
Modeling Software Contention Using Colored Petri Nets

Nilabja Roy, Akshay Dabholkar, Nathan Hamm,
Larry Dowdy and Douglas Schmidt

Department of Electrical Engineering and Computer Science
Vanderbilt University, Nashville, TN 37203 , USA

Abstract

Commercial servers, such as database or application
servers, often attempt to improve performance via multi-
threading. Improper multi-threading architectures can in-
cur contention, limiting performance improvements. Con-
tention occurs primarily at two levels: (1) blocking on locks
shared between threads at the software level and (2) con-
tending for physical resources (such as the cpu or disk) at
the hardware level. Given a set of hardware resources and
an application design, there is an optimal number of threads
that maximizes performance. This paper describes a novel
technique we developed to select the optimal number of
threads of a target-tracking application using a simulation-
based Colored Petri Nets (CPNs) model.

This paper makes two contributions to the performance
analysis of multi-threaded applications. First, the paper
presents an approach for calibrating a simulation model us-
ing training set data to reflect actual performance parame-
ters accurately. Second, the model predictions are validated
empirically against the actual application performance and
the predicted data is used to compute the optimal config-
uration of threads in an application to achieve the desired
performance. Our results show that predicting performance
of application thread characteristics is possible and can be
used to optimize performance.

1 Introduction
Emerging trends and challenges. Servers, such as
database servers or web servers, typically receive incoming
requests, process them, and then returns responses to the re-
questing clients. One way to improve the response time of a
server is to create multiple threads to service requests. Each
incoming request can be assigned to a thread that processes
it and prepares the response.

With the growing adoption of multi-core and multi-
processor machines, software applications require multi-
threading to leverage hardware resources effectively [7].
In theory, multi-threading can significantly improve sys-
tem performance. In practice, however, multi-threading can
incur excessive overhead due tosoftware contention(e.g.,
mutually exclusive operations needed to mediate thread ac-
cess to shared data) andphysical contention(e.g., access

to hardware resources, such as CPUs and memory). There
is a trade-off between (1) increasing the number of threads
to decrease client response time vs. (2) a larger number of
threads causing bottlenecks that can increase response time.

What is needed, therefore, is a technique for select-
ing the optimal number of threads, which depends upon
various factors including the underlying hardware, multi-
threading architecture, and application logic. In conven-
tional multi-threaded systems, application developers and
deployers make these decisions manually using their expe-
rience and intuition, which can be tedious and error-prone.
Moreover, when workloads change, it is hard to estimate the
effect on application performance since there is no explicit
and analyzable model of application component behavior.
As a result, performance problems typically emerge late in
the software life-cycle during the integration phase, where
they are more costly to fix.

Solution approach→ Optimize an application configu-
ration using simulation models. This paper presents and
evaluates a method for modeling the software and phys-
ical contention of multi-threaded applications to estimate
the number of threads needed to produce optimal perfor-
mance using a particular set of hardware resources. This
method constructs a simulation model of a complex multi-
threaded application usingColored Petri Nets(CPNs) [1],
which are a discrete-event modeling language that extends
Petri nets with a “color” for each token. A CPN model of a
system is an executable model consisting of different states
and events, along with a notation that represents the time
taken to trigger events. CPNs are suited for modeling con-
currency, communication, and synchronization among dif-
ferent system components. Our work usesCPN tools[2],
which help construct and analyze CPN models via an en-
gine that conducts simulation-based performance analysis
using the functional language Standard ML [4].

We use CPNs in this paper to model simultaneous re-
source possession for a target tracking application contain-
ing many threads sharing multiple locks. We first profile the
application and collect runtime performance data, which is
used to parameterize the CPN model. The CPN model is
then run to predict application performance under various
configurations. We compare the predictions with measured
data to validate the CPN model. This paper describes the

challenges we addressed building the CPN model and using
it to predict the behavior of our target-tracking application.

2 Application Case Study: Target Tracking
Simulator

This section describes the application we created and
used as a case study to evaluate our work on performance
prediction of multi-threaded applications.

