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Abstract: Service-oriented architectures (SOAs) provide loose coupling and software reuse in 
enterprise applications. SOAs enable applications to heal themselves by failing over to alternate 
services when a critical application component or service reference fails. The numerous intricate 
details of identifying errors and planning a recovery strategy make it hard to develop applications 
that can heal by swapping services. 
 Model-driven engineering (MDE) offers a potential solution to handling the complexity of 
building applications that can heal by swapping services. This paper presents an MDE technique 
called Refresh that is based on microrebooting and uses 

1 feature models to derive a new and correct service composition when a failure occurs 
2 an application’s component container to shutdown the reference to the failed service 
3 the application container to reboot the subsystem. 

We also present the results from a case study that shows Refresh significantly reduces both 
modelling and healing implementation effort. 
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1 Introduction 

Organisations are rapidly deploying service-oriented 
architectures (SOAs) that create loosely coupled and highly 
reusable application components through the use of 
standardised message-oriented protocols, such as the Simple 
Object Access Protocol (SOAP). Often, within a single 
organisation or group of collaborating organisations, 
multiple services are available that can accomplish a 
particular task. The redundancy in services provides the 
potential to create applications that can heal themselves by 
failing over to leverage similar services when a service in 
their service composition (i.e., the services used – by the 
application) fails. Failing over to another equivalent but not 
necessarily identical – service can create robust applications 
that can adapt to service failures and remain functional. 

Designing and implementing a mechanism to build  
self-healing service compositions is complex. Since, 
software development projects already have low success 
rates and high cost, building a service capable of healing is 
hard (Barki et al., 1993). Moreover, building adaptive 
mechanisms greatly increases application complexity and 
can be hard to decouple from application code if the 
development of the adaptive mechanism is not successful. 

Model-driven engineering (MDE) provides a potential 
solution to managing the complexity of developing adaptive 
services. In an MDE approach, high-level adaptive models 
are used to generate the complex adaptive code required to 
heal the application when services fail. This approach 
allows MDE tools to generate much of the complex healing 
code and in many cases, remove the healing code if it does 
not function properly. Although, numerous approaches 
(Joshi et al., 2005; Bhat et al., 2006; Calinescu, 2007; 
Denaro et al., 2007) have been devised to build MDE 
models and platforms for enterprise applications, these 
approaches tend to suffer from one or more of the following 
problems: 

1 they require significant development effort to explicitly 
model the numerous potential error states and recovery 
paths from an error state to a correct state 

2 they require extensive effort to develop the adaptation 
action implementations for a realistic application. 

This paper presents an MDE approach and toolset called 
Refresh, for designing and implementing self-healing 
service compositions that addresses the limitations outlined 
above. Refresh is specifically designed for healing a service 
composition when 

1 the application is implemented with a component-based 
technology, such as enterprise Java Beans or the 
CORBA Component Model 

2 catastrophic failure is imminent 

3 the application and any redundant instances in an 
application cluster cannot continue functioning 
correctly in their current configuration 

4 the application has alternate composable services that 
could potentially be exploited to avoid failure. 

For each potential error state that an application’s service 
composition could enter, conventional MDE adaptation 
techniques (Joshi et al., 2005; Bhat et al., 2006; Calinescu, 
2007, Denaro et al., 2007) require explicitly modelling both 
the error state and the numerous actions to transition from 
the error state to a correct state. For large enterprise 
applications, moreover, there are usually a significant 
number of potential error states and complex nuanced 
considerations, such as availability of other services, 
database locks held and transaction states. These 
considerations make it hard to create a model for service 
composition healing. Rather than explicitly modelling error 
states and recovery actions, Refresh uses feature models 
(Kang et al., 1998) to capture the rules for determining what 
is or is not a correct configuration/error state. 

Feature models describe an application in terms of 
points of variability and their effect on each other. For 
example, in an e-commerce application, a feature might be a 
service for accessing an order database. The order feature 
can have different subfeatures, such as different potential 
services that can serve as the order database access service. 
If one particular order database access service is chosen, it 
excludes the other potential order services from being used 
(it constrains the other features). If the chosen service fails, 
a new feature selection can be derived that does not include 
the failed service’s feature. 

