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Abstract

In theory, multi-threading an application can improve per-
formance (by executing multiple instruction streams simul-
taneously) and simplify program structure (by allowing each
thread to execute synchronously rather than reactively or
asynchronously). In practice, multi-threaded applications
often perform no better, or even worse, than single-threaded
applications due to the overhead of acquiring and releasing
locks. In addition, multi-threaded applications are hard to
program due to the complex concurrency control protocols
required to avoid race conditions and deadlocks.

This paper describes the Thread-Specific Storage pattern,
which alleviates several problems with multi-threading per-
formance and programming complexity. The Thread-Specific
Storage pattern improves performance and simplifies multi-
threaded applications by allowing multiple threads to use
one logically global access point to retrieve thread-specific
data without incurring locking overhead for each access.

1 Intent

Allows multiple threads to use one logically global access
point to retrieve thread-specific data without incurring lock-
ing overhead for each access.

2 Motivation

2.1 Context and Forces

The Thread-Specific Storage pattern should be applied to
multi-threaded applications that frequently access objects
that are logically global but physically specific to each
thread. For instance, operating systems like UNIX and
Win32 report error information to applications usingerrno .

1This research is supported in part by a grant from Siemens AG.
2This research is funded by British Telecom, plc.

When an error occurs in a system call, the OS setserrno
to report the problem and returns a documented failure sta-
tus. When the application detects the failure status it checks
errno to determine what type of error occurred.

For instance, consider the following typical C code frag-
ment that receives buffers from a non-blocking TCP socket:

// One global errno per-process.
extern int errno;

void *worker (SOCKET socket)
{

// Read from the network connection
// and process the data until the connection
// is closed.

for (;;) {
char buffer[BUFSIZ];
int result = recv (socket, buffer, BUFSIZ, 0);

// Check to see if the recv() call failed.
if (result == -1) {

if (errno != EWOULDBLOCK)
// Record error result in thread-specific data.
printf ("recv failed, errno = %d", errno);

} else
// Perform the work on success.
process_buffer (buffer);

}
}

If recv returns �1 the code checks thaterrno !=
EWOULDBLOCKand prints an error message if this is not
the case (e.g., if errno == EINTR), otherwise it processes
the buffer it receives.

2.2 Common Traps and Pitfalls

Although the “global error variable” approach shown above
works reasonably3 well for single-threaded applications,
subtle problems occur in multi-threaded applications. In par-
ticular, race conditions in preemptively multi-threaded sys-
tems can cause anerrno value set by a method in one
thread to be interpreted erroneously by applications in other

3The Appendix discusses the tradeoffs of reporting errors using alterna-
tive techniques (such as exceptions and passing an explicit error parameter
to each call).
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result = recv (socket,
buffer, BUFSIZ, 0);

Thread T1 Thread T2

T1 preempted

if  (errno == EWOULDBLOCK)
// T1 falsely assumes its
// recv() was interrupted!

// sets errno = EWOULDBLOCK

result = recv (socket,
buffer, BUFSIZ, 0);

// sets errno = EINTR

T2 preempted

Figure 1: Race Conditions in Multi-threaded Programs

threads. Thus, if multiple threads execute theworker func-
tion simultaneously it is possible that the global version of
errno will be set incorrectly due to race conditions.

For example, two threads (T1 andT2) can performrecv
calls on thesocket in Figure 1. In this example,T1’s recv
returns�1 and setserrno to EWOULDBLOCK, which indi-
cates no data is queued on the socket at the moment. Be-
fore it can check for this case, however, theT1 thread is
preempted andT2 runs. AssumingT2 gets interrupted, it
setserrno to EINTR. If T2 is then preempted immediately,
T1 will falsely assume itsrecv call was interrupted and
perform the wrong action. Thus, this program is erroneous
and non-portable since its behavior depends on the order in
which the threads execute.

The underlying problem here is that setting and testing the
globalerrno value occurs in two steps: (1) therecv call
sets the value and (2) the application tests the value. There-
fore, the “obvious” solution of wrapping a mutex around
errno will not solve the race condition because the set/test
involves multiple operations (i.e., it is not atomic).

One way to solve this problem is to create a more so-
phisticated locking protocol. For instance, therecv call
could acquire anerrno mutex internally, which must be
released by the application once the value oferrno is tested
after recv returns. However, this solution is undesirable
since applications can forget to release the lock, thereby
causing starvation and deadlock. Moreover, if applications
must check the error status after every library call the ad-
ditional locking overhead will degrade performance signifi-
cantly, even when multiple threads are not used.

2.3 Solution: Thread-Specific Storage

A common solution to the traps and pitfalls described above
is to use theThread-Specific Storagepattern. This pattern
resolves the following forces:

� Efficiency: Thread-specific storage allows sequential
methods within a thread to access thread-specific objects

atomically without incurring locking overhead for each ac-
cess.

� Simplify application programming: Thread-specific
storage is simple for application programmers to use because
system developers can make the use of thread-specific stor-
age completely transparent at the source-code level via data
abstraction or macros.

� Highly portable: Thread-specific storage is available on
most multi-threaded OS platforms and can be implemented
conveniently on platforms (such as VxWorks) that lack it.

Therefore, regardless of whether an application runs in a
single thread or multiple threads, there should be no addi-
tional overhead incurred and no changes to the code required
to use the Thread-Specific Storage pattern. For example, the
following code illustrates howerrno is defined on Solaris
2.x:

// A thread-specific errno definition (typically
// defined in <sys/errno.h>).
#if defined (_REENTRANT)
// The _errno() function returns the
// thread-specific value of errno.

#define errno (*_errno())
#else
// Non-MT behavior is unchanged.
extern int errno;
#endif /* REENTRANT */

void *worker (SOCKET socket)
{

// Exactly the same implementation shown above.
}

When the REENTRANTflag is enabled theerrno symbol
is defined as a macro that invokes a helper function called
errno , which returns a pointer to the thread-specific value

of errno . This pointer is dereferenced by the macro so that
it can appear on either the left or right side of an assignment
operator.

