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Decoding phonation with artificial intelligence (DEP AI):
Proof of concept
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Objective: Acoustic analysis of voice has the potential to expedite detection and diagnosis of voice disorders. Applying an
image-based, neural-network approach to analyzing the acoustic signal may be an effective means for detecting and differentially diag-
nosing voice disorders. The purpose of this study is to provide a proof-of-concept that embedded data within human phonation can be
accurately and efficiently decoded with deep learning neural network analysis to differentiate between normal and disordered voices.

Methods: Acoustic recordings from 10 vocally-healthy speakers, as well as 70 patients with one of seven voice disorders
(n = 10 per diagnosis), were acquired from a clinical database. Acoustic signals were converted into spectrograms and used to
train a convolutional neural network developed with the Keras library. The network architecture was trained separately for
each of the seven diagnostic categories. Binary classification tasks (ie, to classify normal vs. disordered) were performed for
each of the seven diagnostic categories. All models were validated using the 10-fold cross-validation technique.

Results: Binary classification averaged accuracies ranged from 58% to 90%. Models were most accurate in their classifica-
tion of adductor spasmodic dysphonia, unilateral vocal fold paralysis, vocal fold polyp, polypoid corditis, and recurrent respira-
tory papillomatosis. Despite a small sample size, these findings are consistent with previously published data utilizing deep
neural networks for classification of voice disorders.

Conclusion: Promising preliminary results support further study of deep neural networks for clinical detection and diag-
nosis of human voice disorders. Current models should be optimized with a larger sample size.
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INTRODUCTION
The clinical diagnosis of voice disorders relies on both

the physical examination of laryngeal function and percep-
tual assessment of the acoustic output. While physical
examination via endoscopy is the current gold standard
for diagnosis, laryngoscopy and/or stroboscopy requires
clinical expertise, and limited access to these clinical spe-
cialists may delay diagnosis. Perceptual assessment based
on sound encoded within the voice signal is noninvasive,
easily acquired, and has the potential to accelerate and/or

confirm diagnosis; however, perceptual assessment of voice
quality is subjective, and inter- and intra-rater reliability is
highly influenced by clinician background, training, and
experience.1

Acoustic analysis via instrumentation was initially
introduced in the early 1990s as a quantitative means to
measure acoustic deviations from normal voice produc-
tion.2 Despite its widespread use for screening and progress
monitoring, intrinsic limitations have prevented its effective
application for automated detection and diagnosis of voice
disorders.3 Acoustic analysis has traditionally relied on the
characterization of limited numbers of acoustic parameters.4

The mechanism of human speech production is highly
complex, however, and any given pathology affects multiple
acoustic parameters simultaneously. Although a highly
trained expert human brain can integrate and interpret
these multiple deviations to identify the presence of voice
disorders and inform differential diagnosis, a parameter-by-
parameter approach to acoustic analysis has not replicated
this functionality.

Artificial intelligence using deep neural networks may
provide an alternative to the single or multidimensional
parameter approach to acoustic analysis. Neural network
learning has been extensively developed for automatic
speech recognition applications since the 1980s.4 Despite
extensive research developing deep learning architectures
to decode the speech signal for linguistic content, only a few
studies have applied this technology to analysis of the
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disordered voice. Findings from these studies, which report
disorder-based classification accuracies for dysphonic voices
between 40% and 96%, support the value of using deep neu-
ral networks for detection and differential diagnosis of voice
disorders.5–7 These studies, however, not only require analy-
sis of multiple acoustic parameters, which slows processing
times, but they also rely heavily on the Mel frequency
cepstral coefficient (MFCC), which filters frequency data to
maintain the long-term temporal aspects of the frequency
spectrum needed to extract critical linguistic elements of
the speech signal. While this discarded frequency data may
not be salient for speech recognition, it may be vital for the
detection of and distinction between certain voice disorders.

Recent studies have recommended moving away from
the MFCC in favor of spectrograms.8,9 Not only do spectro-
grams maintain the full frequency resolution of the acous-
tic signal, but they also have the unique characteristic of
being data-rich images that can be analyzed via image
analysis techniques. Since the early 2010s, a revolution in
the field of image analysis has occurred. Tasks like image
classification have been solved with near-human levels of
accuracy.5 Within medicine, image analysis with a neural
network approach has made inroads into clinical diagnostics
in both radiology10 and dermatology,11 ultimately expediting
accurate diagnoses using noninvasive techniques.