2.1 Overview of the Target Tracker

Our case study involves a target-tracking simulation ap-
plication composed of active objects [6], such as target,
tracker, and satellites shown in Figure 1. There can be mul-

Figure 1. Active Objects in Target Tracker
tiple instances of trackers and satellites; each tracker col-
lects the target’s latest location from a satellite. To increase
the probability of finding the target, the application must be
configured with the right number of trackers and satellites.

Each active object has its own thread and executes meth-
ods of its own object,i.e., there is a one-to-one correspon-
dence between an active object and a thread. Every ac-
tive object executes its application logic as shown in Fig-
ure 2. Sometimes an active object interacts with the other
active objects to exchange data,e.g., each tracker collects
data from the satellite during every period. An active object
therefore performs a periodic task that sleeps for a specified
length of time, wakes up and performs some work, and goes
back to sleep, as shown in Figure 2.

As evident from the Figure 2, each active object has its
own control flow and can block contending for shared data
with other objects. We define the following active objects
in our application case study (shown in Figure 1):

• Target, which simulates a target that moves through
an area and tries to evade its trackers. Every time it wakes
up, it randomly calculates a new direction and velocity and
goes to sleep again. While sleeping, it moves in a particular
direction with designated velocity. There is one instance of
the target in the application.

• Satellites, which gather information of the latest posi-
tion of the target. Within the application, the latest coordi-
nates of the target is placed in a global variable that each
satellite reads periodically.

Figure 2. Application Logical Flows in the
Target Tracking Simulator

• Trackers, which pursue the target by obtaining its lat-
est position via the location objects described below. Each
tracker recalculates its new direction and velocity every pe-
riod depending on the target’s latest position. It also checks
if it “hits” the target, i.e., if its current position is within
some small distance of the target.

• Tracker location updates, which are created by track-
ers for each satellite present in the application. The location
objects periodically call on the satellite, obtain the latest po-
sition of the target, and update the local database within the
tracker. Each pair of satellite and tracker objects are associ-
ated with a location active object.

Although the target object does not exhibit any con-
tention with any other object, the other objects contend with
each other. As shown in Figure 2, the “Update tracker DB”
activity in the tracker flow contends with the “Update Data”
activity in the Location flow. Likewise, the “Get new posi-
tion of target” activity contends with the “Get latest target
position” activity on the satellite flow. The blocking time on
these locks increases when the number of objects increases
which also increases the number of threads.

2.2 Case Study Application Goals

Our case study application is designed to track down the
target a maximum number of times. In theory it may ap-
pear that the chances of hitting the target grows with an in-

2

creased number of satellites and trackers, though in practice
this approach may increase contention, which can decrease
tracker and satellite throughput, as well as decrease theiref-
fectiveness and increase the time to hit the target. In particu-
lar, increasing the number of active objects or threads might
improve application performance but it could also degrade
performance by increasing bottleneck contention. Applica-
tion deployers will therefore benefit from a technique that
can determine the optimal number of trackers and satellites
needed to hit the target in the least amount of time.

2.2.1 Predict Application Performance

The first goal of our case study is to predict the performance
of the target tracker application under configurations that
differ in terms of the number of tracker and the satellite ob-
jects. The notation we use to depict each configuration is:
of target objects# of tracker objects# of satellite objects.
Thus, a configuration of 12 3 means that there is 1 target, 2
trackers, and 3 satellites. As mentioned in section 2.1 there
is a location object for each pair of tracker/satellite. As a
result, the configuration 12 3 would have 2x3=6 location
objects, resulting in a total of 1+2+3+6=12 objects. Since
there is a single thread per active object, this means there
are 12 threads in the application for this configuration.

We observe the application until the target performs 500
periods. The target completes one iteration of sleep and
computation per period, as shown in Figure 2. The appli-
cation runs two scenarios: (1) with all locks and (2) with
no locks. The latter method is obviously incorrect from a
functionality point of view but it quantifies the impact of
contention and blocking on performance.

The accuracy of the prediction is not important; the key
point is that the relative performance characteristics should
be captured by the model,i.e., the performance patterns/-
trends should be predicted. For example, the model should
tell if the average throughput of the tracker decreases or
increases when a particular configuration is changed. The
magnitude of the difference is less important.