3 Applicability

Use the Thread-Specific Storage pattern when an application
has the following characteristics:

� It was originally written assuming a single thread of
control and is being ported to a multi-threaded environ-
mentwithoutchanging existing APIs; or

� It contains multiple preemptive threads of control that
can execute concurrently in an arbitrary scheduling or-
der, and

� Each thread of control invokes sequences of methods
that share data common only to that thread, and

� The data shared by objects within each thread must be
accessed through a globally visible access point that is
“logically” shared with other threads, but “physically”
unique for each thread; and
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TS Object Collection

set_object (key)
get_object (key)

TS Object Proxy

setspecific ()
getspecific()

key

TS ObjectApplication
Thread

Figure 2: Structure of Participants in the Thread-Specific
Storage Pattern

� The data is passed implicitly between methods rather
than being passed explicitly via parameters.4

Understanding the characteristics described above is crucial
to using (or not using) the Thread-Specific Storage pattern.
For example, the UNIXerrno variable is an example of
data that is (1) logically global, but physically thread-specific
and (2) passed implicitly between methods.

Do not use the Thread-Specific Storage pattern when an
application has the following characteristics:

� Multiple threads are collaborating on a single task that
requires concurrent access to shared data. For instance,
a multi-threaded application may perform reads and
writes concurrently on an in-memory database. In this
case, threads must share records and tables that are not
thread-specific. If thread-specific storage was used to
store the database, the threads could not share the data.
Thus, access to the database records must be controlled
with synchronization primitives (e.g., mutexes) so that
the threads can collaborate on the shared data.

� It is more intuitive and efficient to maintain both a
physicaland logical separation of data. For instance,
it may be possible to have threads access data visible
only within each thread by passing the data explicitly
as parameters to all methods. In this case, the Thread-
Specific Storage pattern may be unnecessary.

4 Structure and Participants

Figure 2 illustrates the structure of the following participants
in the Thread-Specific Storage pattern:

Application Threads

� Application threads useTS Object Proxies to
accessTS Objects residing in thread-specific stor-
age. As shown in Section 9, an implementation of the
Thread-Specific Storage pattern can usesmart pointers
to hide theTS Object Proxy so that applications
appear to access theTS Object directly.

4This situation is common when porting single-threaded APIs to multi-
threaded systems.

Thread-Specific (TS) Object Proxy (errno macro)

� The TS Object Proxy defines the interface of a
TS Object . It is responsible for providing access
to a unique object for each application thread via the
getspecific andsetspecific methods. For in-
stance, in the error handling example from Section 2,
theerrno TS Object is anint .

A TS Object Proxy instance is responsible for a
type of object, i.e., it mediates access to a thread-
specificTS Object for every thread that accesses the
proxy. For example, multiple threads may use the same
TS Object Proxy to access thread-specificerrno
values. Thekey value stored by the proxy is as-
signed by theTS Object Collection when the
proxy is created and is passed to the collection by the
getspecific andsetspecific methods.

The purpose ofTS Object Proxies is to hide
keys andTS Object Collections . Without the
proxies, theApplication Threads would have
to obtain the collections and usekeys explicitly. As
shown in Section 9, most of the details of thread-
specific storage can be completely hidden via smart
pointers for theTS Object Proxy .

Thread-Specific (TS) Object (* errno() value)

� A TS Object is a particular thread’s instance of a
thread-specific object. For instance, a thread-specific
errno is an object of typeint . It is managed by
the TS Object Collection and accessed only
through aTS Object Proxy .

Thread-Specific (TS) Object Collection

� In complex multi-threaded applications, a thread’s
errno value may be one of many types of data resid-
ing in thread-specific storage. Thus, for a thread to re-
trieve its thread-specific error data it must use akey .
This key must be associated witherrno to allow a
thread to access the correct entry in theTS Object
Collection .

The TS Object Collection contains a set of
all thread-specific objects associated with a particular
thread, i.e., every thread has a uniqueTS Object
Collection . The TS Object Collection
mapskeys to thread-specificTS Objects . A TS
Object Proxy uses thekey to retrieve a specificTS
Object from the TS Object Collection via
the get object(key) and set object(key)
methods.

5 Collaborations

The interaction diagram in Figure 3 illustrates the following
collaborations between participants in the Thread-Specific
Storage pattern:
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Application
Thread

OBJECT OPERATION

Thread state or
global structure

TS
Proxy

getspecific()
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RETURN COLLECTION

TS-Object
Collection

RETURN TS-OBJECT
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get_object (key)
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Figure 3: Interactions Among Participants in the Thread-
Specific Storage Pattern

� Locate the TS Object Collection: Methods in each
Application Thread invoke thegetspecific and
setspecific methods on theTS Object Proxy to
access theTS Object Collection , which is stored in-
side the thread or in a global structure indexed by the thread
ID.5

� Acquire the TS Object from thread-specific storage:
Once theTS Object Collection has been located, the
TS Object Proxy uses itskey to retrieve the correctTS
Object from the collection.

� Set/get TS Object state: At this point, the application
thread operates on theTS Object using ordinary C++
method calls. No locking is necessary since the object is ref-
erenced by a pointer that is accessed only within the calling
thread.

6 Consequences

6.1 Benefits

There are several benefits of using the Thread-Specific Stor-
age pattern, including:

Efficiency: The Thread-Specific Storage pattern can be
implemented so that no locking is needed to thread-specific
data. For instance, by placingerrno into thread-specific
storage, each thread can reliably set and test the completion
status of methods within that thread without using complex
synchronization protocols. This eliminates locking overhead
for data shared within a thread, which is faster than acquiring
and releasing a mutex [1].

Ease of use: Thread-specific storage is simple for appli-
cation programmers to use because system developers can
make the use of thread-specific storage completely transpar-
ent at the source-code level via data abstraction or macros.

5Every thread in a process contains a unique identifying value called a
“thread ID,” which is similar to the notion of a process ID.

6.2 Liabilities

There are also the following liabilities to using the Thread-
Specific Storage pattern:

It encourages the use of (thread-safe) global variables:
Many applications do not require multiple threads to access
thread-specific data via a common access point. When this
is the case, the data should be stored so that only the thread
owning the data can access it. For example, consider a net-
work server that uses a pool of worker threads to handle in-
coming requests from clients. These threads may log the
number and type of services performed. This logging mech-
anism could be accessed as a globalLogger object utiliz-
ing Thread-Specific Storage. A simpler approach, however,
would represent each worker thread as an Active Object [2]
with an instance of theLogger stored internally. In this
case, no overhead is required to access theLogger , as long
as it is passed as a parameter to all functions in the Active
Object.