We hypothesize that applying an image-based neural
network approach to classify voice disorders may result
in similar advancements in laryngology. The overarching
goal of this line of research is to develop a deep neural net-
work application that is sensitive to deviations from nor-
mal voice production and can simultaneously integrate
these deviations across a variety of voice characteristics to
provide an accurate differential diagnosis that can equal
or exceed the accuracy of current instrumental or percep-
tual assessment techniques. As a first step in this process,
the purpose of this study is to provide a proof-of-concept
that embedded data within human phonation can be accu-
rately and efficiently decoded with deep learning neural
network analysis to differentiate between normal and dis-
ordered voices.

MATERIALS AND METHODS
This study was performed in accordance with the Declara-

tion of Helsinki, Good Clinical Practice, and was approved by the
Institutional Review Board at Vanderbilt University Medical
Center (IRB#: 181191). The study utilized previously collected
acoustic recordings from patients with voice disorders, as well as

vocally healthy individuals. As part of standard of care, individ-
uals seen at the Vanderbilt Voice Center with a voice complaint
are asked to provide a standardized voice sample. These voice
samples are captured at the time of evaluation and stored on a
secure server (ImageStream, Image Stream Medical, Littleton,
MA) as part of the patient’s electronic medical record. Voice sam-
ples from vocally healthy individuals are also included in this
electronic database as reference.

Data Collection
PARTICIPANTS. Ten vocally healthy adults and 70 adults

with voice disorders were included in this study. The mean age of the
vocally healthy participants (8 female, 2 male) was 34 (SD = 10); the
mean age of the participants with voice disorders (47 female, 23male)
was 56 (SD = 16). Participants were identified by querying the elec-
tronic database by either diagnosis or normal voice status. The fol-
lowing diagnoses were included in the study (the sample size is
n = 10 in each diagnostic group): adductor spasmodic dysphonia
(ADSD), essential tremor of voice (ETV), muscle tension dysphonia
(MTD), polypoid corditis or Reinke’s edema (PCord), unilateral
vocal fold paralysis (UVFP), vocal fold polyp (Polyp), and recurrent
respiratory papillomatosis (RRP). Diagnoses were confirmed by
two independent, board-certified laryngologists at the Vanderbilt
Voice Center. While not comprehensive, these diagnostic categories
represent commonly treated disorders at the Vanderbilt Voice Cen-
ter, and thus serve as a reasonable starting point for this proof of
concept study.

ACOUSTIC RECORDINGS. All participants were
recorded reading the first three sentences of the phonetically bal-
anced Rainbow Passage.12 Recordings were obtained in a quiet
clinic room using an omnidirectional lapel microphone with a
44.1-kHz sampling rate (Olympus Visera Elite OTV-S19; Olym-
pus Medical, Center Valley, PA) and stored on the clinical server as
.mp4 files with audio compressed at 186 kbps. Using the open-source
audio editor Audacity (Audacity v2.2.1, 2017), the acoustic signals
were extracted from the video files, edited to include only the Rain-
bow Passage, and saved as uncompressed .wav files (dual channels,
8 bits per channel) in a password-protected, REDCap database.

DATA PROCESSING. Validation Set. To augment
the limited amount of data in the validation set, as well as make the
model’s predictions more robust, the raw .wav files were segmented
into 3-second, non-overlapping “chunks.”13 For the last chunk of each
recording (which would not be a full 3 seconds), the chunk’s frequen-
cies were repeated with a small amount of noise (<5%) until the
3-second window was filled. While the source audio captures fre-
quencies up to 22.5 kHz, the frequency ceiling for the images was set
at 8 kHz in order to provide better resolution of relevant voice data
and remove any compression artifact; therefore, the frequency range
represented in the acoustic signal was 0 to 8 kHz. Following

Fig. 1. To standardize input into the neural network, acoustic signals were segmented into 3-second chunks (left) and transformed into spec-
trograms using the Fourier transform (middle). Spectrograms displayed frequency over time, with intensity coded by grayscale (right).

