
Poster Abstract: A Distributed and Resilient
Platform for City-scale Smart Systems

Subhav Pradhan∗, Abhishek Dubey∗, Shweta Khare∗, Fangzhou Sun∗, Janos Sallai∗,
Aniruddha Gokhale, Douglas Schmidt∗, Martin Lehofer†, Monika Sturm‡

∗ Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA
† Siemens Corporate Technology, Princeton, NJ, USA

‡ Siemens AG Österreich, Vienna, Austria

I. INTRODUCTION

The advent of the Internet of Things (IoT) is driving several

technological trends. The first trend is an increased level of

integration between edge devices and commodity computers.

This trend, in conjunction with low power-devices, energy

harvesting, and improved battery technology, is enabling the

next generation of information technology (IT) innovation:

city-scale smart systems. These types of IoT systems can

operate at multiple time-scales, ranging from closed-loop

control requiring strict real-time decision and actuation to near

real-time operation with humans-in-the-loop, as well as to

long-term analysis, planning, and decision-making.

The second trend is an increased emphasis on resilient
deployment platforms, which can be used to disperse com-
putations closer to the physical phenomena. Two categories of

these platforms can be distinguished based on the computing

and communication resources they provide: (a) Edge platforms
are low-power computing devices that are often available

close to sensors and actuators, and (b) Cloudlet platforms are
shared data centers that are managed locally, but can only

provide a limited computing capacity. When these platforms

are interconnected with a cloud or enterprise large-scale shared

data center, they provide a unique opportunity for developing

and deploying smart services [1].

While these platforms provide a key enabler for city-scale

services, developing and operating these services becomes

difficult due to the challenges associated with the remote,

dynamic and distributed nature of these resources. This is

especially difficult, considering that all critical services should

remain available, even in vulnerable modes of operation, such

as during faults, environmental changes, software updates, or

cyber-attacks.

II. CHARIOT

For an IoT system to adapt to environmental changes or

input stimuli, it needs a deployment platform that enables the

analysis and management of (1) the constraints governing the

system, e.g., resource requirements or configuration restric-
tions, (2) the service requirements and provisioned resources

that describe which services or APIs the software components

either require from or provide to other components, and (3)

the overall system goals describing the high-level services the

system must provide. To meet these needs, our prior work [2],

Fig. 1: Overview of the CHARIOT Component Model.

[3] presented CHARIOT, which is a deployment platform

that encodes the configuration restrictions, service require-

ments, resource requirements, and goals in an IoT system as

mathematical constraints on the system, its components, and
possible (re)configurations.

Our current work extends CHARIOT by reconceptualizing

its distributed application management and resilience infras-

tructure as a two-layer hierarchy. The core idea behind this

reconceptualization is establishing resilience zones, where
each zone is characterized by the locality of the computing re-

sources it comprises. CHARIOT initially limits reconfiguration

actions to a specific zone and performs these reconfigurations

via resilience engines specific to each zone. If no local

reconfiguration is feasible, CHARIOT then propagates the

reconfiguration to a higher-level resilience coordinator. This

coordinator maintains a global view of the different resilience

zones that it uses to govern inter-zonal reconfiguration actions.

A. Application Model

Apps supported by CHARIOT are component-based [4].

A component is a basic unit of functionality that can be

composed and reused as part of different apps. Compo-

nents communicate with other components in an app through

well-defined interfaces that support common interaction pat-

terns, such as the Request/Response pattern and the Pub-

lisher/Subscriber pattern. Interactions in these patterns can

be synchronous or asynchronous. An app can be distributed

across multiple physical nodes, in which case the components

comprising that app will also be distributed across different

2016 IEEE/ACM Symposium on Edge Computing

978-1-5090-3322-5/16 $31.00 © 2016 IEEE

DOI 10.1109/SEC.2016.28

99

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 19,2023 at 00:20:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Example of a Goal-based Description of an App.

physical nodes. Component logic is written as a data graph

using tasklets, which are the smallest unit of computation and
is equivalent to the concept of computation node in dataflow

engines, such as Storm [5], Spark [6], TensorFlow [7], and

Cloud Dataflow [8], see figure 1. Transport Objects decouple

computation logic from the communication middleware logic.