This paper provides the following contributions to the 
study and development of self-healing service 
compositions: 

• It shows how when a failure occurs (such as the 
inability to communicate with a dependent service) 
Refresh uses the application’s feature models to derive 
a new and valid service composition from the currently 
available services and components, which eliminates 
the need to model every potential error state and 
recovery action. 

• It describes Refresh’s use of an approach based on 
microrebooting (Candea et al., 2004), which is a 
technique for rebooting a small set of failed 
components rather than an entire application server, to 
shutdown the failed service composition and launch the 
newly derived composition, eliminating the need for 
developers to implement recovery actions. 

• It presents empirical results from a case study applying 
Refresh to an e-commerce application that shows 
Refresh provides a ~55% decrease in modelling 
complexity and ~60% decrease in implementation cost 
versus other MDE approaches for building self-healing 
service compositions. 
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Figure 1 Pet Store service composition feature model 

 

 

The remainder of this paper is organised as follows: Section 
2 presents the e-commerce application that we will use as a 
case study throughout the paper; Section 3 enumerates 
current challenges in applying existing MDE techniques for 
building adaptive applications to our case study; Section 4 
describes Refresh’s approach to using feature models and 
microrebooting to reduce the complexity of modelling and 
implementing an application that can heal; Section 5 
analyses empirical results obtained from applying Refresh 
to our case study; Section 6 compares Refresh with related 
work and Section 7 presents concluding remarks. 

2 Case study: the Java Pet Store 

To show the complexity of applying conventional MDE 
techniques to creating healing applications, we present a 
case study based on Sun’s Java Pet Store e-commerce 
application (Sun Microsystems n.d.). The Pet Store provides 
a web-based storefront for selling pets. The store includes 
multiple categories of pets, products (e.g., bulldog and 
iguana) and individual product items (e.g., female bulldog 
puppy). Customers browse for pets and purchase different 
items. 

Sun and other parties use the Pet Store as a reference 
application to showcase various enterprise Java 
technologies. Since the Pet Store application is widely 
known and can serve as a reference for comparing different 
technologies, the Pet Store has been re-implemented in 
different programming languages and with different 
frameworks. For example, the Java Spring Framework 
(Johnson and Hoeller, 2004) has created the Spring Pet 
Store. The Spring Framework’s version of the Pet Store 
includes support for integrating web services and is the 
implementation we have chosen for the case study. 

Figure 1, presents a high-level feature model of the 
features related to the Pet Store’s data tier. Features are 
denoted by the various boxes in the diagram. The levels of 
hierarchy represent subfeatures. For example, all Pet Store 
instances have DAOs, Datasources and JTA as subfeatures 
(the filled circles at the top of the child features denote 
required features). The Pet Store Java Transaction API 
(JTA) feature can either be present, denoted when the child 
JTAPresent feature is selected or not present. 

A feature can also specify rules restricting the selection 
of other features if the feature is selected. For example, the 
selection of the Datasources/Multiple features requires that 
JTAPresent also be selected. This requirement is denoted by 
the JTAPresentRef required feature reference under 
Multiple. 

The Spring Framework allows the swapping of 
individual components in the Pet Store with proxies to 
remote services. Figure 1 lists the various DAOs that are 
available in the Pet Store. Each DAO can potentially be 
swapped for a remote service. Figure 2 shows the various 
options for the OrderDAO. Either the OrderDAO can be 
implemented by a local component or it can be implemented 
as a dynamically created Java proxy to a SOAP, Burlap, 
Hessian or RMI order service. The case study focuses on 
failing over from the middle-tier DAOs to different remote 
services to demonstrate the complexities of applying 
existing MDE techniques. 

Figure 2 Feature model of the J2EE Pet Store’s order-DAO 

 

3 Challenges of creating self-healing services 

A common approach (Joshi et al., 2005; Lapouchnian et al., 
2005; Barbier, 2006; Bhat et al., 2006; Elkorobarrutia et al., 
2006; Calinescu. 2007; Denaro et al., 2007) to modelling 
application healing is to model the individual error states 
that the application can enter and a recovery path (a 
sequence of recovery actions) to return the application to a 
correct state. For example multiple MDE approaches 
(Lapouchnian et al., 2005; Barbier, 2006; Elkorobarrutia et 
al., 2006) use statecharts (Harel et al., 1987) to capture the 
various error states of an application and the sequences of 
recovery actions to return to a correct state. Enumerating 
each potential error state and each recovery path can require 
significant modelling complexity. This section shows how, 
even when an MDE tool can generate the majority of the 
self-healing code for a service composition, the requirement 
to model and implement recovery actions places a heavy 
burden on developers. 
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3.1 Challenge 1: significant modeling complexity to 
specify a recovery path from an arbitrary error 
state to a correct state 