It hides the structure of the system: The use of thread-
specific storage hides the relationships between objects in an
application, potentially making the application harder to un-
derstand. Explicitly representing relationships between ob-
jects can eliminate the need for thread-specific storage in
some cases, as described in Appendix A.2.

7 Implementation

The Thread-Specific Storage pattern can be implemented in
various ways. This section explains each step required to
implement the pattern. The steps are summarized as follows:

1. Implement the TS Object Collections: If the OS does
not provide an implementation of thread-specific storage, it
can be implemented using whatever mechanisms are avail-
able to maintain the consistency of the data structures in the
TS Object Collections .

2. Encapsulate details of thread-specific storage:As
shown in Section 8, interfaces to thread-specific storage are
typically weakly-typed and error-prone. Thus, once an im-
plementation of thread-specific storage is available, use C++
programming language features (such as templates and over-
loading) to hide the low-level details of thread-specific stor-
age behind OO APIs.

The remainder of this section describes how to implement
the low-level thread-specific storage APIs. Section 8 pro-
vides complete sample code and Section 9 examines several
ways to encapsulate low-level thread-specific storage APIs
with C++ wrappers.

7.1 Implement the TS Object Collections

The TS Object Collection shown in Figure 2 con-
tains allTS Objects belonging to a particular thread. This
collection can be implemented using a table of pointers to
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Thread-Specific
Objects

thread_ID
TS_Object_Collection

THREADSTHREADS

1: pthread_getspecific(key)

3: get_object(key)

2: hash_table_lookup(thread ID)
 Hash Table

Thread-specific Object
tables indexed by key

Figure 4: External Implementation of Thread-Specific Stor-
age

TS Objects indexed bykeys . A thread must locate
its TS Object Collection before accessing thread-
specific objects by theirkeys . Therefore, the first de-
sign challenge is determining how to locate and storeTS
Object Collections .

TS Object Collections can be stored either (1) ex-
ternally to all threads or (2) internally to each thread. Each
approach is described and evaluated below:

1. External to all threads: This approach defines a
global mapping of each thread’s ID to itsTS Object
Collection table (shown in Figure 4). Locating the right
collection may require the use of a readers/writer lock to pre-
vent race conditions. Once the collection is located, however,
no additional locking is required since only one thread can be
active within aTS Object Collection .

2. Internal to each thread: This approach requires each
thread in a process to store aTS Object Collection
with its other internal state (such as a run-time thread stack,
program counter, general-purpose registers, and thread ID).
When a thread accesses a thread-specific object, the object
is retrieved by using the correspondingkey as an index into
the thread’s internalTS Object Collection (shown in
Figure 5). This approach requires no additional locking.

Choosing between the external and internal implementa-

Thread-Specific
Objects

Thread-Specific
Objects

THREAD  ATHREAD  A THREAD  BTHREAD  B

Thread-Specific Object
tables indexed by key

1: pthread_getspecific(key)

2: get_object(key)

Figure 5: Internal Implementation of Thread-Specific Stor-
age

tion schemes requires developers to resolve the following
tradeoffs:

Fixed- vs. variable-sized TS Object Collections: For
both the external and internal implementations, theTS
Object Collection can be stored as a fixed-size ar-
ray if the range of thread-specific keys is relatively small.
For instance, the POSIX Pthread standard defines a mini-
mum number of keys,POSIX THREADKEYSMAX, that
must be supported by conforming implementations. If the
size is fixed (e.g., to 128 keys, which is the POSIX default),
the lookup time can beO(1) by simply indexing into the
TS Object Collection array using the object’s key,
as shown in Figure 5.

The range of thread-specific keys can be large, however.
For instance, Solaris threads have no predefined limit on the
number of keys. Therefore, Solaris uses a variable-sized data
structure, which can increase the time required to manage the
TS Object Collection .

Fixed- vs. variable-sized mapping of thread IDs to TS
Object Collections: Thread IDs can range from very small
to very large values. This presents no problem for inter-
nal implementations since the thread ID is implicitly asso-
ciated with the correspondingTS Object Collection
contained in the thread’s state.

For external implementations, however, it may be imprac-
tical to have a fixed-size array with an entry for every possi-
ble thread ID value. Instead, it is more space efficient to have
threads use a dynamic data structure to map thread IDs toTS
Object Collections . For instance, one approach is to
use a hash function on the thread ID to obtain an offset into a
hash table bucket containing a chain of tuples that map thread
IDs to their correspondingTS Object Collection (as
shown in Figure 4).

Global vs. local TS Object Collections: The internal
approach stores theTS Object Collections locally
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with the thread, whereas the external approach stores them
globally. Depending on the implementation of the exter-
nal table, the global location can allow threads to access
other threads’TS Object Collections . Although
this seems to defeat the whole point ofthread-specificstor-
age, it is useful if the thread-specific storage implementation
provides automatic garbage collection by recycling unused
keys. This feature is particularly important on implemen-
tations that limit the number of keys to a small value (e.g.,
Windows NT has a limit of 64 keys per process).

However, using an external table increases the access time
for every thread-specific object since synchronization mech-
anisms (such as readers/writer locks) are required to avoid
race conditions if globally accessible table is modified (e.g.,
when creating new keys). On the other hand, keeping theTS
Object Collection locally in the state of each thread
requires more storage per-thread, though no lesstotal mem-
ory consumption.

8 Sample Code

8.1 Implementing the POSIX Pthreads
Thread-Specific Storage API

The following code shows how thread-specific storage can
be implemented whenTS Object s are stored “internally”
to each thread using a fixed-sized array of keys. This exam-
ple is adapted from a publically available implementation [3]
of POSIX Pthreads [4].

Thethread state structure shown below contains the
state of a thread:

struct thread_state
{

// The thread-specific error number.
int errno_;

// Thread-specific data values.
void *key_[_POSIX_THREAD_KEYS_MAX];

// ... Other thread state.
};

In addition toerrno and the array of thread-specific storage
pointers, this structure also includes a pointer to the thread’s
stack and space to store data (e.g., the program counter) that
is saved/restored during a context switch.

