
Operating System Support for High-Performance, Real-Time CORBA 

Aniruddha Gokhale, Douglas C. Schmidt, Tim Harrison and Guru Parulkar 
Department of Computer Science, 

Washington University 
St. Louis, MO 63130, USA. 

Phone: (314) 935-6160 Fax: (314) 935-7302 
E-mail:{gokhale, Schmidt, harrison, guru}@cs.wustl.edu 

Abstract 

A broad range of applications(such as avionics, telecom- 
munication systems, and multimedia on demand) require 
various types of real-time guarantees from the underlying 
middleware, operating systems, and networks to achieve 
their quality of service (QoS). In addition to providing 
real-time guarantees and end-to-end QoS, the underlying 
services used by these applications must be reliable, flex- 
ible, and reusable. Requirements for reliability, flexibility 
and reusability motivate the use of object-oriented middle- 
ware like the Common Object Request Broker Architecture 
(CORBA). Howevel; the pegomance of current CORBA im- 
plementations is not suitable for latency-sensitive real-time 
applications, including both hard real-time systems (e.g., 
avionics), and constrained latency systems (e.g., teleconfer- 
encing). 

This paper describes key changes that must be made 
to the CORBA speciJications, existing CORBA implementa- 
tions, and the underlying operating system to develop real- 
time ORBs (RT ORBs). RT ORBs must deliver real-time 
guarantees and end-to-end QoS to latency-sensitive appli- 
cations. While many operating systems now support real- 
time scheduling, they do not provide integrated solutions. 
The main thesis of this paper is that advances in real-time 
distributed object computing can be achieved only by si- 
multaneously integrating techniques and tools that simplify 
application development; optimize application, U0 subsys- 
tem, and network pe lformance; and systematically measure 
pe f o m n c e  to pinpoint and alleviate bottlenecks. 

1. Introduction 

An emerging class of distributed applications require 
real-time guarantees. These applications include telecom- 
munication systems (e.g., call processing), avionics control 

systems (e.g., mission control for fighter aircraft), and mul- 
timedia applications (e.g., video-on-demand and teleconfer- 
encing). In addition to requiring real-time guarantees, these 
applications must be reliable, flexible, and reusable. 

The Common Object Request Broker Architecture 
(CORBA) is an emerging distributed object computing in- 
frastructure being standardized by the Object Management 
Group (OMG) [17]. CORBA is designed to support the pro- 
duction of flexible and reusable distributed services and ap- 
plications. Many implementations of CORBA are now widely 
available. However, these implementations incur significant 
overhead that makes them unsuitable for latency-sensitive 
real-time applications. Key sources of overhead include ex- 
cessive data copying, inefficient presentation layer conver- 
sions, inappropriate internal buffering mechanisms, unopti- 
mized demultiplexing strategies, and many levels of func- 
tion calls. 

Our previous studies measuring the throughput and la- 
tency performance of CORBA [S, 9,10,20] precisely pinpoint 
many sources of overhead in existing CORBA implementa- 
tions. Our results strongly suggest that the only way to 
ensure end-to-end real-time QoS guarantees for CORBA ap- 
plications is to integrate the network, transport protocols, 
operating system, and middleware. 

This paper describes an integrated architecture that com- 
bines networks, transport protocols, operating systems, and 
CORBA middleware. To develop this architecture, we pro- 
pose the changes to operating systems, transport protocols, 
and current CORBA specifications and implementations re- 
quired to provide real-time end-to-end QoS guarantees to 
applications. The real-time guarantees comprise both hard 
real-time applications (where guaranteeing the required QoS 
is crucial e.g., avionics control), as well as latency con- 
strained applications (where certain scheduling and error 
tolerances are allowed e.g., teleconference and video-on- 
demand). 

The paper is organized as follows: Section 2 outlines the 
key CORBA middleware and operating system components, 

1063-535lf96 $5.00 0 1996 IEEE 
Proceedings of IWOOOS '96 

30 

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 19,2023 at 00:08:37 UTC from IEEE Xplore.  Restrictions apply. 

mailto:guru}@cs.wustl.edu


CLIENT - - - - - - - - -  LfjQ!(![ 

Figure 1. Components in the CORBA Model 

policies, and mechanisms required to provide real-time end- 
to-end QoS guarantees for distributed applications; Section 
3 briefly describes results of our previous studies indicat- 
ing various overheads in existing CORBA implementations 
[8,9,10]; Section 4 describes the changes required in the op- 
erating systems, transport protocols and CORBA implemen- 
tations to support real-time CORBA; and Section 5 presents 
concluding remarks. 