A healing model must use different error states for 
each implementation of a service type or 
component type 

The failure of the OrderDAO seems like a fairly simple 
error condition to model and specify a recovery path for, but 
it is not. The problem with modelling each potential error 
state and recovery path is that the series of recovery actions 
that must be invoked is different for the local OrderDAO 
and remote service implementation. 

For example, if the local OrderDAO fails, it may be 
swapped for another implementation. If a remote service 
fails, it may be necessary to free resources, such as memory 
used by caches or network ports, that were used by a 
connection to it. Services connected through different 
protocols also need separate error states to associate their 
unique recovery actions with. 

If the Pet Store’s service composition healing is 
modelled using statecharts, as shown in Figure 3, there are 
four different states for each DAO. To increase readability, 
Figure 3 does not include events and guards on transitions, 
which further complicate the model. There are 20 different 
states needed to represent the potential services and 
components that can serve as the Pet Store’s DAOs. 

Figure 3 Pet Store service composition statechart 

 

For every error state that the system needs to recover 
from, the model must explicitly specify a 
recovery path 

For example not only should the failure of a Hessian and 
SOAP-based order service be modelled separately, but the 
series of recovery actions attached to each also should be 
modelled separately. As with error states, the number of 
recovery path specifications produced for healing each 
component of an enterprise application can be large. 

The Pet Store requires a number of recovery actions to 
take place to swap the service used for a DAO. The various 
actions for swapping the OrderDAO to one of the remote 

services is modelled in Figure 4. First, to swap a DAO, a 
Spring HotSwappableTargetSource (an object capable of 
swapping an active component in the application) must be 
obtained. Next, any resources held by the old DAO 
implementation or DAO proxy to a remote service must be 
released. After releasing resources, a new proxy to another 
remote service can be created. Finally, the newly created 
proxy can be swapped into the application using the 
HotSwappableTargetSource. Including the recovery paths in 
the model ups the total number of states per DAO from four 
to 25. 

Figure 4 OrderDAO recovery paths statechart 

 

Healing a local error may require evaluating the 
global application state 

For example, if the JTA is being used to manage 
transactions, the Pet Store can fail over to any remote 
service and still provide proper transaction behaviour. If 
JTA is not being used to manage transactions, however, the 
system can only provide transactions across a single data 
source, meaning that all the DAOs must be accessing the 
same database instance. Requiring the use of a single 
database instance prevents an arbitrary service from being 
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chosen. In the non-JTA situation, the service may only fail 
over to a remote service if the service is accessing the same 
database instance as all other referenced remote services. 

An extension of the OrderDAO recovery statechart to 
include the JTA consideration is shown in Figure 5. Each 
transition to the swap states now includes a guard to ensure 
that swapping is allowed. A new GlobalSwapController has 
been added to the model to only allow swapping when 
either JTA is present or a single data source is being 
referenced by the application’s service composition. Section 
4.2 shows how Refresh uses feature modelling and other 
techniques to eliminate the need to model every potential 
error state and recovery action. 

Figure 5 OrderDAO recovery paths statechart when accounting 
for JTA 

 

3.2 Challenge 2: significant complexity to write 
reconfiguration code that can bring the system 
from an arbitrary error state to a correct state. 

Regardless of the MDE approach used to build the 
application healing mechanism, developers must always 
implement the application-specific recovery actions. This 
requirement parallels the development of enterprise 
applications and services, where, despite the frameworks 
used, developers are always required to implement the core 
business logic. Some specialised MDE tools may provide 
pre-built recovery actions for specific domains, but in 
general, nearly every MDE approach requires developers to 
write the recovery actions. 

For each path from an error state to a recovery state, 
complex recovery logic must be written 

The more error states that are possible in the application, the 
more recovery actions must be written by developers. These 
numerous recovery actions can be both expensive to 
develop and hard to test, which can become problematic 
when projects are already prone to failure and cost overruns. 

