the heart rate compared with one
LSTMN layer (Model 1 and Model 3). The results
for these two one-layer LSTM models are shown in
Figure 4.

(a) Model 1

(b) Model 3
Figure 4: Heart Rate Forecasting of LSTM Models

The MSEs on the training set and test set of LSTM
Model 1 is 141.17 bpm2 and 200.50 bpm2. The MSEs
on the training set and test set of LSTM Model 3 is
62.47 bpm2 and 196.61 bpm2.



4.5 Comparison with Course
Independent Models

Based on the results presented above, it appears that
two LSTM models with only one LSTM layer per-
form better than the other three types of model. We
therefore also compared these LSTM models with
Luo’s LSTM model (Luo and Wu, 2020) and Ni’s
LSTM-based model (Ni et al., 2019), which are
course-independent and rely only on personalized
factors and contextual factors. The input features to
these latter two models were cadence, speed, altitude,
and time.

Since Luo’s and Ni’s models are not course-
specific, the grade of the biking course is excluded
in the input factors. In particular, only the structure
of their models are utilized and some layers (such as
the encoding layers in Ni’s model) are removed since
heart rate forecasting is the main focus. The struc-
ture of Ni’s model consists an LSTM layer, a dense
layer followed by a dropout layer while Luo’s model
includes two LSTM layers and two dropout layers.

These two models were first trained on the same
training set as our heart rate forecasting models with
course-specific factors excluded. They were then
tested on the same test set. The MSE of all four of
these models is shown in Table 2.

Table 2: MSE of LSTM models

Models MSE on
Training Set

MSE on
Test Set

Ni’s model 1822.23 407
Luo’s model 239.89 157.40

LSTM model 1 141.17 200.50
LSTM model 3 62.47 196.61

The comparison of forecasted heart rate is shown
in Figure 5. While Ni et al.’s model showed less error

Figure 5: Comparison of Different Heart Rate Forecasting
Models

on both the training set and test set, the heart rate it
forecasted is close to constant, except for several drop

outs. Luo et al.’s model captures the heart rate pattern
at around 170 beats per minute, but cannot follow the
heart rate pattern overall.

5 CONCLUDING REMARKS

This paper presents an empirical analysis of personal-
ized and course-specific models to forecast heart rates
for cyclists. In particular, we explored the perfor-
mance and feasibility of learning a cyclist’s course-
specific heart rate model from a single ride on a
given course. We implemented models using long
short term memory (LSTM), recursive neural network
(RNN), random forest, feed forward neural network
(FFNN), and previously published architectures and
compared their performance learning a cyclist. We
also compared our model with Ni et al’s (Ni et al.,
2019) and Luo et al.’s (Luo and Wu, 2020) models.

The heart rate forecasting results in Section 4
showed that the accuracy of two LSTM models out-
performed the other two types of neural network mod-
els and did not have as severe overfitting as the ran-
dom forest models. In Section 4.5, the LSTM course-
specific models also performed better than the two
LSTM-based course-independent models.

For research question 1 in Section 3.1 both course-
independent models do not capture the heart rate trend
of the cyclist well from 8,000s to 10,000s, as dis-
cussed in Section 4.5. In particular, the LSTM model
proposed by Ni et al. (Ni et al., 2019) mainly outputs
a rectangular heart rate sequence probably due to the
lack of course-specific factors, such as grade. Ni et
al. (Ni et al., 2019) state that their model focuses pri-
marily on short-term predictions (typically in a win-
dow of 10 seconds), so a 2,000-second sequence may
be too long for their model. Luo’s model forecasted
a somewhat continuous heart rate around 170 beats
per minute with small dips around 9000s and 9250s.
In general, our results show that these two models are
not as accurate as our LSTM models since they do not
consider course-specific factors.

For research question 2 in Section 3.1, random
forest models exhibit lower MSE on the dataset.
However, their substantial difference in MSE on the
training set and test set indicates that they all incur
severe overfitting. Moreover, as the data set grows
larger, the number of erroneous readings will un-
avoidably increase, thereby increasing the probability
of erroneous prediction due to the accumulated influ-
ence of error. As a result, conventional machine learn-
ing models have difficulty on course-specific heart
rate forecasting.

For research question 3 in Section 3.1 speed has



the highest Gini importance, which aligns with prior
work on heart rates for cyclists (Le et al., 2009) and is
utilized as the splitting factor for the first layer. The
three major factors are speed, time, and altitude. In
contrast, the influence of cadence and grade are con-
sidered less important in decision tree construction.

Our future work focuses on scaling up our valida-
tion on a larger body of cyclists to determine whether
these results hold true across a range of riders. We
are also exploring how imagery of the course can aid
in understanding complicated course features, such as
terrain roughness. For personalized factors, we are
evaluating the extent to which learned course-specific
models transfer to other riders of the same gender and
age, as well as bike types. We are also considering
dynamic personalized factors, such as breathing rate.

For course-specific factors, image data and videos
are being collected and analyzed via neural networks.
We are analyzing roughness and course conditions at
different parts of the course from these images and
applying them in our heart rate forecasting model.
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