2.2.2 Extract Optimal Configuration

We use the performance data predicted by a simulation
model of the application to choose the best configuration
for the application, where “best” is defined as the greatest
likelihood of the trackers hitting the target. To use the model
predicted data, we use a utility function that quantifies the
chances to hit the target the most number of times by maxi-
mizing the following factors:

• Tracker activity should maximizeNtr ∗ µtr, where
Ntr is the number of trackers configured in the application
andµtr is the average throughput of each tracker. This ex-
pression represents the number of times a tracker activity
takes place in unit time,e.g., per second.

• Location updatesshould maximizeNtr ∗ µloc, where
µloc is the average throughput of the location object for each

tracker. This expression represents how frequently the latest
position is updated to the tracker.

• Satellite throughput should maximizeNsat ∗ µsat,
whereNsat is the number of satellites configured andµsat

is the average throughput of each satellite. This expression
represents the number of times the satellite updates the lat-
est location of the target.

The chance of hitting the target withNtr trackers is ex-
pressed by the functionH(Ntr) and is computed as:

H(Ntr) = Ntr ∗ (µtr + µloc) + Nsat ∗ µsat (1)

The configuration that maximizes the value of this function
should provide the preferred application setting, which can
be computed by predicting tracker, location, and the satellite
throughput and using them in the above equation.

3 Experiments
This section discusses how we created a model of the

application case study described in Section 2 and validated
the model against profiled data.

3.1 Application Profiling

Experiment design. Our application case study is pro-
filed under various thread configurations to collect perfor-
mance data we use to calibrate and validate the simulation
model. The experiments run on a single CPU, Intel Pen-
tium, 1.70 GHz machine with 1 GB RAM. The OS is Win-
dows XP Professional Version 2002 with service pack 2.
This application runs until the target completed 500 itera-
tions. The time taken by the target is recorded (Ttg), along
with the number of iterations of other objects or threads.
After this data is recorded the throughput of satellite and
location are measured. The throughput of the satellite is de-
fined asNsat/Ttg, whereNsat is the number of iterations
of a satellite. Likewise, the throughput of the location is
Nloc/Ttg, whereNloc is the number of location iterations.

To capture the throughput and response time of differ-
ent threads, we profiled the activities of their associated ac-
tive objects. Application methods of the target object were
instrumented to include timestamp recording. We also in-
serted instrumentation code into the satellite and trackerob-
jects to count the number of iterations.

Experiment results. After inserting the instrumentation
code, we ran our application case study for13 different
thread configurations and collected the profiled data. The
results are shown in Table 1. Each row of the Table 1 con-
tains the data recorded for a single configuration.

Analysis of results. The results in Table 1 show vari-
ability which is non-intuitive. For example, the data for the
configuration 10 1 (with 1 target and 1 satellite) in the ta-
ble shows a throughput of 3.70 iterations/sec for the satellite
active object, whereas the throughput of the satellite active
object in configuration 10 2 (i.e., with 1 target and 2 satel-
lites) is 3.85 iterations/sec. The throughput for satellite ob-

3

With Mutex Without Mutex
Config Target

run
time
(secs)

Satellite
Through-
put
(peri-
ods/sec)

Tracker
through-
put
(peri-
ods/sec)

Location
Through-
put
(peri-
ods/sec)

Target
run
time
(secs)

Satellite
Through-
put
(peri-
ods/sec)

Tracker
Through-
put
(peri-
ods/sec)

Location
Through-
put
(peri-
ods/sec)

1 0 0 140 140
1 0 1 135 3.706 135 3.71
1 0 2 130 3.85 130 3.84
1 0 3 135 3.7 135 3.7
1 1 1 138 2.12 65.89 2.69 139.2 3.58 61.89 3.01
1 2 1 137 1.29 67.85 1.44 135.3 3.68 29.5 3.12
1 3 1 138 0.91 68.79 0.99 131.77 3.79 18.54 3.19
1 1 2 144 2.15 51.43 2.62 131.74 3.78 54.31 3.18
1 2 2 144 1.26 54.49 1.39 130.7 3.81 23.32 3.17
1 3 2 145 0.89 55.92 0.95 153.2 3.24 9.61 2.68
1 1 3 144 2.18 42.96 2.7 132.6 3.76 44.64 3.10
1 2 3 145 1.28 47.20 1.42 170.39 2.94 10.73 2.43
1 3 3 145 0.91 48.95 0.97 212.5 2.37 4.24 1.91

Table 1. Profiled Data from the Application

jects therefore increases as the number of satellites increase.
When the number of satellites increases to 3, however, the
throughput decreases since CPU utilization increases due to
higher contention.