In the Pet Store application, there are four separate 
DAOs that can each be swapped to one of four remote 
services to avoid failures. To implement a simple swapping 
mechanism in the Pet Store, the Spring framework provides 
numerous complex utility classes for hotswapping 
components and connecting to remote services, such as 
Apache Axis web services. Despite these numerous utility 
classes (as shown in Section 5), to create an action to swap 
just the OrderDAO to one of the four remote services 
requires 77 lines of Java code to implement the swapping 
logic and 11 lines of XML code to enable and configure the 
swapping action in the Pet Store. Although, some level of 
refactoring and object-oriented design can be used to share 
common logic across actions, implementing each action still 
requires significant effort. Section 4.3 shows how 
microrebooting can significantly reduce this substantial 
development burden by loading a new service composition 
derived by a constraint solver. 

3.3 Challenge 3: executing arbitrary recovery 
actions in arbitrary error states can have 
numerous unforeseen side-effects 

Error states are often specified in such a way that the system 
as a whole can be in numerous different states that all fall 
under the definition of the same error state. For example, 
when the OrderDAO fails, the Pet Store can have orders in 
progress, category listings in progress and numerous other 
nuanced conditions. Building a robust and correct recovery 
action requires taking into account the side effects of the 
recovery action on the complex overall state of the 
application. 

For example, what will happen if the local OrderDAO is 
swapped with a remote service during the submission of one 
or more customer orders? Does the safety of the swap 
depend on whether or not a local or JTA-based transaction 
mechanism is used? These complex nuanced questions are 
not easy to answer and must be considered for each 
recovery action implementation. These intricacies make 
developing a recovery action that will not lead to unforeseen 
problems hard. Section 4.3 shows how using 
microrebooting as the basis for recovery eliminates many of 
these hard to predict recovery side-effects and also provides 
a more well understood state transition mechanism. 
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4 Developing healing adaptations with Refresh 

The challenges in Sections 3.1–3.3 stem from two causes: 

1 the requirement that every error state and recovery path 
must be modelled explicitly 

2 that developers must implement every complex 
recovery action. 

This section describes our MDE toolset, called Refresh, that 
eliminates these two sources of substantial complexity. 

4.1 Overview of Refresh 

Refresh is based on the concept of microrebooting (Candea 
et al., 2004). When an error is observed in the application, 
Refresh uses the application’s component container to 
shutdown and reboot the application’s components. Using 
the application container to shutdown the failed subsystem 
takes milliseconds as opposed to the seconds required for a 
full application server reboot. Since it is likely that 
rebooting in the same configuration (e.g., referencing the 
same failed remote service) will not fix the error, Refresh 
derives a new application configuration and service 
composition from the application’s feature models that does 
not contain the failed features (e.g., remote services). 

The service composition dictates the remote services 
used by the application. The application configuration 
determines any local component implementations, such a 
SOAP messaging classes, needed to communicate and 
interact properly with the remote services. After deriving 
the new application configuration and service composition, 
Refresh uses the application container to reboot the 
application into the desired configuration. The overall 
structure of Refresh is shown in Figure 6. 

Refresh interacts directly with the application container, 
as shown in Figure 6. During the initial and subsequent 
container booting processes, Refresh transparently inserts 
application probes into the application to observe the 
application components. Observations from the application 
components are sent back to an event stream processor that 
runs queries against the application event data, such as 
exception events, to identify errors. Whenever an 
application’s service composition needs to be healed, 
environment probes are used to determine available remote 
services and global application constraints, such as whether 
or not JTA is present. 

Refresh uses event stream processing (Luckham, 2001) 
to run queries against the application’s event data and 
identify feature failures. The initial implementation of 
Refresh, based on the Spring Framework’s IoC  
container, uses the Esper event stream processor (Event 
Stream Intelligence with Esper and NEsper, 
http://esper.codehaus.org n.d.) for Java. Esper is a  
high-performance event stream processor that is capable of 
handling 100,000 events a second with 2,000 queries on a 
single dual-core CPU (Esper FAQ, http://esper. codehaus. 
org/tutorials /faq esper/ faq.html#performance n.d.). 
 

Figure 6 Refresh structure (see online version for colours) 

 

Figure 7 Error propagation to Refresh (see online version for 
colours) 
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Each feature in the feature model that could potentially fail 
is associated with a group of event stream queries. At 
runtime, when a query associated with a feature returns a 
result, Refresh is notified that the associated feature has 
failed, as shown in Figure 7. The data and objects observed 
and analysed by Refresh are determined by the query 
specifications. 