2. Applying the CORBA Model for Real-time ---- 
Applications 

This section outlines the primary components that consti- 
tute a standard CORBA 2.0 Object Request Broker (ORB). In 
addition, we describe the policies and mechanisms that must 
be developed to achieve real-time CORBA implementations. 

2.1. Components in the CORBA Model 

Figure 1 illustrates the primary components in the CORBA 
The responsibility of each component in architecture. 

CORBA is described below: 

0 Object Implementation: This defines operations that 
implement a CORBA IDL interface. Object implementations 
can be written in a variety of languages including C, C++, 
Java, Smalltalk, and Ada. 

0 Client: This is the program entity that invokes an oper- 
ation on an object implementation. Accessing the services 
of a remote object should be transparent to the caller. Ide- 
ally, it should be as simple as calling a method on an object, 
i.e., ob j - >op (args ) . The remaining components in 
Figure 1 help to support this level of transparency. 

0 Object Request Broker (ORB): When a client invokes 
an operation, the ORB is responsible for finding the object 
implementation, transparently activating it if necessary, de- 
livering the request to the object, and returning any response 
to the caller. 

0 ORB Interface: An ORB is a logical entity that may 
be implemented in various ways (such as one or more pro- 
cesses or a set of libraries). To decouple applications from 
implementation details, the CORBA specification defines an 
abstract interface for an ORB. This interface provides var- 
ious helper functions such as converting object references 
to strings and vice versa, and creating argument lists for 
requests made through the dynamic invocation interface de- 
scribed below. 

0 CORBA IDL stubs and skeletons: CORBA IDL stubs 
and skeletons serve as the “glue” between the client and 
server applications, respectively, and the ORB. The transfor- 
mation between CORBA IDL definitions and the target pro- 
gramming language is automated by a CORBA IDL compiler. 
The use of a compiler reduces the potential for inconsisten- 
cies between client stubs and server skeletons and increases 
opportunities for automated compiler optimizations. 

0 Dynamic Invocation Interface (DII): This interface al- 
lows a client to directly access the underlying request mech- 
anismsgrovided by an ORB. Applications use the DII to 
dynamically issue requests to objects without requiring IDL 
interface-specific stubs to be linked in. Unlike IDL stubs 
(which only allow RPC-Style requests), the DII also allows 
clients to make non-blocking deferred synchronous (sepa- 
rate send and receive operations) and onewuy (send-only) 
calls. 

- /  

0 Dynamic Skeleton Interface (DSI): This is the server 
side’s analogue to the client side’s DII. The DSI allows an 
ORB to deliver requests to an object implementation that does 
not have compile-time knowledge of the type of the object 
it is implementing. The client making the request has no 
idea whether the implementation is using the type-specific 
IDL skeletons or is using the dynamic skeletons. 

0 Object Adapter: This assists the ORB with delivering 
requests to the object and with activating the object. More 
importantly, an object adapter associates object implemen- 
tations with the ORB. Object adapters can be specialized 
to provide support for certain object implementation styles 
(such as OODB object adapters for persistence and library 
object adapters for non-remote objects). 

0 Higher-level Object Services (not shown): These ser- 
vices include the CORBA Object Services [16] such as the 
Name service, Event service, Object Lifecycle service, and 
the Trader service. There is currently no explicit support 
for real-time guarantees in the CORBA 2.0 specification, ab  
though there is a domain-specific Task Force in the OMG that 
is focusing on specifying real-time CORBA. 

31 

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 19,2023 at 00:08:37 UTC from IEEE Xplore.  Restrictions apply. 



2.2. Issues for High Performance, Real-Time 
CORBA 

The following Section discusses challenges that must be 
addressed to develop high performance CORBA implemen- 
tations that provide real-time end-to-end QoS guarantees to 
applications. 