For a particular thread-specific object, the same key value
is used to set and get thread-specific values for all threads.
For instance, ifLogger objects are being registered to keep
track of thread-specific logging attributes, the thread-specific
Logger proxy will be assigned some key valueN . All
threads will use this valueN to access their thread-specific
logging object. A count of the total number of keys currently
in use can be stored globally to all threads, as follows:

typedef int pthread_key_t;

// All threads share the same key counter.
static pthread_key_t total_keys_ = 0;

The total keys count is automatically incremented ev-
ery time a new thread-specific key is required, as shown in
thepthread key create function below:

// Create a new global key and specify
// a "destructor" function callback.
int
pthread_key_create (pthread_key_t *key,

void (*thread_exit_hook) (void *))
{

if (total_keys_ >= _POSIX_THREAD_KEYS_MAX) {
// pthread_self() refers to the context of the
// currently active thread.
pthread_self ()->errno_ = ENOMEM;
return -1;

}

thread_exit_hook_[total_keys_] = thread_exit_hook;
*key = total_keys_++;
return 0;

}

Thepthread key create function allocates a new key
value that uniquely identifies a thread-specific data ob-
ject. In addition, it allows an application to associate a
thread exit hook with a key. This hook is a pointer
to a function that is called automatically when (1) a thread
exits and (2) there is a thread-specific object registered for a
key. An array of function pointers to “thread exit hooks” can
be stored globally, as follows:

// Exit hooks to cleanup thread-specific keys.
static void
(*thread_exit_hook_[_POSIX_THREAD_KEYS_MAX]) (void);

The pthread exit function below shows how thread
exit hook functions are called in the implementation of
pthread exit :

// Terminate the thread and call thread exit hooks.
void pthread_exit (void *status)
{

// ...
for (i = 0; i < total_keys; i++)

if (pthread_self ()->key_[i]
&& thread_exit_hook_[i])

// Indirect pointer to function call.
(*thread_exit_hook_[i])

(pthread_self ()->key_[i]);
// ...

}

Applications can register different functions for each
thread-specific data object, but for each object the same func-
tion is called for each thread. Registering dynamically allo-
cated thread-specific objects is a common use-case. There-
fore, thread exit hooks typically look like the following:

static void
cleanup_tss_Logger (void *ptr)
{

// This cast is necessary to invoke
// the destructor (if it exists).
delete (Logger *) ptr;

}

This function deallocates a dynamically allocatedLogger
object.

Thepthread setspecific function binds avalue
to the givenkey for the calling thread:
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// Associate a value with a data key
// for the calling thread.
int pthread_setspecific (int key,

void *value)
{

if (key < 0 || key >= total_keys) {
pthread_self ()->errno_ = EINVAL;
return -1;

}

pthread_self ()->key_[key] = value;
return 0;

}

Likewise, pthread getspecific stores intovalue
the data bound to the givenkey for the calling thread:

// Retrieve a value from a data key
// for the calling thread.
int pthread_getspecific (int key,

void **value)
{

if (key < 0 || key >= total_keys) {
pthread_self ()->errno_ = EINVAL;
return -1;

}

*value = pthread_self ()->key_[key];
return 0;

}

Because data are stored internally in the state of each thread,
neither of these functions requires any additional locks to
access thread-specific data.

8.2 Using Thread-Specific Storage in Applica-
tions

The example below illustrates how to use the thread-specific
storage APIs from the POSIX Pthread specification in a C
function that can be called from more than one threadwith-
outhaving to call an initialization function explicitly:

// Local to the implementation.
static pthread_mutex_t keylock =

PTHREAD_MUTEX_INITIALIZER;
static pthread_key_t key;
static int once = 0;

void *func (void)
{

void *ptr = 0;

// Use the Double-Checked Locking pattern
// (described further below) to serialize
// key creation without forcing each access
// to be locked.

if (once == 0) {
pthread_mutex_lock (&keylock);
if (once == 0) {

// Register the free(3C) function
// to deallocation TSS memory when
// the thread goes out of scope.
pthread_key_create (&key, free);
once = 1;

}
pthread_mutex_unlock (&keylock);

}

pthread_getspecific (key, (void **) &ptr);

if (ptr == 0) {
ptr = malloc (SIZE);
pthread_setspecific (key, ptr);

}

return ptr;
}

8.3 Evaluation

The solution above directly invokes the thread-specific li-
brary functions (such aspthread getspecific and
pthread setspecific ) in application code. However,
these APIs, which are written in C, have the following limi-
tations:

� Non-portable: The interfaces of POSIX Pthreads, So-
laris threads, and Win32 threads are very similar. However,
the semantics of Win32 threads are subtly different since
they do not provide a reliable means of cleaning up ob-
jects allocated in thread-specific storage when a thread exits.
Moreover, there is no API to delete a key in Solaris threads.
This makes it hard to write portable code among UNIX and
Win32 platforms.

�Hard to use: Even with error checking omitted, the lock-
ing operations shown by thefunc example in Section 8.2
are complex and non-intuitive. This code is a C implementa-
tion of the Double-Checked Locking pattern [5]. It’s instruc-
tive to compare this C implementation to the C++ version in
Section 9.2.1 to observe the greater simplicity, clarity, and
type-safety resulting from the use of C++ wrappers.

� Non-type-safe: The POSIX Pthreads, Solaris, and
Win32 thread-specific storage interfaces store pointers to
thread-specific objects asvoid * ’s. Although this ap-
proach is flexible, it’s easy to make mistakes sincevoid
* ’s eliminate type-safety.

9 Variations

Section 8 demonstrated how to implement and use the
Thread-Specific Storage pattern via POSIX pthread inter-
faces. However, the resulting solution was non-portable,
hard to use, and not type-safe. To overcome these limita-
tions, additional classes and C++ wrappers can be developed
to program thread-specific storage robustly in a type-safe
manner.

This section illustrates how to encapsulate low-level
thread-specific storage mechanisms provided by Solaris
threads, POSIX Pthreads, or Win32 threads using C++ wrap-
pers. Section 9.1 describes how to encapsulate the POSIX
Pthread library interfaces with hard-coded C++ wrappers
and Section 9.2 describes a more general solution using C++
template wrappers. The example used for each alternative
approach is a variant of theLogger abstraction described
in Section 6.2.
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9.1 Hard-coded C++ Wrapper

One way to make all instances of a class be thread-specific
is to use thread-specific library routines directly. The steps
required to implement this approach are described below. Er-
ror checking has been minimized to save space.

9.1.1 Define the Thread-Specific State Information

The first step is to determine the object’s state information
that must be stored or retrieved in thread-specific storage.
For instance, aLogger might have the following state:

class Logger_State
{
public:

int errno_;
// Error number.

int line_num_;
// Line where the error occurred.