Once Refresh is notified of a feature failure, its three 
main tasks are to use 

1 the container to shutdown the application’s components 

2 the application’s feature model to derive a new 
application configuration and service composition 

3 the container to reboot the application in the new 
configuration. 

The sequence of events from a feature failure notification to 
the rebooting of the container are shown in Figure 8. 

Figure 8 Refresh reconfiguration, shutdown and launch recovery 
sequence 

 

To derive a new configuration of the application that does 
not include the failed feature, Refresh transforms the feature 
selection problem into a constraint satisfaction problem 
(CSP) using techniques that have been developed by us an 
others in prior work (Benavides et al., 2005, White, et al., 
2007a, 2007b). Once the feature selection problem is 
transformed into a CSP, a high-performance general 
purpose constraint solver, such as the Java Choco 
(Benavides et al., 2007) solver, is used to derive a new set 
of features/configuration for the application. 

After the new application configuration and service 
composition is derived, Refresh invokes the container’s 
shutdown sequence to properly release resources, abort 
transactions and perform other critical activities. The new 
configuration is injected into the container through 
programmatic calls or by regenerating the application’s 
configuration files (White et al., 2007a). After the 
configuration is injected into the container, the application 
is launched in the new configuration without the failed 
service, as shown in Figure 9. 
 
 
 
 

Figure 9 Refresh launches the application in the new (see online 
version for colours) 

 

4.2 Use feature modeling to capture the rules for 
deriving what is considered a correct state 

As discussed in Section 3.1, modelling each individual error 
state and recovery path is complex. Refresh uses feature 
modelling to avoid requiring developers to model each 
individual error state and recovery path. Feature modelling 
captures the rules – rather than individual error states and 
recovery paths–for deriving what constitutes a correct 
application configuration and service composition. In terms 
of healing, feature modelling describes: 

• the component or service types that are needed to 
compose the application 

• the sets of components or services that can serve as the 
implementation of a service type in the application’s 
composition 

• the rules dictating the requirements, such as dependent 
libraries, required by each component or service 
implementation 

• the rules constraining how the choice of one service 
implementation restricts the choices of other 
component or service implementations in the same 
application composition. 

When the failure of a feature is observed, Refresh uses the 
feature model of the application to derive an alternate set of 
features for the application that does not include the failed 
feature. For example, in the Pet Store, when the 
LocalOrderDAO feature fails, Refresh uses the feature 
model to derive an alternate feature selection for the Pet 
Store. In the example shown in Figure 10, Refresh chooses 
a new feature selection that uses the BurlapOrderService 
rather than the failed SOAPOrderService. 
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Figure 10 Deriving a new service composition from the Pet Store feature model 

 
Automated feature selection using a constraint solver 

The key to Refresh’s healing capabilities is its ability to use 
a constraint solver (Cohen, 1990) to derive a new feature 
selection for the application automatically. Prior work 
(Benavides et al., 2005, 2007; White et al., 2007a) provides 
extensive details on the process for transforming a feature 
selection problem into a CSP (Cohen, 1990), which is the 
input format of a constraint solver and deriving a feature 
selection. We briefly cover this mapping below. 

A CSP is a series of variables and a set of constraints 
over the variables. For example, ‘A + B < C’ is a CSP over 
the integer variables A, B and C. A constraint solver 
automatically derives a correct labelling (values for the 
variables). The labelling ‘A = 1, B = 2, C = 4’ is a correct 
labelling of the example CSP. 

A selection of features from a feature model can be 
represented by a set of integer variables with domain 0 or 1. 
Each variable represents a unique feature from the feature 
model. If the variable representing the HessianOrderService 
is represented by the variable V1, then V1 = 1 in a labelling 
of a feature selection CSP means that the feature is selected 
in the solution. If the labelling contains V1 = 0, it implies 
that the feature is not selected in the solution. The 
configuration of an application and its service composition 
is represented as a set of these variables that denote which 
services and application components are enabled in a 
configuration. 

Rules dictating the proper composition of the services 
are specified as constraints over the Vi variables. For 
example, since only one of HessianOrderService and 
SOAPOrderService can be used at a time by the Pet Store, a 
constraint can be used to capture this rule. Let, V2 be the 
variable representing the SOAPOrderService. This rule is 
specified as the constraint V1 = 1 → V2 = 0. As described in 
(White et al., 2007a), complex rules, such as memory 
constraints, can be described using a CSP. 