0 Txadeoffs between high-performance and real-time 
predictability: A key theme underlying this section is the 
fact that requirements for high performance often conflict 
with requirements for real-time predictability. In particular, 
real-time scheduling policies often rely on the predictability 
of system operations like scheduling, demultiplexing, and 
message buffering. However, certain optimizations (such 
as “one-back caching” for request demultiplexing) can in- 
crease performance while decreasing operation predictabil- 
ity. In some cases, bounding the worst case operation time 
is sufficient to guarantee real-time requirements. 

0 Real-Time OS and network scheduling: Without op- 
erating system and network layer support for predictable U 0  
operations, RT ORBS cannot provide real-time guarantees 
to applications. Therefore, the underlying operating system 
and network must provide resource scheduling mechanisms 
[22] that provide real-time guarantees to CORBA middleware 
and applications. For instance, the operating system must 
deliver scheduling mechanisms that allow high priority tasks 
to run to completion. Furthermore, real-time tasks should 
be given precedence at the network level to prevent them 
from being blocked by lower priority applications [ 1 I]. 

0 Light-weight transport mechanisms: Current reliable 
transport protocols (such as TCP) are relatively heavy-weight 
in that they support functionality (such as adaptive retrans- 
missions and delayed acknowledgments) that yields exces- 
sive overhead and latency for real-time applications. Like- 
wise, unreliable transport protocols (such as UDP) lack cer- 
tain functions such as congestion control, end-to-end flow 
control, and rate control, which cause excessive congestion 
and missed deadlines in networks and endsystems. Fur- 
thermore, different applications have different QoS require- 
ments, so multiple transport mechanisms may be necessary. 
One solution is to have the operating system provide a set 
of lightweight real-time implementations of transport proto- 
cols [21], which can be customized for specific application 
requirements and networldhost environments. 

e Efficient and predictable demultiplexing: Incoming 
CORBA requests must be demultiplexed to the appropriate 
method of the target object implementation. In contem- 
porary CORBA implementations, demultiplexing occurs at 
multiple levels, with no ability to schedule or prioritize 
demultiplexing behavior. For instance, operating systems 
demultiplex incoming TCP/IP packets multiple times to the 
appropriate network and transport layer protocols. Then, 

CORBA Object Adapters demultiplex the packet to an appro- 
priate target object and IDL skeleton, which finally demul- 
tiplexes the request to the appropriate method of the target 
object implementation. 

Experience [ 10, 231 has shown that layered demulti- 
plexing can be inappropriate for latency-sensitive applica- 
tions. Hence, the operating system must provide mecha- 
nisms (such as a packet filters [15, 71 or delayered proto- 
col stacks [l]) to perform CORBA request demultiplexing 
with minimal overhead. Moreover, request demultiplexing 
mechanisms must provide consistent QoS performance re- 
gardless of the number of protocols, application-level target 
object implementations, and operations defined by the IDL 
interfaces of these objects. Optimized demultiplexing paths 
can increase ORB performance and predictability of demul- 
tiplexing algorithms can enable real-time guarantees. 

0 Reduced data copying: The operating system device 
drivers, protocol stacks, and CORBA middleware must col- 
laborate to provide efficient buffer management schemes 
that reduce and/or eliminate data copying. On modern RISC 
hardware, data copying consumes a significant amount of 
CPU, memory, and U 0  bus resources [6]. For real-time ap- 
plications, the memory management mechanisms used by 
the OS and ORB must behave predictably, irrespective of 
user buffer sizes and endsystem workload. 

e Efficient presentation layer conversions: Presenta- 
tion layer conversions transform application-level data units 
from differences in byte order, alignment, and word length. 
In addition, conversions are necessary due to different en- 
codings used by the protocols at various layers. There are 
many techniques for reducing the cost of presentation layer 
conversions. For instance, [ 131 describes the tradeoffs be- 
tween using compiled versus interpreted code for presen- 
tation layer conversions. Compiled marshalling code is 
efficient, but may require excessive amounts of memory. In 
contrast, interpreted marshalling code is slower, but more 
compact. CORBA implementations for performance sensitive 
systems must be flexible to select optimal choices between 
(1) using compiled marshalling code for data types that are 
used heavily and (2) interpreted marshalling routines for 
data types that are used infrequently. For real-time applica- 
tions, the ORB must be able to make worst case guarantees 
for both interpreted and compiled marshalling operations. 