// ...
};

Each thread will have its own copy of this state information.

9.1.2 Define an External Class Interface

The next step is to define an external class interface that is
used by all application threads. The external class interface
of theLogger below looks just like an ordinary non-thread-
specific C++ class:

class Logger
{
public:

// Set/get the error number.
int errno (void);
void errno (int);

// Set/get the line number.
int line_num (void);
void line_num (int);

// ...
};

9.1.3 Define a Thread-Specific Helper Method

This step uses the thread-specific storage functions provided
by the thread library to define a helper method that returns a
pointer to the appropriate thread-specific storage. Typically,
this helper method performs the following steps:

1. Key initialization: Initialize a key for each thread-
specific object and use this key to get/set a thread-specific
pointer to dynamically allocated memory containing an in-
stance of the internal structure. The code could be imple-
mented as follows:

class Logger
{
public:

// ... Same as above ...

protected:
Logger_State *get_tss_state (void);

// Key for the thread-specific error data.
pthread_key_t key_;

// "First time in" flag.
int once_;

};

Logger_State *Logger::get_tss_state (void)
{

// Check to see if this is the first time in
// and if so, allocate the key (this code
// doesn’t protect against multi-threaded
// race conditions...).
if (once_ == 0) {

pthread_key_create (this->key_, free);
once_ = 1;

}

Logger_State *state_ptr;

// Get the state data from thread-specific
// storage. Note that no locks are required...
pthread_getspecific (this->key_,

(void **) &state_ptr);

if (state_ptr == 0) {
state_ptr = new Logger_State;
pthread_setspecific (this->key_,

(void *) state_ptr);
}

// Return the pointer to thread-specific storage.
return state_ptr;

};

2. Obtain a pointer to the thread-specific object:
Every method in the external interface will call the
get tss state helper method to obtain a pointer to the
Logger State object that resides in thread-specific stor-
age, as follows:

int Logger::errno (void)
{

return this->get_tss_state ()->errno_;
}

3. Perform normal operations: Once the external inter-
face method has the pointer, the application can perform op-
erations on the thread-specific object as if it were an ordinary
(i.e., non-thread-specific) C++ object:

Logger logger;

int
recv_msg (HANDLE socket, char *buffer,

size_t bufsiz)
{

if (recv (socket, buffer, bufsiz, 0) == -1) {
logger->errno () = errno;
return -1;

}
// ...

}
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int main (void)
{

// ...
if (recv_msg (socket, buffer, BUFSIZ) == -1

&& logger->errno () == EWOULDBLOCK)
// ...

};

9.1.4 Evaluation of the Hard-coded Wrapper

The advantage of using a hard-coded wrapper is that it
shields applications from the knowledge of the thread-
specific library functions. The disadvantage of this approach
is that it does not promote reusability, portability, or flexibil-
ity. In particular, for every thread-specific class, the devel-
oper needs to reimplement the thread-specific helper method
within the class.

Moreover, if the application is ported to a platform with
a different thread-specific storage API, the code internal to
each thread-specific class must be altered to use the new
thread library. In addition, making changes directly to the
thread-specific class makes it hard to change the threading
policies. For instance, changing a thread-specific class to
a global class would require intrusive changes to the code,
which reduces flexibility and reusability. In particular, each
access to state internal to the object would require changes to
the helper method that retrieves the state from thread-specific
storage.

9.2 C++ Template Wrapper

A more reusable, portable, and flexible approach is to im-
plement aTS Object Proxy template that is responsi-
ble for all thread-specific methods. This approach allows
classes to be decoupled from the knowledge of how thread-
specific storage is implemented. This solution improves the
reusability, portability, and flexibility of the code by defin-
ing a proxy class calledTSS. As shown below, this class is
a template that is parameterized by the class whose objects
reside in thread-specific storage:

// TS Proxy template
template <class TYPE>
class TSS
{
public:

// Constructor.
TSS (void);

// Destructor
˜TSS (void);

// Use the C++ "smart pointer" operator to
// access the thread-specific TYPE object.
TYPE *operator-> ();

private:
// Key for the thread-specific error data.
pthread_key_t key_;

// "First time in" flag.
int once_;

// Avoid race conditions during initialization.

Thread_Mutex keylock_;

// Cleanup hook that deletes dynamically
// allocated memory.
static void cleanup_hook (void *ptr);

};

The methods in this class are described below. As before,
error checking has been minimized to save space.

9.2.1 The C++ Delegation Operator

Applications can invoke methods on aTSSproxy as if they
were calling the target class by overloading the C++ delega-
tion operator (operator-> ). The C++ delegation operator
used in this implementation controls all access to the thread-
specific object of classTYPE. The operator-> method
receives special treatment from the C++ compiler. As de-
scribed in Section 9.2.3, it first obtains a pointer to the ap-
propriateTYPEfrom thread-specific storage and then redel-
egates the original method invoked on it.

Most of the work in theTSS class is performed in the
operator-> method shown below:

template <class TYPE> TYPE *
TSS<TYPE>::operator-> ()
{

TYPE *tss_data = 0;

// Use the Double-Checked Locking pattern to
// avoid locking except during initialization.

// First check.
if (this->once_ == 0) {

// Ensure that we are serialized (constructor
// of Guard acquires the lock).

Guard <Thread_Mutex> guard (this->keylock_);

// Double check
if (this->once_ == 0) {

pthread_key_create (&this->key_,
&this->cleanup_hook);

// *Must* come last so that other threads
// don’t use the key until it’s created.
this->once_ = 1;

}
// Guard destructor releases the lock.

}

// Get the data from thread-specific storage.
// Note that no locks are required here...
pthread_getspecific (this->key_,

(void **) &tss_data);

// Check to see if this is the first time in
// for this thread.
if (tss_data == 0) {

// Allocate memory off the heap and store
// it in a pointer in thread-specific
// storage (on the stack...).
tss_data = new TYPE;

// Store the dynamically allocated pointer in
// thread-specific storage.
pthread_setspecific (this->key_,

(void *) tss_data);
}
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return tss_data;
}

TheTSStemplate is a proxy that transparently transforms
ordinary C++ classes into type-safe, thread-specific classes.
It combines theoperator-> method with other C++ fea-
tures like templates, inlining, and overloading. It also utilizes
patterns like Double-Checked Locking Optimization [5] and
Proxy [6, 7]).