When a feature is flagged as failed, Refresh adds a new 
constraint to the feature selection process preventing the 
failed feature from being selected (e.g., Vi = 0). Refresh then 
uses a, the constraint solver, to derive a new feature 
selection that can be used by the application based on the 
environmental constraints (e.g., JTA vs. no JTA) and 
feature model composition constraints (e.g., only one of the 
order services may be selected at a time). 

4.3 Reusing the component container’s 
shutdown/configuration/launch mechanisms for 
state transitions 

Sections 3.2–3.3 show the complexity and large 
development burden of writing recovery actions to heal an 
application by failing over to alternate services. Refresh 
attacks the problem with a combination of code reuse and 
automation. In particular, it reuses an application 
container’s ability to shutdown an application’s 
components, reconfigure the components (i.e., create the 
newly desired service composition) and launch the 
application in the new state (i.e., transition the application 
into the new service composition state). By reusing existing 
mechanisms that are well-tested and trusted by developers, 
the need to write custom recovery actions is eliminated. 

Moreover, since rebooting in the same application 
configuration with the same service composition is unlikely 
to fix a failed reference to a service, Refresh automatically 
derives a new and valid application configuration and 
service composition. This automated approach to deriving a 
new service composition from an application’s feature 
model allows microrebooting to be applied to service 
composition healing. Normally, with a manual recovery 
action implementation process, developers would deduce 
the correct states to transition the application into and 
implement the transition logic. Refresh’s automated 
derivation process eliminates the need for developers to: 
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1 determine where to transition to 

2 decide how to accomplish the transition 

3 implement the transition. 

Container rebooting-based healing reduces potential 
unintended side-effects 

A key benefit of using the container’s built in component 
management mechanisms for state transitions is that they 
are guaranteed to bring the non-persistent application state 
to the desired correct state. This guarantees help to resolve 
the problems outlined in Section 3.3 of dealing with the 
potential of unintended side effects from recovery actions. 

With Refresh, the application container shuts down 
components, which releases resources and resets in-memory 
state and then relaunches the application with a clean 
memory state. With recovery actions, there is the potential 
that one or more of the affects on the application will have 
unforeseen consequences to the non-persistent in-memory 
application state. These unforeseen side effects are not 
possible with a container rebooting approach that resets 
non-persistent state. 

A container rebooting approach does not eliminate the 
possibility that persistent application state, such as database 
rows, will not be placed into an inconsistent state. The 
approach does, however, have a number of properties that 
make this scenario far less likely than a recovery action 
approach. First, all components typically must implement 
lifecycle methods that are called by the container to manage 
the component. If a component does not properly handle 
persistent state on shutdown, it is a flaw in the 
implementation of the component that could emerge – even 
if the application never uses healing mechanisms. 

Second, most enterprise applications maintain the 
consistency of persistent application state through 
transactions. Moreover, most enterprise applications use 
container-managed persistence APIs, such as JTA. Even the 
non-JTA examples provided for the Pet Store still use an 
alternate container-managed persistence API that works 
across only a single datasource. When the container is used 
as the healing transition mechanism, any transactions that 
are in process will be properly rolled back or committed by 
the container during the healing of the application’s service 
composition. 

5 Applying Refresh to the Java Pet Store 

To compare the development effort of including recovery 
actions into the Pet Store, we implemented the following 
three versions of the Spring Pet Store with self-healing 
service compositions. 

• The first implementation was produced using a purely 
manual approach that used Spring’s proxying and 
aspect infrastructure to implement the monitoring of the 

DAOs and Spring HotSwappableTargetSources to 
swap remote services on-the-fly. 

• The second implementation was produced assuming an 
MDE tool was provided that could model the error 
states and recovery actions for the Pet Store and 
generate the required monitoring code and recovery 
path logic but not the implementations of the recovery 
actions. We refer to this MDE approach as the MDE 
error state/recovery path approach. 

• The third implementation was produced using Refresh, 
which captures the rules for configuring the application 
and its service composition in feature models and uses 
microrebooting to eliminate the need to implement 
recovery actions. 