3. Overhead in Current CORBA Implementa- 
tions 

[ 101 describes results of our experiments measuring the 
latency and scalability of two widely used CORBA imple- 
mentations - Orbix 2.0 and ORBeline 2.0. In that paper, 
we illustrate how latency-sensitive CORBA applications that 
use many target objects are not supported efficiently by 

32 

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 19,2023 at 00:08:37 UTC from IEEE Xplore.  Restrictions apply. 



4.0 

3.5 

3.0 

2.5 
0 

$! ; 2.0 .- 
r 

-I 
g! 

1.5 

1 .o 

0.5 

0.0 

sii 1-way 

dii l-way 

sii 2-way 

dii 2-way 

l-ob] 100-obis 1000-obis 
Invocation policy 

Figure 2. ORBeline: Latency for Sending Pa- 
rameterless Operation 

contemporary CORBA implementations due to (1) inefficient 
server demultiplexing techniques, (2) improper choice of 
underlying operating system interfaces, ( 3 )  long chains of 
intra-ORB function calls, (4) excessive presentation layer 
conversions and data copying, and (5) unpredictable buffer- 
ing algorithms used for network reads and writes, and (6) 
general lack of the ability to specify and ensure operation 
priorities and scheduling. 

On low-speed networks, for conventional (i.e., non-real- 
time) applications, these sources of overhead are often 
masked. On high-speed networks and for real-time ap- 
plications, they become a dominant factor limiting end-to- 
end performance and predictability. If these limitations 
are not addressed, CORBA will not be adopted for use in 
performance-sensitive domains. 

The following discussion gives a summary of the results 
from [ 101 for scalability, latency, and data marshalling tests: 

0 Scalability: The results presented in Figures 2 and 3 il- 
lustrate that current implementations of CORBA do not scale 
well as the number of objects increase by several orders 
of magnitude. Figure 2 shows that for the ORBeline im- 
plementation, the latency of sending parameterless oneway 
operations increased 4 times as the number of objects went 
from 1 to 100, and then remained stable as the number of 
objects increased to 1,000. The latency for the twoway 
static and dynamic invocation was almost 20 times that of 

14.0 

13.0 

12.0 

11.0 

10.0 

9.0 

0 g 8.0 
E 
.- ; 7.0 
E 

J 

g! m 6.0 

5.0 

4.0 

3.0 

2.0 

1 .o 

0.0 I 
1. 100- 

In\ 

sii 1-way 

dii l-way 

SII 2-way 

dii 2-way 

tion policy 

Figure 3. Orbix: Latency for Sending Param- 
eterless Operation 

5 

Figure 4. Latency for Sending Octets Using 
Twoway IDL Stubs 

the oneway case for a single object, whereas the latency was 
4 to 5 times higher for the 100 and 1,000 object case. 

0 Latency: Figure 3 illustrates the latency for sending 
parameterless operations using Orbix. The latency of Orbix 
oneway dynamic invocations was slightly less than that of 
the static invocation. Latency increased roughly 1.2 to 1.6 
times for the oneway and twoway cases as the number of 

33 

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 19,2023 at 00:08:37 UTC from IEEE Xplore.  Restrictions apply. 



50 

45 
orbix.lOO-Obis -+-- 

orbeline.1-Obis -0 

40 orbeline.100-Objs .-n - 
orbeline.1000-Objs -a 

35 

30 

25 

20 

15 

10 

5 

0 200 400 600 800 1 oc 
Sender bytes 

Figure 5. Latency for Sending Structs Using 
Twoway IDL Stubs 

objects increased from 1 to 100. The latency for twoway 
static invocation was 5 to 6 times that of the oneway case 
and the latency of twoway dynamic invocation was roughly 
30 times that of the oneway case. These results show that for 
sending untyped data using the static invocation interface, 
the latency for Orbix was roughly 1.5 to 2 times that of 
ORBeline. 

e Data Marshalling: Figures 4 and 5 illustrate for both 
Orbix and ORBeline the latency for sending octets and 
s truc t s ,  respectively, using the IDL compiler generated 
stubs. For sending richly-typed data, as the sender buffer 
size increases, the latency for Orbix increases rapidly com- 
pared to that of ORBeline. For smaller sender buffer sizes 
(1,2, and 4 bytes), the DII latency of Orbix was roughly 5 to 6 
times that of ORBeline. With increasing buffer sizes, the la- 
tency increases by roughly 12 to 14 times that of ORBeline. 
For the SII case, the latency for Orbix increased by roughly 
3 to 4 times that of ORBeline for sending richly-typed data. 