Laryngoscope Investigative Otolaryngology 4: June 2019 Powell et al.: Decode Phonation with Artificial Intelligence

329



segmentation, all .wav files were transformed into grayscale, wide-
band, linear spectrograms (8-bit depth per channel) using the short-
time Fourier transform (as shown in Figure 1) with a block-size of
2048 data points and overlap of 1536, or 75%, so as to increase the
resolution and smoothness of the resulting images. Since the audio
recordings were segmented into 3-second chunks, each raw spectro-
gram was scaled by an 8/3 ratio at 1 inch/second, in order to obtain a
final png image size of 256x256 pixels with a resolution of 96 dots/
inch. These techniques standardized the spectrograms in both the
frequency and time domains for input to the neural network. Table I
details the breakdown of total number of spectrograms for each diag-
nostic group within the validation set.

Training Set. Large data sets (preferably made up of
thousands of images with balanced classes) are necessary to pro-
vide sufficient material to train deep learning models. Conse-
quently, data augmentation techniques are commonly employed
to increase the size of the training set when sample sizes are
small. A common augmentation technique boosts model perfor-
mance by introducing random rotations and scalings of the origi-
nal images13; however, this technique is inappropriate for the
current application due to the inherent symmetry of the sound
spectrogram images. The spectrogram is a two-dimensional
visual representation of the frequency and intensity spectrums;
all the spikes are parallel to the frame borders and are therefore
relevant for this specific classification task. As such, the interpre-
tation of the image is highly dependent on the orientation of the
image and thus the orientation cannot be varied. However, neu-
ral networks can also recognize salient elements independent of
the position in the image. Therefore, to augment the sample size
of the training set, each organic spectrogram was randomly
divided with a single, vertical splice and the subsequent pieces
were reversed in order to create a new 3-second spectrogram.
This process was repeated 10 times for each spectrogram, render-
ing a synthetic training set of 4510 images.

Data Exploration
MODEL DEVELOPMENT. An open-source, deep-

learning library named Keras was used for this study.14 The Keras
library is written in Python and was selected due to its ease of use
and flexible interface that allows a combination of different types of
layers in non-sequential architectures, with heterogeneous inputs
and outputs.15 Figure 2 shows the architecture of the convolutional
neural network deep learning model used for the binary classifica-
tion tasks, built in Keras.14 The dimensions and number of parame-
ters of each layer are shown, with a total of 6 795 457 parameters.
The network is a Convolutional Neural Network (CNN) with a drop-
out used to reduce overfitting (when the model learns the training
data too well, resulting in poor generalization) by means of regulari-
zation. CNNs are a special kind of neural network inspired by how
the human brain perceives and classifies objects. The network works
by taking an image and reducing it to simpler features that the com-
puter can work with (such as edges and color spots) through a series

of convolutions and pooling operations (Fig. 2, Conv2D, and
MaxPooling2D). The spatial information from the original image is
preserved during these convolutions so that in the final layers, these
features are combined together to produce a feature map. The net-
work assigns a probability that the image belongs to a certain class
based on the data it has previously been trained on.

MODEL VALIDATION. Given the small size of the
whole data set consisting of only 451 images (Table I), we chose
to perform a 10-fold cross validation to evaluate our models. All
images corresponding to an individual subject belonged to the same
fold to ensure independence between folds, preventing leakage of
information from the training set to the validation set. In other
words, for the classification problem corresponding to each disease,
each fold contained all the spectrograms corresponding to one sub-
ject having the disease, and all the spectrograms corresponding to a
normal subject. For example, the frames used in the fifth validation
fold include all spectrograms from the fifth normal subject and the
fifth ADSD patient. Figure 3 shows the spectrograms from all nor-
mal subjects (left) and all patients with ADSD (right), the spectro-
grams included in the fifth validation fold are surrounded by a
dashed line. This neural network was trained on the synthetic
images derived from all the other organic spectrogram frames in
Figure 3 and was then used to perform the binary classification
task on the frames surrounded by black lines. For each iteration of
the model, the organic and synthetic images from the sequential
folds were withheld from the training set for validation. Each fold

TABLE I.
Total Sample Size for Each Group and the Derived Baseline Accuracy for Each Classification Task.