Such effects can also be seen from the response time of
the target in Table 1. For example, when the target active
object runs on its own (10 0) the time taken to complete
500 iterations is 140 secs, where when a satellite active ob-
ject runs concurrently with it (10 1) the time reduces to
135 secs. This variability arises either from cache effectsor
operating system jitter. Caching could cause this difference
since the target and the satellite active objects perform sim-
ilar arithmetic computations, so as the number of satellite
objects increase the cache effects become apparent until the
CPU utilization reaches a certain threshold, after which the
response time starts to increase.

We did not use any real time scheduling in our experi-
ments so fluctuations in performance could also arise from
OS jitter. Petrini et al [5] and Kramer et al [3] show how
OS jitter can cause variability in performance. For simplic-
ity, we will use the term “cache effects” or “OS jitter” to
refer to such variability in the paper.

3.2 Colored Petri Net Model Construction

We now explain the simulation model of the application
case study using Colored Petri Nets (CPNs). Figure 3 shows
a screenshot of the CPN tool and our application modeled
using CPN. The four aspects of the application that are part
of the system modeling process include (1)modeling ap-
plication flow, which models the logic of each object sim-
ilar to the workflows shown in Figure 1, (2)modeling lock
contention, which models the waiting and acquiring on the
software locks,i.e., process scoped mutexes, also known
on Windows as “critical sections,” (3)modeling resource
access, which models the concurrent access of the physi-
cal resources by each thread, and (4)modeling cache ef-
fects/OS jitters, which models the variability in computation
time due to simultaneous threads performing similar work
on the CPU. Below, we elaborate on the modeling of these
four aspects.

Figure 3. CPN Model of Application Case
Study

3.2.1 Modeling Application Flows

Colored Petri nets model application flows viaplaces, tran-
sitions, andtokens. Each transition moves tokens from the
input places to the output places. The placement of a to-
ken in a place indicates the location of control within the
application thread.

Figure 4 shows the application flow of the thread in the
active object. In this figure places are connected through

Figure 4. A CPN Model of Target’s Active Ob-
ject Thread

transitions. Whenever the input places has a token, the con-
nected transition can fire and move the token. Control there-
fore moves from each place to the next corresponding to the
workflow shown in Figure 1.

Figure 4 shows how sleep is used to implement a delay
that simulates the interval where the task fires. Transition
firing times of the second and third transitions model phys-
ical device access, which is the CPU in this case. As seen
in the figure, when the device access is completed control
flows back to the starting position.

3.2.2 Modeling Lock Contention

Colored Petri nets can also model contentions. For exam-
ple, Figure 5 shows a portion of a CPN model where the
threads in the satellite and location active objects contend
for a shared lock. The place named “lock” represents the
software lock, which is available if a token is present in that

4

Figure 5. Contention Model for Software Lock

place. The places in the thread flow named “Wait on lock”
model the thread waiting on the lock. If the token is avail-
able, the transition on a single thread is executed and the
token moves out of the place “lock,” which causes the other
thread to block until the token again becomes available.

3.2.3 Modeling Resource Access

CPNs can model resources (such as the CPU) similarly to
locks. Multiple objects contend for the CPU, but only one
thread at a time can access it. A place is therefore created
in the model to represent the CPU and every object has a
connection to it.

Since the CPU is accessed by all threads, the model be-
comes visually cluttered. A feature of hierarchical nets of
the CPN tool can be used, however, to move the place repre-
senting the CPU to a different page of the CPN model. It is
then referred from every flow. The broken arrows connect-
ing the two places shown in the Figure 4 represent the un-
derlying contention for the CPU. Figure 6 shows the model
of the CPU.

Figure 6. The CPN Model of CPU

3.2.4 Modeling Cache Effects/OS Jitters

Cache effects/OS jitters were observed during profiling, as
discussed in Section 3.1. These effects should be incorpo-
rated within the CPN model so the model predicted perfor-
mance data is as close to the actual values as possible. Fig-
ure 7 gives an empirical formula that is implemented within
the place representing the CPU. This formula calibrates the
execution time of a thread running on the CPU. The formula
decreases the execution time of a thread as the inter-arrival
time between threads decreases.