B. Goal-Based System Description Model

CHARIOT uses the concept of goal-based system descrip-

tion to describe smart city systems. This abstraction is crucial

since CHARIOT uses it to determine what goals must be met

at any given time to consider one or more IoT systems to be

active on a computing group collection. We therefore define

system goals as high level functions that can be decomposed
into smaller sub-functions (see Figure 2) using the concept of

function decomposition [9]. A component provides a single

leaf-level function and multiple components can implement the

same functionality, thereby providing CHARIOT with more

degrees of freedom to perform dynamic reconfiguration in

response to failures or cyber-attacks.

C. Resilience Zone

Resilience is a system-level property - by definition any

part of the system can fail, yet the system must be resilient

and recover from failures. Hence, we need to work towards

a solution that makes a system resilient, not just one more

of its components. Therefore, at runtime the resilience engine

is responsible for evaluating the current status of the goals

of the system, the available resources and making necessary

modifications to ensure the viability of the objectives. Our

approach depends upon representing the current deployed

configuration and the design space of possible alternatives as

a constraint logic programming problem (CLP).

The encoding represents the problem as a set of constraints

over integer variables, where a valuation of the variables rep-

resents a particular configuration of the system. Configuration

choices and requirements, like ’component X can be mapped

to nodes of type A and B’ are also represented as Boolean

expressions. The constraint-based representation can encode

a potentially very large configuration space, as it does not

encode configurations individually; rather it encodes them in

an implicit, symbolic form. System goals are also represented

by variables and their mapping to software components is

represented via relations. The CLP representation also allows

us to model the effect of faults. If a hardware node fails, a

new constraint is added, representing the fact that no software

component can be allocated to that node. Re-running the

solver, a new configuration will be computed, that bypasses

the failed component.

D. Resilience across multiple zones

In practice, a large scale city environment is not a single

monolithic computation resource collection. Rather, it is a

collection of resources distributed across multiple domains.

Within the domains, the resource collections themselves can

be of different categories. For example, they can be either

low-powered edge devices, or cloudlets or clouds. A holistic

management system will require to coordinate application

maintenance across different resource groups. For this purpose,

we are extending the CHARIOT management mechanism to

support a two-level hierarchical resilience infrastructure.

The first level management mechanism is provided by a

single resilience as described in previous section. The second

level mechanism is provided by a resilience coordinator. The
resilience coordinator is invoked by a resilience engine that

cannot obtain a feasible answer to its local CLP. The resilience

coordinator maintains information about different systems,

their goals, associated objectives, and available resources. It

solves a global CLP that can identify spare resources in an-

other resilience zone and then moves the necessary objectives

from one resilience zone to the other. If no migration is

possible, it marks the appropriate zone as failed.

Acknowledgments: This work is sponsored in part by a
research grant from Siemens Corporate Technology.

REFERENCES

[1] D. C. Schmidt, J. White, and C. D. Gill, “Elastic infrastructure to
support computing clouds for large-scale cyber-physical systems,” in
Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC), 2014 IEEE 17th International Symposium on. IEEE, 2014,
pp. 56–63.

[2] S. Pradhan, A. Dubey, and A. Gokhale, “Wip abstract: Platform for
designing and managing resilient and extensible cps,” in 2016 ACM/IEEE
7th International Conference on Cyber-Physical Systems (ICCPS). IEEE,
2016, pp. 1–1.

[3] S. M. Pradhan, A. Dubey, A. Gokhale, and M. Lehofer, “Chariot:
A domain specific language for extensible cyber-physical systems,” in
Proceedings of the Workshop on Domain-Specific Modeling. ACM, 2015,
pp. 9–16.

[4] G. T. Heineman and B. T. Councill, Component-Based Software Engi-
neering: Putting the Pieces Together. Reading, Massachusetts: Addison-
Wesley, 2001.

[5] Apache Software Foundation, “Apache Storm,” http://storm.apache.org/.
[6] ——, “Apache Spark,” http://spark.apache.org/.
[7] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous systems, 2015,” Software available
from tensorflow. org.

[8] Google, “Cloud Dataflow,” https://cloud.google.com/dataflow/.
[9] T. Kurtoglu, I. Y. Tumer, and D. C. Jensen, “A functional failure reasoning

methodology for evaluation of conceptual system architectures,” Research
in Engineering Design, vol. 21, no. 4, pp. 209–234, 2010.

100

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 19,2023 at 00:20:07 UTC from IEEE Xplore. Restrictions apply.