Note that neither ORB provides interfaces or mechanisms 
for specifying or delivering end-to-end Quality of Service 
or real-time guarantees. In section 4 below, we discuss an 
architecture that addresses the primary sources of overhead 
discovered in ORBeline and Orbix so the real-time guaran- 
tees can be made. 

4. An Open Architecture for Real-Time 
CORBA 

This section describes operating system and CORBA mid- 
dleware policies and mechanisms we are developing to im- 
plement a real-time ORB. Figure 6 illustrates the optimiza- 
tions we are incorporating into the CORBA model shown in 
Figure 1. These include a high-pe$omance, real-time YO 
system that replaces conventional operating system I/O sub- 
systems; a set offlexible and adaptive communication pro- 

Figure 6. Proposed Optimizations for Real- 
Time CORBA 

tocols that can provide real-time guarantees; and a stream- 
lined CORBA implementation that optimizes many of the 
overheads present in current ORBS. 

4.1. High-Performance, Real-Time U0 System 

To ensure end-to-end real-time QoS, we are developing 
a high-performance network I/o system. This I/o system 
enhances conventional operating systems (such as SOLARIS 
with the following components: (1) a Universal Continuous 
Media (uCM) I/O interface, (2) a zero-copy buffer manage- 
ment system, and (3) a periodic protocol processing and 
data delivery system using real-time upcalls (RTU). Figure 7 
illustrates these components. 

The Universal Continuous Media U0 (UCM VO) combines 
multiple types of VO into a single abstraction. This “univer- 
sal” I/o mechanism is necessary to support new high-speed 
networks, and high-bandwidth multimedia applications and 
devices. A detailed design of the UCM I/o and buffer man- 
agement system for ENOS (Experimental Network Operating 
System) has been completed [3]. We are now integrating the 
UCM I/O and buffer management system into our real-time 
CORBA system. This integration involves (1) interfacing 
UCM I/O with CORBA and (2) implementing an integrated 
buffer management system that handles many types of VO 
efficiently. 

For periodic delivery of CORBA requests, we have created 
a prototype implementation of real-time upcalls (RTUS). An 
RTU is an operating system mechanism that provides QoS 
guarantees to protocols and applications implemented in 
user-space. Experimental results [ 121 indicate that it can 
deliver and process requests with performance that exceeds 
many real-time thread packages of existing operating sys- 
tems [ 14,241. 

34 

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 19,2023 at 00:08:37 UTC from IEEE Xplore.  Restrictions apply. 



Buffer Management m 

U0 Buffers 
MI (with RTU) 

Figure 7. Important High-performance Vo 
Subsystem Components 

4.2. Flexible and Adaptive Real-Time Communica- 
tion Protocols 

Conventional CORBA implementations utilize inflexible, 
static policies for selecting the transport protocol used to de- 
liver requests and responses. To enhance flexibility, our real- 
time CORBA system will integrate adaptive communication 
protocols underneath CORBA to optimize run-time selection 
of configurations of lightweight General Inter-ORB Proto- 
cols (GIOP). The GIOP specification [ 181 supports transport 
protocol level interoperability between CORBA implementa- 
tions. 

Conventional ORBS implement the GIOP as a layer above 
TCP/IP networks (shown in Figure 9(a)). To operate ef- 
ficiently over high-speed networks that support real-time 
QoS, real-time CORBA will provide a suite of lightweight 
transport protocols [21]. These transport protocols will op- 
timize the CORBA GIOP for high-speed networks (e.g., A m  
LANS and ATM/IP WANS) and can be customized for specific 
application requirements (shown in Figure 9(b)). 

For instance, when applications do not require complete 
reliability (e.g., teleconferencing or certain types of imag- 
ing), REAL-TIME CORBA will omit transport layer retransmis- 
sion and error handling to run directly atop ATM or ATM/IP. 
The GIOP transport layer tightly integrates the underlying 
AWIP infrastructure via techniques such as ALF/ILP [21, 
our high-performance real-time I/o subsystem [3, 121, and 
APIC [5]. 