The ’tint’ variable in the formula represents the current
inter-arrival time. If ’tint’ is less than 180 the executiontime
is modified to 94% of the original. In the extreme, if it is

Figure 7. The Formula for Cache Effects

less than 35, the execution time is modified to 40% of the
original. The percentage numbers above were computed by
calibrating the CPN model via repeatedly running it with
the data from configurations 10 0, 1 0 1, 1 0 2, 1 0 3 in
Table 1. The various percentage values were tweaked mul-
tiple times until the response time of the target thread in the
model converged to the empirical data.

3.3 Calibrating the Model

The techniques described in Section 3.2 helped imple-
ment the CPN model of the application. We now describe
how the CPN model is calibrated using the profile data gath-
ered as described in Section 3.1. Some of the profile data are
used as a training set to tune the model parameter; the rest of
the data are used to validate the model. The data for the con-
figurations 10 0, 1 0 1, 1 0 2, 1 0 3 in Table 1 are used to
train the model. These timing data were used to tune the for-
mula to model the caching shown in Figure 7. The model is
repeatedly run with the different configurations and the var-
ious percentage values in the formula is tweaked multiple
times to converge to the above values shown in Figure 7.

Once the model is properly calibrated, it is run for the
remaining configurations. For each configuration, the re-
sponse time of the target thread and the throughput of the
satellites and the location threads are calculated. Table 2
gives the resulting model prediction data,

With Mutex Without Mutex
Config Target

run
time
(secs)

Satellite
Through-
put
(peri-
ods/sec)

Tracker
Through-
put
(peri-
ods/sec)

Location
Through-
put
(peri-
ods/sec)

Target
run
time
(secs)

Satellite
Through-
put
(peri-
ods/sec)

Tracker
Through-
put

Location
Through-
put
(peri-
ods/sec)

1 0 0 140 140
1 0 1 135 3.69 135 3.70
1 0 2 130 3.83 130 3.85
1 0 3 135 3.69 135 3.69
1 1 1 132 3.59 73.12 2.77 130 3.83 51.22 3.26
1 2 1 132 3.69 77.41 1.54 135 3.70 25.67 3.16
1 3 1 132 3.79 76.74 1.02 144 3.49 11.06 2.87
1 1 2 143 3.78 30.58 2.25 143 3.48 8.30 2.89
1 2 2 144 3.81 38.49 1.35 170 2.96 4.94 2.18
1 3 2 144 3.24 39.49 0.92 191 2.57 4.05 1.66
1 1 3 153 3.76 7.19 1.54 170 2.94 4.62 2.05
1 2 3 162 2.94 13.10 1.12 209 2.37 3.39 1.26
1 3 3 162 2.37 13.79 0.79 237.77 1.99 2.79 0.95

Table 2. Model Predicted Data

5

3.4 Model Validation

We now compare the results from profiling the applica-
tion (Section 3.1) with the model prediction results (Sec-
tion 3.2). These results are explained from the perspec-
tive of two conflicting factors: (1) the CPU hardware re-
source bottleneck and (2) the software lock contention due
to shared data accessed by various threads. Results are pre-
sented with different thread configurations on the x-axis and
the runtime performance metric on the y-axis.

3.4.1 Target Thread Response Time

Figure 8 shows that the response time of the thread in the
target active object remains nearly constant as the number of
objects are varied in the application case study. This result

Figure 8. Response Time of Target Thread
with Locks

occurs for two reasons (1) the target does not contend with
other objects, so it does not face any extra blocking as the
number of other objects increases and (2) as the number of
objects increases, the threads in these objects block each
other due to software locks, which keeps the CPU relatively
free so the target thread can use the CPU when needed.

This result seems non-intuitive since the underlying
hardware is a single CPU machine. It seems reasonable that
increasing the number of threads in an application running
on a single CPU should increase the overhead and reduce
the performance of each thread. The results in Figure 8,
however, show how the performance of a thread that uses
no software locks will increase when more threads thatdo
use locks are added to the application.