The Double-Checked Locking Optimization pattern is
used inoperator-> to test theonce flag twice in the
code. Although multiple threads could access the same in-
stance ofTSS simultaneously, only one thread can validly
create a key (i.e., via pthread key create ). All threads
will then use this key to access a thread-specific object of the
parameterized classTYPE. Therefore,operator-> uses a
Thread Mutex keylock to ensure that only one thread
executespthread key create .

The first thread that acquireskeylock setsonce to
1 and all subsequent threads that calloperator-> will
find once != 0 and therefore skip the initialization step.
The second test ofonce handles the case where multi-
ple threads executing in parallel queue up atkeylock
before the first thread has setonce to 1. In this case,
when the other queued threads finally obtain the mutex
keylock , they will find once equal to 1 and will not
executepthread key create .

Once thekey is created, no further locking is nec-
essary to access the thread-specific data. This is be-
cause thepthread fgetspecific,setspecific g
functions retrieve theTS Object of classTYPEfrom the
state of the calling thread. No additional locks are needed
since this thread state is independent from other threads.

In addition to reducing locking overhead, the implemen-
tation of classTSS shown above shields application code
from knowledge of the fact that objects are specific to the
calling thread. To accomplish this, the implementation uses
C++ features such as templates, operator overloading, and
the delegation operator (i.e., operator-> ).

9.2.2 The Constructor and Destructor

The constructor for theTSS class is minimal, it simply ini-
tializes the local instance variables:

template <class TYPE>
TSS<TYPE>::TSS (void): once_ (0), key_ (0) {}

Note that we do not allocate the TSS key or a newTYPE
instance in the constructor. There are several reasons for this
design:

� Thread-specific storage semantics: The thread that ini-
tially creates theTSS object (e.g., the main thread) is often
not the same thread(s) that use this object (e.g., the worker
threads). Therefore, there is no benefit from pre-initializing
a newTYPE in the constructor since this instance will only
be accessible by the main thread.

� Deferred initialization: On some OS platforms, TSS
keys are a limited resource. For instance, Windows NT
only allows a total of 64 TSS keys per-process. Therefore,
keys should not be allocated until absolutely necessary. In-
stead, the initialization is deferred until the first time the
operator-> method is called.

The destructor forTSSpresents us with several tricky de-
sign issues. The obvious solution is to release the TSS key
allocated inoperator-> . However, there are several prob-
lems with this approach:

� Lack of features: Win32 and POSIX pthreads define a
function that releases a TSS key. However, Solaris threads
do not. Therefore, writing a portable wrapper is hard.

� Race conditions: The primary reason that Solaris
threads do not provide a function to release the TSS key is
that it is costly to implement. The problem is that each thread
separately maintains the objects referenced by that key. Only
when all these threads have exited and the memory reclaimed
is it safe to release the key.

As a result of the problems mentioned above, our destruc-
tor is a no-op:

template <class TYPE>
TSS<TYPE>::˜TSS (void)
{
}

Thecleanup hook is a static method that casts itsptr
argument to the appropriateTYPE * before deleting it:

template <class TYPE> void
TSS<TYPE>::cleanup_hook (void *ptr)
{

// This cast is necessary to invoke
// the destructor (if it exists).
delete (TYPE *) ptr;

}

This ensures that the destructor of each thread-specific object
is called when a thread exits.

9.2.3 Use-case

The following is a C++ template wrapper-based solution for
our continuing example of a thread-specificLogger ac-
cessed by multiple worker threads:

// This is the "logically" global, but
// "physically" thread-specific logger object,
// using the TSS template wrapper.
static TSS<Logger> logger;

// A typical worker function.
static void *worker (void *arg)
{

// Network connection stream.
SOCK_Stream *stream =

static_cast <SOCK_Stream *> arg;

// Read from the network connection
// and process the data until the connection
// is closed.
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for (;;) {
char buffer[BUFSIZ];
int result = stream->recv (buffer, BUFSIZ);

// Check to see if the recv() call failed.
if (result == -1) {

if (logger->errno () != EWOULDBLOCK)
// Record error result.
logger->log ("recv failed, errno = %d",

logger->errno ());
} else

// Perform the work on success.
process_buffer (buffer);

}
}

Consider the call tologger->errno above. The C++
compiler replaces this call with two method calls. The first
is a call toTSS::operator-> , which returns aLogger
instance residing in thread-specific storage. The compiler
then generates a second method call to theerrno method
of the logger object returned by the previous call. In this
case,TSS behaves as a proxy that allows an application to
access and manipulate the thread-specific error value as if it
were an ordinary C++ object.6

TheLogger example above is a good example where us-
ing a logically global access point is advantageous. Since
theworker function is global, it is not straightforward for
threads to manage both a physicaland logical separation of
Logger objects. Instead, a thread-specificLogger allows
multiple thread to use a single logical access point to manip-
ulate physically separate TSS objects.

9.2.4 Evaluation

TheTSSproxy design based on the C++operator-> has
the following benefits:

� Maximizes code reuse by decoupling thread-specific
methods from application-specific classes (i.e., the formal
parameter class TYPE) it is not necessary to rewrite the sub-
tle thread-specific key creation and allocation logic.

� Increases portability: Porting an application to another
thread library (such as theTLS interfaces in Win32) only
require changing theTSS class, not any applications using
the class.

� Greater flexibility and transparency: Changing a class
to/from a thread-specific class simply requires changing how
an object of the class is defined. This can be decided at
compile-time, as follows:

#if defined (_REENTRANT)
static TSS<Logger> logger;
#else
// Non-MT behavior is unchanged.
Logger logger;
#endif /* REENTRANT */

6Note that C++operator-> does not work for built-in types likeint
since there are no methods that can be delegated to, which is why we cannot
useint in place of theLogger class used above.

Note that the use-case for logger remains unchanged regard-
less of whether the thread-specific or non-thread-specific
form of Logger is used.

10 Known Uses

The following are known uses of the Thread-Specific Storage
pattern:

� Theerrno mechanism implemented on OS platforms
that support the POSIX and Solaris threading APIs are
widely-used examples of the Thread-Specific Storage
pattern [1]. In addition, the C runtime library pro-
vided with Win32 supports thread-specificerrno . The
Win32 GetLastError/SetLastError functions
also implement the Thread-Specific Storage pattern.