Applicauon Processes 
RTU RTU 

User-Kernel Boundary --c 

Periodic protocol and process scheduling 

P Period 8,: Number of PDUs 

Figure 8. The Real-Time Upcall (RTU) Architec- 
ture 

4.3. Streamlined Real-Time CORBA Implementa- 
tion 

The recent development of high-speed networks has in- 
creased the importance of optimizing memory- and bus- 
intensive communication software tasks such as demulti- 
plexing remote operations, data movement and presentation 
layer conversions [ 191. Therefore, our real-time CORBA 
system will optimize the ORB implementation to guarantee 
real-time responses for the following operations: 

0 Remote operation demultiplexing: A GIOP-compliant 
CORBA request message contains the identity of its remote 
object implementation and its intended remote operation. 
The remote object implementation is typically represented 
by an object reference and the remote operation is typically 
represented as a string or binary value. Conventional ORBS 
use the OBJECT ADAPTER and IDL skeletons to demultiplex 
request messages to the appropriate method of the object 
implementation in two steps (shown in Figure 9(c)): (1) the 
OBJECT ADAPTER uses the object reference in the request to 
locate the appropriate object implementation and associated 
IDL skeleton and (2) the IDL skeleton locates the appropriate 
method and performs an upcall, passing along the demar- 
shalled parameters in the request. 

The type of demultiplexing scheme used by an ORB can 
impact performance significantly. Excessive demultiplex- 
ing layers are expensive, particularly when a large number 
of operations appear in an IDL interface, or a large num- 
ber of objects exist on a host. To minimize this overhead, 
real-time CORBA will utilize delayered demultiplexing [23] 
(shown in Figure 9(d)). The packet filters [15,7] provided 
by the operating system kernel will be modified to incorpo- 
rate CORBA request demultiplexing. Because packet filters 
are kernel-resident, the demultiplexing process can be opti- 
mized, thereby providing low-latency guarantees. 

35 

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 19,2023 at 00:08:37 UTC from IEEE Xplore.  Restrictions apply. 



shalling stubs for operations that are performed infrequently, 
real-time CORBA can choose to use interpreted marshalling 
stubs. Dynamic linking reduces application resource uti- 
lization and allows compiled and/or interpreted code to be 
added or removed at run-time. 

Parameter marshalling involves accessing and moving 
data. Therefore, it is necessary to employ efficient buffer 
and memory management schemes that minimize overhead. 
For example, REAL-TIME CORBA will cache certain types of 
request information. Caching will be employed when cer- 
tain types of application data units (ADUs) are transferred 

Figure 9. Transport Protocol and Demultiplex- 
ing Optimizations in Real-Time CORBA 

0 Data movement: Conventional implementations of 
CORBA suffer from excessive data copying [8]. For instance, 
IDL skeletons generated automatically by a CORBA IDL com- 
piler do not generally know how the user-supplied upcall 
method will use the parameters passed to it from the request 
message. Therefore, they use conservative memory man- 
agement techniques that dynamically allocate and release 
copies of messages before and after an upcall, respectively. 
These memory management policies are important in some 
circumstances (e.g., to protect against corrupting internal 
CORBA buffers when upcalls are made in parallel applica- 
tions that modify their input). However, this strategy need- 
lessly increases memory and bus overhead for streaming 
applications (such as satellite surveillance and teleconfer- 
encing) that consume their input immediately without mod- 
ifying it. 

Our real-time CORBA system is designed to minimize and 
eliminate data copying at multiple points. For instance, the 
buffer management system described in section 4.1 allows 
CORBA requests to be sent and received to and from the 
network without incurring any data copying overhead. In 
addition, Integrated Layer Processing (ILP) [2] can be used 
to reduce data movement. Since ILP requires maintaining 
ordering constraints, we are applying compiler techniques 
(such as control and data flow analysis [4]) to determine 
where ILP can be employed effectively. 

e Presentation layer: Our real-time CORBA system will 
produce and configure multiple marshalling and demar- 
shalling strategies for CORBA IDL definitions, each appli- 
cable under different conditions (such as timekpace trade- 
offs between compiled vs. interpreted CORBA IDL stubs and 
skeletons). Using dynamic linking, it is possible to include 
an appropriate marshalling stub for a given data type based 
on its run time usage by a CORBA application. This can 
be used to achieve an optimal tradeoff between interpreted 
code (which is slow but compact in size) and compiled code 
(which is fast but larger in size [ 131). For example, to avoid 
the time and space overhead of dynamically linking mar- 