3.4.2 Throughput of Satellite and Tracker

Figure 9 shows the satellite thread behavior with locks in the
system. Each set of three configurations in this graph (e.g.,
data for configuration 11 2, 1 2 2 and 13 2) should be
considered together. Between the former configurations the
number of location threads are increased, which increases
contention and decreases throughput since the threads now
spend more time blocked on the locks. The location thread
also exhibits a similar trend as the satellite data, as shown

Figure 9. Throughput of Satellite Thread with
Locks

in Figure 10.

Figure 10. Throughput of Location Thread
with Locks

Tracker throughput is shown in Figure 11. The error per-
cent in model data is larger compared to other data, but
the general trend of the application behavior is captured.
For example, in each set of three successive readings with
one satellite (11 1, 1 2 1 and 13 1), two satellites (11 2,
1 2 2 and 13 2), and three satellites (11 3, 1 2 3 and
1 3 3) the throughput increases as the number of trackers
increase. This application behavior trend helps identify the
optimal thread configuration. The accuracy of the predic-
tion is less important since we are only interested in de-
termining if a configuration is better than another, not how
much better they are.

3.4.3 Performance Metrics with the Locks Removed

For this experiment we removed all the locks in the applica-
tion, which clearly compromised its behavior since shared
data could be corrupted due to simultaneous modifications
by multiple threads. We removed the locks, however, to
compare the performance of each thread and show the im-
pact of using locks in the system. We also modified the CPN
model and used it to predict the performance of the system.
The model predicted data is shown along with the measured

6

Figure 11. Throughput of Tracker Thread with
Locks

data in the Figures 13, 14 and 12.

Figure 12. Throughput of Location Thread
without Locks

Figure 13 shows the target thread response time, which
increased as the number of objects increased. In this case,
when the number of other objects increased they do not
block each other and directly contend for the CPU, which
increases the waiting time of the target at the CPU and its
response time. Figure 14 shows the behavior of the satel-
lite thread when there are no locks in the system. When
the data in Figure 14 is compared with Figure 9, it is clear
that throughput degrades less as the number of threads or
objects increase due to the fact that there are no bottleneck
due to locks. Nevertheless, the throughput still goes down
due to the increased CPU contention.

3.4.4 Model Prediction

Although the CPN model accurately predicted the under-
lying trend in application behavior in the experiments de-
scribed above there were errors in the model prediction.
Some specific points have inconsistencies,e.g., configura-
tion 1 1 3 seems to indicate problems since the throughput
of tracker and location predicted by the CPN model is much
less than the actual value. Figures 11, 10 and 12 show
that the model prediction differs significantly from the ac-

Figure 13. Response Time of Target Thread
without Locks

Figure 14. Throughput of Satellite Thread
without Locks

tual data. Potential reasons for these differences include(1)
there is increased OS activity due to context switching or
other activities that increase the throughput of the thread
and/or (2) some form of cache effects cause this behavior.
Overall, however, the CPN model mimics the application
behavior, so developers and deployer can use these models
to estimate application behavior accurately.

4 Application Configuration
This section demonstrates how the performance data pre-

dicted by the model can be leveraged to optimize applica-
tion thread configurations. In particular, our case study used
the results presented in Table 2 to find the optimal thread
configuration. To verify the decision made using the model,
we profiled the application and calculated the number of
hits made by the trackers for each configuration.

We first used Equation(1) from Section 2 to compute the
hit chance value for each configuration, as shown in Table 3.
The average throughput values of tracker and satellite are
used from the model predicted data in Table 2. Table 3
shows configuration 13 1 maximizes the trackers hitting
the target, as explained in Section 2, so this configuration
should thus be optimal. To verify whether this configura-
tion is optimal, the running application was then profiled

7

Config Tracker
Num.