� In the Win32 operating system, windows are owned
by threads [8]. Each thread that owns a window has
a private message queue where the OS enqueues user-
interface events. API calls that retrieve the next mes-
sage waiting to be processed dequeue the next message
on the calling thread’s message queue, which resides in
thread-specific storage.

� OpenGL [9] is a C API for rendering three-dimensional
graphics. The program renders graphics in terms of
polygons that are described by making repeated calls
to theglVertex function to pass each vertex of the
polygon to the library. State variables set before the
vertices are passed to the library determine precisely
what OpenGL draws as it receives the vertices. This
state is stored as encapsulated global variables within
the OpenGL library or on the graphics card itself. On
the Win32 platform, the OpenGL library maintains a
unique set of state variables in thread-specific storage
for each thread using the library.

� Thread-specific storage is used within the ACE net-
work programming toolkit [10] to implement its error
handling scheme, which is similar to theLogger ap-
proach described in Section 9.2.3. In addition, ACE im-
plements the type-safe thread-specific storage template
wrappers described in Section 9.2.

11 Related Patterns

Objects implemented with thread-specific storage are often
used as per-thread Singletons [7],e.g., errno is a per-thread
Singleton. Not all uses of thread-specific storage are Single-
tons, however, since a thread can have multiple instances of
a type allocated from thread-specific storage. For instance,
eachTask object implement in ACE [10] stores a cleanup
hook in thread-specific storage.

The TSS template class shown in Section 8 serves as a
Proxy [7, 6] that shields the libraries, frameworks, and appli-
cations from the implementation of thread-specific storage
provided by OS thread libraries.
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The Double-Checked Locking Optimization pattern [5]
is commonly used by applications that utilize the Thread-
Specific Storage pattern to avoid constraining the order of
initialization for thread-specific storage keys.

12 Concluding Remarks

Multi-threading an existing application often adds signifi-
cant complexity to the software due to the additional con-
currency control protocols needed to prevent race conditions
and deadlocks [11]. The Thread-Specific Storage pattern al-
leviates some of synchronization overhead and programming
complexity by allowing multiple threads to use one logically
global access point to retrieve thread-specific data without
incurring locking costs for each access.

Application threads useTS Object Proxies to ac-
cessTS Objects . The proxies delegate toTS Object
Collections to retrieve the objects corresponding to
each application thread. This ensures that different appli-
cation threads do not share the sameTS Object .

Section 9.2 showed how theTS Object Proxy par-
ticipant of the Thread-Specific Storage pattern can be im-
plemented to ensure threads only access their own data
through strongly-typed C++ class interfaces. When com-
bined with other patterns (such as Proxy, Singleton, and
Double-Checked Locking) and C++ language features (such
as templates and operator overloading), theTS Proxy can
be implemented so that objects using the Thread-Specific
Storage pattern can be treated just like conventional objects.
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A Alternative Solutions

In practice, thread-specific storage is typically used to re-
solve the following two use-cases for object-oriented soft-
ware:

1. To implicitly communicate information (e.g., error in-
formation) between modules.

2. To adapt legacy single-threaded software written in a
procedural style to modern multi-threaded operating
systems and programming languages.

It is often a good idea, however, to avoid thread-specific
storage for use-case #1 because it can increase coupling be-
tween modules and reduce reusability. In the case of error
handling, for instance, thread-specific storage can often be
avoided by using exceptions, as described in Section A.1.

The use of thread-specific storage for use-case #2 can
not be avoided except through redesign. When designing
new software, however, thread-specific storage can often be
avoided by using exception handling, explicit intercompo-
nent communication contexts, or reified threads, as described
below.

A.1 Exception Handling

An elegant way of reporting errors between modules is to
use exception handling. Many modern languages, such as
C++ and Java, use exception handling as an error reporting
mechanism. It is also used in some operating systems, such
as Win32. For example, the following code illustrates a hy-
pothetical OS whose system calls throw exceptions:
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void *worker (SOCKET socket)
{

// Read from the network connection
// and process the data until the connection
// is closed.
for (;;) {

char buffer[BUFSIZ];

try {
// Assume that recv() throws exceptions.
recv (socket, buffer, BUFSIZ, 0);
// Perform the work on success.
process_buffer (buffer);

} catch (EWOULDBLOCK) {
continue;

} catch (OS_Exception error) {
// Record error result in thread-specific data.
printf ("recv failed, error = %s",

error.reason);
}

}

There are several benefits to using exception handling:

� It is extensible: Modern OO languages facilitate the ex-
tension of exception handling policies and mechanisms via
features (such as using inheritance to define a hierarchy of
exception classes) that have minimal intrusion on existing
interfaces and usage.

� It cleanly decouples error handling from normal pro-
cessing: For example, error handling information is not
passed explicitly to an operation. Moreover, an application
cannot accidentally “ignore” an exception by failing to check
function return values.

� It can be type-safe: In a strongly typed languages, such
as C++ and Java, exceptions are thrown and caught in a
strongly-typed manner to enhance the organization and cor-
rectness of error handling code. In contrast to checking a
thread-specific error value explicitly, the compiler ensures
that the correct handler is executed for each type of excep-
tion.

However, there are several drawbacks to the use of excep-
tion handling:

� It is not universally available: Not all languages pro-
vide exception handling and many C++ compilers do not im-
plement exceptions. Likewise, when an OS provides excep-
tion handling services, they must be supported by language
extensions, thereby reducing the portability of the code.

� It complicates the use of multiple languages: Since
languages implement exceptions in different ways, or do not
implement exceptions at all, it can be hard to integrate com-
ponents written in different languages when they throw ex-
ceptions. In contrast, reporting error information using inte-
ger values or structures provides a universal solution.

� It complicates resource management: e.g.,by increas-
ing the number of exit paths from a block of C++ code [12].
If garbage collection is not supported by the language or pro-
gramming environment, care must be taken to ensure that
dynamically allocated objects are deleted when an exception
is thrown.

� It is potentially time and/or space inefficient: Poor im-
plements of exception handling incur time and/or space over-
head even when exceptions are not thrown [12]. This over-
head can be particularly problematic for embedded systems
that must be small and efficient.

The drawbacks of exception handling are particularly
problematic for system-level frameworks (such as kernel-
level device drivers or low-level communication subsystems)
that must run portably on many platforms. For these types of
systems, a more portable, efficient, and thread-safe way to
handle errors is to define an error handler abstraction that
maintains information about the success or failure of opera-
tions explicitly.