.- _ _  
sequentially in “request chains.” In cases where ADUs con- 
tain a large number of subparts that remain constant, only a 
few vary from one transmission to the other. In such cases, 
it is not necessary to marshal the entire ADU every time. 
Marshalling overhead can be reduced significantly by hav- 
ing real-time CORBA cache the marshalled information for 
the constant subparts and only marshal the varying quan- 
tities. This type of optimization requires flow analysis [4] 
of the application code to determine which information can 
be cached. Our real-time CORBA system will utilize these 
techniyues to achieve efficient marshalling and minimal data 
copying. 

The preceding optimizations are not always suitable for 
applications with real-time constraints because they opti- 
mize for the common case. Although performance in the 
average will be better, the performance for worst case sce- 
narios may be unacceptable to application real-time require- 
ments. In addition, since static scheduling policies often 
consider only worst-case execution, resource utilization can 
be decreased. As a result, these optimizations can only be 
employed under certain circumstances, e.g., for soft dead- 
lines or when the worst case scenarios are still sufficient to 
meet hard deadlines. 

5. Concluding Remarks 

Currently, there is significant interest in developing real- 
time, high-performance implementations of CORBA. How- 
ever, meeting these needs requires much more than simply 
defining IDL interfaces and ORB APIs - it requires an inte- 
grated architecture that delivers end-to-end QoS guarantees 
at multiple levels of the entire system. Our architecture 
addresses this need with the following policies and mecha- 
nisms spanning network adapters, operating systems, trans- 
port protocols, and CORBA middleware: 

0 Real-time OS and network scheduling; 

0 Lightweight presentation layer based on compiler anal- 

0 Lightweight data copying using efficient zero-copy 

ysis and efficient buffer management schemes; 

buffer management schemes and UCM I/O; 

36 

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 19,2023 at 00:08:37 UTC from IEEE Xplore.  Restrictions apply. 



0 Efficient demultiplexing of CORBA requests using de- 
layered demultiplexing and kernel-level packet filters; 

0 Customized, light-weight transport protocol imple- 
mentations. 

The integration of these optimizations comprise a high- 
performance, real-time architecture that we are develop- 
ing to implement the CORBA standard. This architecture is 
designed to provide both hard real-time and constrained- 
latency guarantees to applications. 

References 

[l] M. Abbott and L. Peterson. Increasing Network Through- 
put by Integrating Protocol Layers. ACM Transactions on 
Networking, 1(5), October 1993. 

[2] D. D. Clark and D. L. Tennenhouse. Architectural Consider- 
ations for a New Generation of Protocols. In Proceedings of 
the Symposium on Communications Architectures and Pro- 
tocols (SIGCOMM), pages 200-208, Philadelphia, PA, Sept. 
1990. ACM. 

[3] C. Cranor and G. Parulkar. Design of Universal Continuous 
Media I/O. In Proceedingsof the 5th International Workshop 
on Network and Operating Systems Support for Digital Au- 
dio and Kdeo (NOSSDAV '95), pages 83-86, Durham, New 
Hampshire, Apr. 1995. 

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. 
Zadeck. Efficiently Computing Static Single Assignment 
Form and the Control Dependence Graph. In ACM Transac- 
tions on Programmingknguages and Systems. ACM, Octo- 
ber 1991. 

[SI Z. D. Dittia, J. Jerome R. Cox, and G. M. Parulkar. Design of 
the APIC: A High Performance ATM Host-Network Interface 
Chip. In IEEEINFOCOM'95, pages 179-187,Boston,USA, 
April 1995. IEEE Computer Society Press. 

[6] P. Druschel, M. B. Abbott, M. Pagels, and L. L. Peterson. 
Network subsystem design. IEEE Network (Special Issue on 
End-System Support for High Speed Networks), 7(4), July 
1993. 

[7] D. R. Engler and M. F. Kaashoek. DPF: Fast, Flexible Mes- 
sage Demultiplexing using Dynamic Code Generation. In 
Proceedings of ACM SIGCOMM '96 Conference in Com- 
puter Communication Review, pages 53-59, Stanford Uni- 
versity, Califomia, USA, August 1996. ACM Press. 

