
CSI Communications | August 2011 | 15

Research Front

Overcoming Cellular Connectivity
Limitations with M2Blue Autonomic
Distributed Data Caching

Brian Dougherty1, Daniel Guymon1, Douglas C. Schmidt2 and Jules White1

1 Virginia Tech, {brianpd,dguymon,julesw}@VT.edu
2 Vanderbilt University, schmidt@dre.vanderbilt.edu

The memory constrained nature of mobile devices, such as smartphones, limits
the amount of data that can be stored locally. As a result, mobile devices often
rely on cellular connections to retrieve application data. Environmental factors,
however, can partially or completely restrict cellular connectivity. Autonomic
distributed caching mechanisms can be used to allow mobile device networks to
self-heal by storing data needed across multiple devices, but cannot be applied
without a means to determine if devices are within a given range. Moreover, it is
hard to identify the best way(s) of mapping application data to device memory to
allow devices to self-heal in spite of limited cellular connectivity.

This article provides the following contributions to the study of autonomic self-
healing mobile communication: (1) we present a Bluetooth-driven localization
technique that determines the quantity and configuration of devices present within
a given range, (2) we provide a system for mapping data across nearby devices
allows mobile computing environments to self-heal in response to limited cellular
connectivity, and (3) we show this autonomic system can be augmented to handle
the dynamic nature of devices entering and leaving ad hoc mobile networks.

1. Introduction
Current trends and challenges Mobile

computing devices, such as smartphones,
use cellular connections to retrieve
information needed by applications.
Unfortunately, cellular connectivity can
be lost or restricted by environmental
factors, such as physical barriers, or
by a lack of cellular coverage [11, 2]. A
promising means for constructing reliable
mobile computing environments therefore
involves implementing autonomic devices
[10] that can self-heal in response to
environmental changes, such as slow or
unreliable cellular connections.

Autonomic computing is computing
paradigm in which systems have the ability
to self-manage without intervention by an
outside entity [6]. One potential benefit
of autonomic systems is the introduction

of self-healing properties. Systems with
self-healing capabilities are able to remain
functional by reconfiguring or repairing
themselves in response to system faults,
potentially increasing their fault-tolerance
and reliability.

Memcached [5] is a promising
mechanism that could be applied to
create an autonomic mobile computing
environment in which devices can self-
heal in response to limited cellular
connectivity. Memcached is a distributed
data caching mechanism that uses
hashing to map data to multiple
computing nodes. When data stored with
Memcached is needed, a requesting node
can use the hash function to retrieve data
either locally, if a local copy exists, or
from another node that it has been stored
on. Fig. 1 shows how mobile computing

environments could use autonomic
distributed caching mechanisms like
Memcached to implement self-healing
communications [1].

Introducing autonomic properties,
such as self-healing, can allow mobile
networks to continue to function in spite
of limited cellular connectivity by storing
application data on the device. Resource-
constrained mobile devices, however,
often cannot store the complete set
of data needed by applications. Since
multiple devices often use the same
application, data could be distributed
between devices so that collectively, most
or all application data is stored across
devices. This approach can reduce the
need for data requests across the cellular
network, thereby allowing devices to
execute autonomically in the absence of

CSI Communications | August 2011 | 16 www.csi-india.org

cellular connectivity.
Open problem Applying

autonomic distributed caching to add
self-healing communication in mobile
computing systems. There are several
issues that currently prevent the use of
Memcached to implement self-healing
communication in mobile networks. First,
Memcached must know the devices
available in a distributed system[12],
which is relatively simple in environments
where stationary devices are added/
removed before execution. A mechanism
is therefore needed to autonomically
determine the profile of devices that
are present in a mobile network so
Memcached can execute.

Moreover, the devices present in a
given mobile network change over time.
Devices may physically enter a network
by coming in range of other devices or
exit the network by going out of range,
crashing, or running out of power [8].
Any autonomic distributed caching
mechanism that allows a mobile network
to function despite limited connectivity
must self-heal in response to new devices
entering or exiting the network.