The self-healing for all three implementations was built 
around the ability to swap failed DAOs with remote services 
and to swap from failed remote services to other remote 
services. The modifications for the three implementations 
are available from (White, 2007). 

Manual implementation 

The top table in Table 1 shows the results of the initial 
implementation efforts. The manual approach required 
implementing two key classes a ServiceSwapper capable of 

1 looking up the Spring HotSwappableTargetSource for a 
DAO 

2 connecting to a Hessian, Burlap, SOAP or RMI remote 
service 

3 swapping in the new service for the failed 
component/service. 

As shown in Table 1, the class required 77 lines of code. 
The second class implemented was a Spring 
MethodInterceptor that was used to monitor each invocation 
on a DAO or remote service for exceptions and call the 
appropriate ServiceSwapper when an exception occurred. 
This class required 20 lines of code. Finally, the 
components were included in the Pet Store by adding them 
to the XML configuration files for the Pet Store, which 
required adding 96 lines of XML code. 

MDE error state/recovery path implementation 

The analysis for the MDE error state/recovery path 
approach was based on a generic model of the minimum 
effort that would be required for any MDE adaptation 
modelling tool and framework that did not provide  
Spring-specific recovery action implementations. The 
models were built using statecharts, since it is arguably the 
most widely used and mature state modelling language. 
statecharts also have a number of powerful concepts, such 
as parallel states, which reduce the total modelling 
complexity. 
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Table 1 Comparing implementation effort for the Healing Pet Store 

Initial implementation Manual MDE/error state/ 
recovery path Refresh 

Modelling    

 Modelled states or features 0 111 33 
 Modelled connections/transitions 0 104 29 
 Model error identification 0 0 23 
 Modelling totals 0 215 85 

Implementation    

 Implement recovery actions 77 77 0 
 Implement recovery path chooser 31 0 0 
 Configuration modifications 96 44 67 
 Implementation tools 204 121 67 

 
For the MDE implementation effort analysis, we measured 
only the lines of code required to implement the 
ServiceSwapper and to integrate the needed 
ServiceSwappers into the configuration files of the Pet 
Store. We assumed that all of the logic for choosing the 
correct ServiceSwapper to execute, the implementation of 
the MethodInterceptor and all configuration code required 
to integrate the method interceptors and their dependent 
proxies into the configuration file would be generated by the 
tool. Our experiments thus only measured the cost of 
modelling error states and recovery actions and 
implementing them. 

The MDE error state/recovery action approach used the 
Statecharts presented in Section 3.1. The full Statechart 
healing specification requires 111 states and 102 transitions 
between states. As seen in Table 1, the MDE approach still 
requires 77 lines of code to implement the ServiceSwapper 
recovery action but eliminates the 31 lines of code needed 
to implement the recovery path execution logic and the 20 
lines of code required for the monitoring implementation. 

Refresh implementation 

Finally, we implemented the swapping capabilities in the 
Pet Store using Refresh. Refresh’s use of Feature models 
required a total of 33 model elements (features) and 29 
connections versus the MDE approach’s 111 model 
elements (states) and 102 connections (transitions). Refresh 
also required 16 lines of code to specify the Esper queries 
over the event stream of the Pet Store to map queries to the 
failure of one of the Pet Store features. Refresh’s use of the 
container’s built-in shutdown/configuration/launch 
mechanisms for healing, eliminated the need to implement 
the code for the ServiceSwapper. 

Refresh automatically generates the required monitoring 
code for the Pet Store (this was assumed for the other MDE 
approach as well). Refresh did require 23 more lines of code 
to be modified in the configuration file of the Pet Store 
versus the other MDE approach. These extra lines of 
configuration code are a result of adding the Refresh 
annotations dictating how to dynamically modify the 

application’s configuration based on a feature selection. 
Overall, the Refresh approach required 55% less 
implementation effort than the other MDE approach and 
60% less modelling effort. 

Refresh performance 

We used Apache JMeter to simulate the concurrent access 
of 40 different customers to the Pet Store and the time 
required to complete 4,000 orders. We simulated the failure 
of different DAOs to force Refresh to heal the Pet Store by 
swapping remote services for the failed DAOs. After the 
DAOs were swapped to remote services, we iteratively 
shutdown the services used by the Pet Store to force the 
failover to alternate remote services. 