[81 A. Gokhale and D. C. Schmidt. Measuring the Performance 
of Communication Middleware on High-speed Networks. In 
Proceedings of ACM SIGCOMM '96, pages 306-3 17, Stan- 
ford, CA, August 1996. ACM. 

191 A. Gokhale and D. C. Schmidt. The Performance of the 
CORBA Dynamic Invocation Interface and Dynamic Skele- 
ton Interface over High-speed ATM Networks. In Proceed- 
ings of GLOBECOM '96, London, England, November 1996. 
IEEE. 

[lo] A. Gokhale and D. C .  Schmidt. Evaluating Latency and 
Scalability of CORBA Over High-speed ATM Networks. 
In Submitted to IEEE INFOCOM 1997, Kobe, Japan, April 
1997. IEEE. 

[ 111 R. Gopalakrishnan and G. Parulkar. Quality of Service Sup- 
port for Protocol Processing Within Endsystems. In W. E. et. 
al., editor, High-speed Networking for Multimedia Applica- 
tions. Kluwer Academic Publishers, 1995. 

[12] R. Gopalakrishnan and G. Parulkar. Bringing Real-time 
Scheduling Theory and Practice Closer for Multimedia Com- 
puting. In SIGMETRICS Conference, Philadelphia, PA, May 
1996. ACM. 

[13] P. Hoschka. Automating Performance Optimization by 
Heuristic Analysis of a Formal Specification. In Proceed- 
ings of Joint Conference for Formal Description Techniques 
(FORTE) and Protocol Specification, Testing and Verification 
(PSTV), Kaiserslautern, 1996. To be published. 

[141 S. Khanna and et. al. Realtime Scheduling in SunOS5.0. In 
Proceedings of the USENIX Winter Conference, pages 375- 
390. USENIX Association, 1992. 

[ 151 S. McCanne and V. Jacobson. The BSD Packet Filter: A New 
Architecture for User-level Packet Capture. In Proceedings of 
the Winter USENIX Conference, pages 259-270, San Diego, 
CA, Jan. 1993. 

[ 161 Object Management Group. CORBAServices: Common Ob- 
ject Services Specification, Revised Edition, 95-3-3 1 edition, 
Mar. 1995. 

[17] Object Management Group. The Common Object Request 
Broker: Architecture and Specification, 2.0 edition, July 
1995. 

[ 181 Object Management Group. Universal Networked Objects, 
TC Document 95-3-xx edition, Mar. 1995. 

[191 S. W. O'Malley, T. A. Proebsting, and A. B. Montz. USC: 
A Universal Stub Compiler. In Proceedings of the Sympo- 
sium on Communications Architectures and Protocols (SIG- 
COMM), London, UK, Aug. 1994. 

[20] I. Pyarali, T. H. Harrison, and D. C. Schmidt. Design and 
Performance of an Object-Oriented Framework for High- 
Performance Electronic Medical Imaging. In Proceedings 
of the 2"d Conference on Object-Oriented Technologies and 
Systems, Toronto, Canada, June 1996. USENIX. 

[21] D. C. Schmidt, B. Stiller, T. Suda, A. Tantawy, and M. Zit- 
terbart. Language Support for Flexible, Application-Tailored 
Protocol Configuration. In Proceedings of the l s th  Confer- 
ence on Local Computer Networks, pages 369-378, Min- 
neapolis, Minnesota, Sept. 1993. IEEE. 

[22] J. A. Stankovic, M. Spun, M. D. Natale, and G. Buttazzo. 
Implications of Classical Scheduling Results for Real-Time 
Systems. IEEE Computer, 28(6):16-25, June 1995. 

[23] D. L. Tennenhouse. Layered Multiplexing Considered Harm- 
ful. In Proceedings of the 1 st  International Workshop on 
High-speed Networks, May 1989. 

[24] H. Tokuda, T. Nakajima, and P. Rao. Real-Time Mach: 
Towards Predictable Real-time Systems. In USENIX Mach 
Workshop. USENIX, October 1990. 

37 

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 19,2023 at 00:08:37 UTC from IEEE Xplore.  Restrictions apply. 