Solution approach Autonomic
mobile distributed data caching with
M2Blue This article presents Mobile
Memcached with Bluetooth (M2Blue),
which is an autonomic distributed data
caching mechanism aimed at mobile
computing environments with limited

or no cellular connectivity. M2Blue uses
Bluetooth, or if available, a wireless
network, to automatically detect devices
present within a predefined range in the
event of reduced cellular connectivity.
An augmented version of Memcached
is then applied to map application data
across devices. Devices use Bluetooth
or a wireless network to read cached
data instead of transmitting requests
to a cellularly connected server,
thereby minimizing the need for cellular
connections.

This article provides the following

contributions to autonomic self-healing in
mobile distributed systems:

 � We provide an innovative approach
for automatically determining
the profile of distributed mobile
computing environments,

 � We present an algorithmic technique
for applying autonomic distributed
data caching to mobile computing
environments so systems can self-
heal in response to limited cellular
connectivity, and

 � We provide mechanisms for
autonomously supporting the

dynamic entry or exit of devices from
mobile networks despite limited
cellular connectivity.

2. Challenges of Applying
 Autonomic Distributed
 Caching Mechanisms to allow
 Mobile Networks to Self-heal

This section summarizes the
challenges of implementing self-healing
communication in autonomic distributed
caching mechanisms to allow mobile
computing environments to self-heal in
periods of limited cellular connectivity.

Data transmission between devices
cannot require the use of a cellular
connection. Even if the profile of a mobile
device network is known, devices must be
able to exchange data with each other to
take advantage of autonomic distributed
data caching. Transmitting data over a
cellular connection, however, may not
be possible due to increased latency as
a result of diminished signal strength.
An alternative communication protocol,
therefore, must be used to transmit data
wirelessly. Ideally, this protocol would not
require additional hardware.

Autonomically determining devices

A promising means for constructing reliable mobile computing
environments therefore involves implementing autonomic devices that
can self-heal in response to environmental changes, such as slow or
unreliable cellular connections.

Fig. 1 : Overcoming Weak Cellular Connectivity with Mobile Autonomic Distributed Data Caching

CSI Communications | August 2011 | 17

present within a physical range must be
done at runtime. Unlike stationary nodes,
the number of mobile devices in a network
within a range can be hard to predict.
Determining which devices are present
is exacerbated when locations where
cellular connectivity becomes weak or
limited are not known a priori. Memcached,
however, requires knowledge of devices
available for storing data to determine
an appropriate hash function. Autonomic
mechanisms must be developed that
can routinely determine the profile of
mobile device networks autonomically so
Memcached can be applied.

Devices that later enter/exit
the mobile network should be able to
participate in autonomic distributed
data caching. Many factors can cause the
number of devices in a mobile network
to change, e.g., devices may move out of

range with each other, crash, break, or
run out of power and turn off, removing
any previously cached data. Devices
entering the network, however, should be
able to access previously cached data on
the devices that remain. Any autonomic
distributed caching mechanism must
therefore be augmented to handle the
dynamic nature of mobile networks.

3. Using Mobile Distributed
 Caching with M2Blue to Self-
 heal in Response to Limited
 Cellular Connectivity

Mobile Memcached with Bluetooth
(M2Blue) is an autonomic distributed
data caching mechanism we created to
(1) allow mobile devices continued access
to data by using autonomic distributed
caching to self-heal in the event of limited
cellular connectivity and (2) provide a
mechanism for caching data that can self-
heal to function despite the entry/exit of
devices from the network. This section
describes the sequence for preparing,
securing, and commencing autonomic
distributed caching with M2Blue.

3.1 Autonomically Preparation of
 Devices to Self-heal

Prior to being fielded, each device
is preloaded with a background service

that periodically checks cellular
connectivity. As devices move away from
cellular towers and signal fades, cellular
connectivity becomes incrementally
weaker and drastically increases in
latency. Once a predefined threshold of
reduced connectivity is reached, a device,
referred to as the initiator, will begin the
self-healing process by autonomically
invoking the begin command.

The initiator uses Bluetooth to detect
the presence of nearby devices and then
transmit a packet containing its device
ID and a list of detected device IDs to
the server over the cellular connection.

Upon receiving this information, the
server will reply to the initiator with a
packet containing the public key and a
hash function. The initiator will then use
Bluetooth to broadcast the public key and
hash function to all discovered devices,
creating a mobile network profile that can
be used in conjunction with autonomic
distributed caching to allow self-healing in
the face of limited connectivity.