Tracker
Through-
put
(peri-
ods/sec)

Location
Through-
put
(peri-
ods/sec)

Satellite
Num-
ber

Satellite
Through-
put
(peri-
ods/sec)

Hit
chance

1 0 0 0 0 0
1 0 1 0 1 3.69 3.69
1 0 2 0 2 3.83 7.67
1 0 3 0 3 3.69 11.09
1 1 1 1 73.11 2.77 1 2.32 78.20
1 2 1 2 77.41 1.54 1 1.38 159.28
1 3 1 3 76.74 1.01 1 1.36 234.63
1 1 2 1 30.58 2.25 2 2.18 37.19
1 2 2 2 38.49 1.35 2 1.37 82.43
1 3 2 3 39.49 0.91 2 1.26 123.75
1 1 3 1 7.19 1.53 3 2.16 15.22
1 2 3 2 13.10 1.12 3 1.30 32.37
1 3 3 3 13.79 0.79 3 1.13 47.18

Table 3. Target Hit Chances for Various Con-
figurations

to record the number of times the trackers hit the target, as
shown in Table 4.

We also needed to verify the validity of Equation(1) as
a right quantifier of the application performance. We there-
fore used the measured value of tracker, location, and satel-
lite throughput to compute the value of the equation for
each configuration (omitted due to lack of space). Using
these values we ranked each configuration and it matches
exactly with the ranking given by the data from actual hit
counts(Table 4) except one configuration, 12 3. This re-
sult proves that Equation(1) is a reasonable estimator of the
application performance.

Config Tracker
1

Tracker
2

Tracker
3

Total
Hits

1 0 0 0
1 0 1 0
1 0 2 0
1 0 3 0
1 1 1 212 212
1 2 1 127 142 269
1 3 1 220 222 230 672
1 1 2 163 163
1 2 2 111 121 232
1 3 2 183 190 179 552
1 1 3 130 130
1 2 3 159 144 303
1 3 3 148 153 161 462

Table 4. Runtime Target Hit Occurrences
This table shows that configuration 13 3 has the highest

number of hits, which validates that the configuration cho-
sen using the modeled data and the utility function given by
equation(1) is optimal. Comparing the data shown in Ta-
ble 3 and Table 4, we see quite a few discrepencies in the
ranking of the configurations. This is due to the error in the
prediction of the throughput of the various active objects.If

the error is reduced, the prediction will be more accurate.
The results above show how a simulation model can be

used to determine the optimal configuration of threads for
our case study application. Combining simulations with
profiling helps application deployers optimize the perfor-
mance of application thread configurations without the need
for tedious and error-prone manual effort.

5 Concluding Remarks
The work presented in this paper describes a technique

we developed to model and simulate software contention.
We used Colored Petri Nets (CPN) to validate the model
data with the results captured by profiling the application.
CPN models the non-determinism inherent in the case of
multiple threads contending on a single lock. Profiling is
performed to measure application runtime performance and
the resulting data is validated against data predicted by the
CPN model. The results show that the CPN model accu-
rately predicts the pattern of behavior in the application
within certain error limits.

The CPN model of the application and the appli-
cation code used in this paper are available as open-
source software fromwww.dre.vanderbilt.edu/

˜ nilabjar/SoftwareContention .

Acknowledgements
We would like to thank Daniel Waddington for valuable

comments and technical advice. This work was done as a
part of the Software Technology Initiative (STI) project at
Lockheed Martin Advanced Technology Laboratory.

References
[1] K. Jensen.Coloured Petri nets: basic concepts, analysis

methods and practical use: volume 1. Springer-Verlag
London, UK, 1996.

[2] K. Jensen, L. M. Kristensen, and L. Wells. Coloured petri
nets and cpn tools for modelling and validation of concurrent
systems.Int. J. Softw. Tools Technol. Transf., 9(3):213–254,
2007.

[3] W. Kramer and C. Ryan. Performance variability of highly
parallel architectures.Proceedings of the International
Conference on Computational Science (ICCS 2003,
2659:560–569.

[4] R. Milner, M. Tofte, and R. Harper.The definition of
Standard ML. MIT Press, Cambridge, MA, USA, 1990.

[5] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the
missing supercomputer performance: Achieving optimal
performance on the 8,192 processors of asci q. InSC ’03:
Proceedings of the 2003 ACM/IEEE conference on
Supercomputing, page 55, Washington, DC, USA, 2003.
IEEE Computer Society.

[6] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2. Wiley &
Sons, New York, 2000.

[7] H. Sutter. The free lunch is over: A fundamental turn towards
concurrency in software.Dr. Dobbs Journal, 30(3), 2005.

8