Over the tests, Refresh averaged 151 ms from the time 
an exception indicating a failure was observed until the Pet 
Store was reconfigured and rebooted with a new service 
composition. These times were obtained by running the Pet 
Store on a 2.0ghz Intel Core DUO on Windows XP with 
two gigabytes of RAM. The average time required by the 
constraint solver to derive a new feature selection was 12 
ms. These times indicate that Refresh can provide  
high-performance application healing while reducing 
modelling and implementation effort. 

6 Related work 

Microrebooting (Candea et al., 2004) is a technique used to 
restart only the component, or collection of components in 
which the failure occurred. Refresh uses microrebooting to 
eliminate the need to model and implement recovery 
actions, as described in Section 4. The problem with 
applying microrebooting alone to service composition 
healing is that remote services usually cannot be rebooted 
and thus failures will persist across reboots. Refresh, 
however, dynamically derives a new service composition 
and application configuration before rebooting that 
eliminates the reference to the failed service. 
Reconfiguration of the service composition allows Refresh 
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to eliminate references to failed services and prevent an 
error from persisting across reboots. 

Lapouchnian et al. (2005) propose using goal modelling 
to help develop autonomic applications. Moreover, 
Lapouchnian’s technique uses feature models to help 
understand the variability in system objectives. 
Lapouchnian’s techniques are focused on developing a 
design for an autonomic system and also rely on statecharts. 
Refresh, in contrast, does not require a specific application 
design – only that the application has different potential 
services or components that it can be composed of. 
Furthermore, as Section 3, Lapouchnian’s use of statecharts 
adds a substantial development burden. Refresh does not 
use error state/recovery action based modelling and 
implementation and thus avoids this development burden. 

Crawford and Dan (2002) developed a framework, 
known as eModel to assist in monitoring and adapting a 
system, based on its environment. One of their primary 
design goals was ease of use for model providers and model 
users interacting with the framework. This framework 
requires a model, in the form of an XML file, to specify the 
states to be identified and the actions to be taken in such 
situations. The model provider is thus required to identify 
all potentials states of the system and provide a specific set 
of actions to take for each state. Section 3 showed the 
problems associated with specifying error states and 
recovery actions. Unlike eModel, Refresh does not require 
explicit specification of recovery actions and avoids these 
difficulties. 

There are a large number of other healing or adaptation 
approaches (Joshi et al., 2005; Lapouchnian et al., 2005; 
Bhat et al., 2006; Barbier, 2006; Elkorobarrutia et al., 2006; 
Calinescu, 2007; Denaro et al., 2007) that rely on 
identifying error states and then planning and executing 
some number of recovery actions. As shown in Section 3, 
modelling and implementing recovery actions is complex 
and costly. Moreover, as the empirical results from Section 
5 showed, by eliminating the need to model and implement 
recovery actions, Refresh produced a 55% reduction in 
implementation effort and a 60% reduction in modelling 
effort compared to techniques that require error state and 
recovery action modelling. 

7 Concluding remarks 

Numerous MDE approaches for building self-healing 
service compositions (Joshi et al., 2005; Lapouchnian et al., 
2005; Bhat et al., 2006; Barbier, 2006; Elkorobarrutia et al., 
2006; Calinescu, 2007; Denaro et al., 2007) rely on 
developers modelling each potential error state and the 
recovery paths from each state. Regardless of the technique 
used, developers are always responsible for implementing 
the complex application-specific recovery actions. 
Moreover, since these approaches use recovery actions to 
transition an application between two arbitrary states, 
recovery actions can have unintended side effects on the 
application, such as producing deadlock or data corruption, 
that are hard to identify and avoid. 

This paper describes how our Refresh technique uses 
feature modelling to capture the rules for deriving a correct 
service composition state. Our experience using Refresh 
showed that leveraging feature models to automatically 
derive new service compositions when a dependent service 
fails eliminates the complexity of needing to model each 
individual error state and recovery action. 

Moreover, by using microrebooting to transition the 
application from its failed service composition to the new 
service composition, we found that developers need not 
implement complex recovery actions. Finally, through 
results obtained from applying Refresh to case studies, we 
observed that eliminating the modelling and implementation 
of recovery actions greatly reduced the cost of creating  
self-healing service compositions. 

Refresh is available in open-source form as part of the 
GEMS Model Intelligence project at 
www.eclipse.org/gmt/gems. 
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