3.2 Secure Self-healing with Public/
 Private Key pairs

Upon receiving packets from all
devices, the server begins the server-side
M2Blue protocol. First, when a request
for data is received, the server uses a
predefined policy (i.e., request frequency)
to determine if the data associated
with the key should be written to the
distributed cache by the device. If so, the
server produces a string, referred to as the
data tag, that concatenates the key sent
by the device, the data associated with
the key from the server, and an expiration
timestamp for the data. This string is then
encrypted with the server’s private key
and transmitted to the device with the key

and requested data. If the data should not
be cached then only the key and data are
transmitted to the device.

3.3 Autonomic Device Modes:
 Read/Write/Store

For the M2Blue protocol, a device can
perform 3 different caching operations–
write, read, and store–as described below.

3.3.1 Write Operation
The write operation defines how data

is written into the autonomic distributed
cache when the key, data, and data tag are
received by a device from the server. First,
the key is applied to the hash function
received from the initiator to determine
the destination device ID and memory
location for storage. Each device also
receives an alias table listing all device IDs
from the initiator during preparation. The
alias table is used to determine if another
device is now handling the storage of
the data for the device ID determined by
hashing the data key.

Once a request to store data is
received by the destination device, the
data and the data tag is stored in the
appropriate location. If the destination
device is not detected, then the request
is forwarded to the initiator. If the initiator
cannot detect the device, then the device
is removed from the alias table of the
initiator, which is then broadcasted to all
other devices.

For example, consider a mobile
network consisting of four devices. After
the preparation and data caching begins,
Device 2 leaves the network. Upon
attempting to store data to Device 2,
the requesting device will not be able to
detect the device and will forward the
request to initiator device. The initiator
will attempt to detect the device, fail to
detect it, and then update its alias table so
that all data being stored to Device 2 will
now be stored to another specific device,
such as Device 3, and then broadcast the
table to all other devices. Upon receiving
the new alias table, the requesting device

Any autonomic distributed caching mechanism that allows a mobile
network to function despite limited connectivity must self-heal in
response to new devices entering or exiting the network.

Relative localization with Bluetooth is the process of determining which
mobile devices are present within a certain physical range.

The devices present in a given mobile network change over time.
Devices may physically enter a network by coming in range of other
devices or exit the network by going out of range, crashing, or running
out of power.

CSI Communications | August 2011 | 18 www.csi-india.org

will now look up Device 2 in the alias table
and determine that Device 3 is the new
location for data intended for Device 2.

3.3.2 Read Operation
The read operation allows a device

requesting data to access autonomically
cached data, thereby potentially avoiding
additional requests to the server
across the cellular network. When the
requesting device requires a data, the key
representing that data, such as a variable
name, is applied to the hash function
received from the initiator to determine
the destination device ID and address
where the requested data would be stored
in the distributed cache.

The destination device ID is checked
in the alias table to determine if another
device is now handling the storage for
that device ID. A request is then sent over
Bluetooth to the appropriate destination
device for the requested data which then
transmits the data and data tag stored at
the requested location back to the device.
The data tag is then decrypted using the
public key to determine that the data
corresponds to the correct key and has
not expired.

If the device is not detected the
request is forwarded to the initiator. The
initiator either forwards the request to the
destination device and replies back with
the data and data tag or determines the
device is no longer present, updates the
alias table accordingly, and broadcasts
the table to all other devices. If the data
is not retrieved from the distributed
cache, the device must hold until a cellular
connection can be made.

3.3.3 Store Mode
While all devices should be able

to read from and write to the cache, all
devices are not always used to store
cached data. This state is represented as
Boolean variable named store mode. Each
device involved in the preparation phase
of M2Blue has store mode set to true by
default, allowing it to store data. New
devices that join the network after data

has been cached may cause the network
to grow larger than specified in the hash
function generated during the preparation
phase. These devices, however, could be
used later to store data in the event of
other devices leaving the network.

For example, the hash function
generated by the server accounts for 5
different devices. If a new device joins
and increases the number of devices to
6, the new device by default will not be in
store mode, but will be able to read and
write to the cache after making a request
for the hash function, public key, and
alias table from the initiator. If one of the
other devices leaves the network, the new
device can change store mode to true,
update the alias to take the exited device’s
place, and then broadcast the new alias
table to all devices. Anytime the alias
table is updated any data cached to the
original device is no longer available.