A.2 Explicit Contexts for Intercomponent
Communication

Thread-specific storage is usually used to store per-thread
state to allow software components in libraries and frame-
works to communicate efficiently. For example,errno
is used to pass error values from a called component to
the caller. Likewise, OpenGL API functions are called to
pass information to the OpenGL library, which are stored in
thread-specific state. The use of thread-specific storage can
be avoided by explicitly representing the information passed
between components as an object.

If the type of information that must be stored by the com-
ponent for its users is known in advance, the object can be
created by the calling thread and passed to the component
as an extra argument to its operations. Otherwise, the com-
ponent must create an object to hold context information in
response to a request from the calling thread and return an
identifier for the object to the thread before the thread can
make use of the component. These types of objects are of-
ten calledcontext objects; context objects that are created on
demand by a software component are often calledsessions.

A simple example of how a context object can be created
by a calling thread is illustrated by the following error han-
dling scheme, which passes an explicit parameter to every
operation:

void *worker (SOCKET socket)
{

// Read from the network connection and
// process the data until the connection
// is closed.

for (;;) {
char buffer[BUFSIZ];
int result;
int errno;

// Pass the errno context object explicitly.
result = recv (socket, buffer, BUFSIZ,

0, &errno);

// Check to see if the recv() call failed.
if (result == -1) {

if (errno != EWOULDBLOCK)
printf ("recv failed, errno = %d", errno);
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} else
// Perform the work on success.
process_buffer (buffer);

}

Context objects created by components can be imple-
mented by using the Type-Safe Session pattern [13]. In this
pattern, the context object stores the state required by the
component and provides an abstract interface that can be in-
voked polymorphically. The component returns a pointer to
the abstract interface to the calling thread that subsequently
invokes operations of the interface to use the component.

An example of how Type-Safe Sessions are used is il-
lustrated by the difference between OpenGL and the in-
terface provided by the Java AWT library [14] for ren-
dering graphics onto devices such as windows, printers or
bitmaps. In the AWT, a program draws onto a device by
requesting aGraphicsContext from the device. The
GraphicsContext encapsulates the state required to ren-
der onto a device and provides an interface through which
the program can set state variables and invoke drawing op-
erations. MultipleGraphicsContext objects can be cre-
ated dynamically, thereby removing any need to hold thread-
specific state.

The benefits of using context objects compared with
thread-local storage and exception handling are the follow-
ing:

� It is more portable: It does not require language features
that may not be supported universally;

� It is more efficient: The thread can store and access the
context object directly without having to perform a look-up
in the thread-specific storage table. It does not require the
compiler to build additional data structures to handle excep-
tions.

� It is thread-safe: The context object or session handle
can be stored on the thread’s stack, which is trivially thread-
safe.

There are several drawbacks with using context objects
created by the calling thread, however:

� It is obtrusive: The context object must be passed to
every operation and must be explicitly checked after each
operation. This clutters the program logic and may require
changes to existing component interfaces to add an error han-
dler parameter.

� Increased overhead per invocation: Additional over-
head will occur for each invocation since an additional pa-
rameter must be added to every method call, regardless of
whether the object is required. Although this is acceptable
in some cases, the overhead may be noticeable for methods
that are executed very frequently. In contrast, an error han-
dling scheme based on thread-specific storage need not be
used unless an error occurs.

Compared to creating context objects in the calling thread,
using sessions created by the component has the following
benefits:

� It is less obtrusive: A thread does not have to explicitly
pass the context object to the component as an argument to
its operations. The compiler arranges for a pointer to con-
text object to be passed to its operations as the hiddenthis
pointer.

� It automates initialization and shutdown: A thread
cannot start using a session until it has acquired one from
a component. Components can therefore ensure that opera-
tions are never called when they are in inconsistent states. In
contrast, if a component uses hidden state, a caller must ex-
plicitly initialize the library before invoking operations and
shutdown the component when it has finished. Forgetting to
do so can cause obscure errors or waste resources.

� Structure is explicit: The relationships between differ-
ent modules of code is explicitly represented as objects,
which makes it easier to understand the behavior of the sys-
tem.

Creating context objects within the component has the
following drawback compared to creating them upon the
caller’s stack:

� Allocation overhead: The component must allocate the
session object on the heap or from some encapsulated cache.
This will be usually be less efficient than allocating the object
on the stack.

A.3 Objectified Threads

In an object-oriented language, an application can explicitly
represent threads as objects. Thread classes can be defined
by deriving from an abstract base class that encapsulates any
state required to run as a concurrent thread and invokes an in-
stance method as the entry point into the thread. The thread
entry method would be defined as a pure virtual function in
the base class and defined in derived classes. Any required
thread-specific state (such as session contexts) can be de-
fined as object instance variables, making it available to any
method of the thread class. Concurrent access to these vari-
ables can be prevented through the use of language-level ac-
cess control mechanisms rather than explicit synchronization
objects.

The following illustrates this approach using a variant of
the ACETask [10], which can be used to associate a thread
of control with an object.

class Task
{
public:

// Create a thread that calls the svc() hook.
int activate (void);

// The thread entry point.
virtual void svc (void) = 0;

private:
// ...

};

class Animation_Thread : public Task
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{
public:

Animation_Thread (Graphics_Context *gc)
: device_ (gc) {}

virtual void svc (void)
{

device_->clear ();
// ... perform animation loop...

}

private:
Graphics_Context *device_;

};

The use of objectified threads has the following advan-
tages:

� It is more efficient: A thread does not need to perform
a look-up in a hidden data structure to access thread-specific
state.

� It is not obtrusive: When using an objectified thread, a
pointer to the current object is passed as an extra argument
to each function call. Unlike the explicit session context, the
argument is hidden in the source code and managed automat-
ically by the compiler, keeping the source code uncluttered.

The use of objectified threads has the following disadvan-
tages:

� Thread-specific storage is not easily accessible:In-
stance variables cannot be accessed except by class methods.
This makes it non-intuitive to use instance variables to com-
municate between reusable libraries and threads. However,
using thread-specific storage in this way increases coupling
between components. In general, exceptions provide a more
decoupled way of reporting errors between modules, though
they have their own traps and pitfalls in languages like C++
[12].

� Overhead: The extra, hidden parameter passed to every
operation will cause some overhead. This may be noticeable
in functions that are executed very frequently.

15