4. Related Work
This section compares our distributed

caching technique for mobile devices with
Memcached and Bluetooth localization.

Distributed caching techniques.
Memcached is a distributed memory
object caching mechanism designed to
accelerate dynamic web applications by
using a shared hash table to distribute
data between multiple processes so
that changes made by one process can
be simultaneously seen by another [5].
Lerner tested the fusion of Memcached
and Ruby on Rails by showing Memcached
could reduce unnecessary server traffic
[9]. Harris demonstrates Memcached
execution time consistency in [7] by
showing that the execution time of one-
thousand consecutive cache accesses
are relatively equal. Many websites, such
as Live Journal, Twitter, and Wikipedia,

use multiple instances of Memcached on
multiple servers to handle hundreds of
website visits per second [5].

Our M2Blue mechanism differs from
Memcached in several ways. In particular,
Memcached is designed for cache
handling on servers for websites, whereas
M2Blue is used for mobile devices.
Likewise, M2Blue provides self-healing
properties for autonomically responding
to periods of time where there is a
decrease in cellular connectivity, which is
a useful feature in autonomic computing
where distributed systems must adapt to
unpredicted changes.

Relative localization with Bluetooth.
Relative localization with Bluetooth is
the process of determining which mobile
devices are present within a certain
physical range. Cheung et al. [3] present a
Bluetooth localization technique that uses
beacons and smartphones to determine
the location of the smartphone. These
beacons dynamically change signal
strength based on the physical layout of
an environment. Fisher et al. used off-the-
shelf Bluetooth beacons and a mobile client
device to achieve +/- 1-meter accuracy by
using phase difference calculations of the
beacons and running the received beacon
signals through a low-pass filter [4].

Our M2Blue mechanism uses
Bluetooth to determine devices that
are present, allowing us to execute the
distributed caching algorithm without
requiring additional hardware. Further,
M2Blue is designed to autonomically
apply distributed caching in response
to limited cellular connectivity. This
autonomic feature of self-healing in
response to service availability allows
M2Blue to remain robust despite limited
connectivity.

5. Concluding Remarks
Providing mobile networks with the

autonomic ability to self-heal in the event
of limited cellular connectivity is hard.
The dynamic nature of mobile networks,
with devices entering and exiting
unpredictably, makes it hard to apply self-
healing communication with autonomic

Providing mobile networks with the autonomic ability to self-heal in
the event of limited cellular connectivity is hard. The dynamic nature
of mobile networks, with devices entering and exiting unpredictably,
makes it hard to apply self-healing communication with autonomic
distributed caching mechanisms.

Mobile devices are excellent platforms for using sensors, such as
GPS and accelerometers, to capture physical data, making them ideal
for location-specific applications. New cache-based removal policies
should be investigated...

CSI Communications | August 2011 | 19

distributed caching mechanisms. Our
M2Blue autonomic distributed caching
mechanism helps mobile networks
overcome these challenges and self-heal
despite limited cellular connectivity.

Based on our work with M2Blue thus
far, we have learned the following lessons
pertaining to self-healing, autonomic
mobile computing environments:

 � Detecting the presence of
nearby devices does not require
additional hardware. Knowledge
of the number and type of devices
available is essential for autonomic
distributed data caching. The
M2Blue technique uses Bluetooth to
effectively determine the presence
of surround devices. Since Bluetooth
comes preloaded on the majority of
smartphones, such as the Google
Android and Apple iPhone, no
additional hardware is required to
begin caching with M2Blue.

 � Responding to fluctuating network
size is hard. M2Blue uses Bluetooth
to detect the presence of devices and
alias tables to alter the destination
of read-/write operations as devices
leave the network. The impact of
deciding which device to handle the
exited devices cache responsibilities
should be investigated.

 � Mobile networks use geo-location
specific data. Mobile devices are
excellent platforms for using sensors,
such as GPS and accelerometers,
to capture physical data, making
them ideal for location-specific
applications. New cache-based
removal policies should be
investigated and applied to M2Blue
that take into account the geographic
origin of cached data.

References
1. G. Anandharaj and R. Anitha. A distributed

cache management architecture for
mobile computing environments. In
Advance Computing Conference, 2009.
IACC 2009. IEEE International, pages 642–
648. IEEE, 2009.

2. Y. Chen and H. Kobayash. Signal
strength based indoor geolocation.
In IEEE International Conference on
Communications, volume 1, page 436, 2002.

3. K. Cheung, S. Intille, and K. Larson. An
inexpensive bluetooth-based indoor
pos i t ion ing hack .Proc .Ub iComp06
Extended Abstracts, 2006.

4. G. Fischer, B. Dietrich, and F. Winkler.

Bluetooth indoor localization system.
In Proceeding Workshop onPositioning,
Navigation and Communication, pages
147–56, 2004.

5. B. Fitzpatrick. Distributed caching with
memcached. Linux journal, 2004(124):5,
2004.

6. A. Ganek and T. Corbi. The dawning of the
autonomic computing era.IBM Systems
Journal, 42(1):5–18, 2003.

7. A. Harris. Distributed caching via
memcached. Pro ASP. NET 4 CMS, pages
165–196, 2010.

8. D. Johnsort. Routing in ad hoc networks of
mobile hosts. In Mobile Computing Systems
and Applications, 1994. WMCSA 1994. First
Workshop on, pages 158–163. IEEE, 1994.

9. R. LERNER. Memcached integration in
rails.Linux Journal, 2009.

10. F. Saffre, J. Halloy, M. Shackleton, and
J. Deneubourg. Self-organized service
orchestration through collective
differentiation. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE
Transactions on, 36(6):1237–1246, 2006.

11. K. Wong. Geo-location in urban areas
using signal strength repeatability.
Communications Letters, IEEE, 5(10):411–
413, 2001.

12. P. Xiang, R. Hou, and Z. Zhou. Cache and
consistency in nosql. In Computer Science
and Information Technology(ICCSIT),
2010 3rd IEEE International Conference on,
volume 6, pages 117–120. IEEE, 2010. n

» About the Authors

Dr. Brian Dougherty is a Research Scientist in the Bradley Department of
Electrical and Computer Engineering at Virginia Tech. He received his BS
in Computer Science from Centre College, his MS and PhD from Vanderbilt
University. Dr. Dougherty’s research investigates the development of mobile
cyber-physical applications, automated techniques for configuring DRE
systems and automatically scaling cloud computing applications to meet
quality of service guarantees.

Dr. Douglas C. Schmidt is a Professor of Computer Science at Vanderbilt
University. He has published 10 books and more than 475 technical
papers covering a wide range of software-related topics, including
patterns, optimization techniques, and empirical analyses of object-
oriented frameworks and domain-specific modeling environments that
facilitate the development of distributed real-time and embedded (DRE)
middleware and mission-critical applications running over data networks

and embedded system interconnects. In addition to his academic research, Dr. Schmidt
has led the development of ACE and TAO, which are are DRE middleware frameworks used
successfully by thousands of companies and agencies worldwide in many domains, including
national defense and security, datacom/telecom, financial services, medical engineering, and
massively multiplayer online gaming. Dr. Schmidt received B.S. and M.A. degrees in Sociology
from the College of William and Mary in Williamsburg, Virginia, and an M.S. and a Ph.D. in
Computer Science from the University of California, Irvine (UCI) in 1984, 1986, 1990, and
1994, respectively.

Dr. Jules White is an Assistant Professor in the Bradley Department of
Electrical and Computer Engineering at Virginia Tech. He received his BA
in Computer Science from Brown University, his MS and PhD in Computer
Science from Vanderbilt University. His research focuses on developing
mobile cyber-pysical systems using smartphones, designing power-efficient
communications middleware for smartphones, and applying search-based

optimization techniques to the configuration of distributed, real-time and embedded systems.

Daniel Guymon is a Research Assistant for the Mobile Applications, Genetic
optimizatioN, and cloud coMputing (MAGNUM) group in the Bradley
Department of Electrical and Computer Engineering at Virginia Tech. He
received his BS in Computer Engineering from Virginia Tech in 2010. Daniel’s
research examines mobile cyber-physical system development, smartphone
security, and localization techniques for mobile devices.