Diagnostic Group Normal ADSD ETV MTD PCord UVFP Polyp RRP Total

Total Spectrograms 45 56 74 49 54 59 56 58 451

Baseline Accuracy

Naïve algorithm (%) – 56/101 (55%) 74/119 (62%) 49/94 (52%) 54/99 (55%) 59/104 (57%) 56/101 (55%) 58/103 (56%) –

Normal = vocally healthy; AdSD = adductor spasmodic dysphonia; ETV = essential tremor of voice; MTD = muscle tension dysphonia; Pcord = polypoid
corditis or Reinke’s edema; Polyp = vocal fold polyp; RRP = recurrent respiratory papillomatosis; UVFP = unilateral vocal fold paralysis.

Fig. 2. Summary of the Keras convolutional neural network models
trained for the seven binary classification tasks. Conv2D = 2D
convolutional layer; MaxPooling2D = 2D max-pooling layer.
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(including both organic and synthetic images) was therefore incor-
porated into the training set nine times and the organic images
served as the validation set once. This technique was employed to
ensure some statistical significance in the results, which is even
more necessary in this case of little data available.

BINARY CLASSIFICATION TASKS. Seven binary
classification tasks were conducted to categorize normal and disor-
dered voice samples. These classification tasks mimicked a clinical
screening task to discriminate between normal and disordered for
each of the seven diagnostic groups. The network architecture of
the deep learning model (shown in Figure 2) was trained sepa-
rately for each fold within each of the seven diagnostic groups, for
a total of 70 models. Training for each model required 10 full pre-
sentations of the data (epochs), which were iteratively optimized
using gradient descent with 100 backpropagation steps and a
learning rate equal to 10-4.

The primary metric for assessing our training was accu-
racy, defined as the fraction of all correctly classified instances
with respect to the total number of instances. Baseline accuracy
(the minimally acceptable level of accuracy) for each disorder
was determined by a naïve algorithm that always predicted the
disordered class (Baseline accuracy= SpectD

SpectN +SpectD
, where SpectD is

the total number of disordered frames, and SpectN is the total
number of normal frames). Table I lists the baseline accuracies
for each diagnostic group. The accuracy of the model in the vali-
dation set provides an estimate of the model’s performance with
new data.

Another important metric for training deep learning models
is the loss function, which measures the difference between
model predictions and the real values obtained from the binary
classification task. Generally, high accuracy values should corre-
spond to low loss values. To compare results between models, the
presented values of the loss function have been normalized to
values between 0 and 1. In the ideal case, the accuracies and
losses of the training and validation sets for each epoch should
be similar, indicating an absence of overfitting.

RESULTS
In some folds of some disorders, an almost perfect

accuracy was obtained, such as the case of the fifth ADSD

fold, which classifies all spectrograms from the fifth nor-
mal participant and the fifth ADSD patient (Fig. 4). The
classification accuracy from this task was 100% for three
of the 10 epochs, stabilizing in this value after the ninth
epoch. The absence of overfitting in this favorable case is
demonstrated by the similarity of the accuracy and loss
values of the training set to the validation set.

Although similarly promising results were obtained
on other individual folds, the accuracy of the models ob-
tained by averaging the results of all folds within a diagnos-
tic category is lower. For example, the highest validation
accuracy of the averaged ADSD model is 90% in the tenth
epoch (Fig. 5a), compared to 100% in the same epoch for the
fifth fold only, as shown in Figure 4. Despite the decrease in

Fig. 3. Spectrograms of all audio files from vocally healthy individuals (left) and patients with adductor spasmodic dysphonia (right). The fifth valida-
tion fold classified all spectrograms from normal subject 5 and ADSD patient 5. Frames used in the binary classification task are surrounded by
lines. Synthetic images derived from all other organic spectrograms were used to train the model. ADSD = adductor spasmodic dysphonia.

Fig. 4. Accuracy and loss results for the fifth fold (best case) from
the ADSD diagnostic category. Baseline accuracy, as well as the
accuracy and loss results from the highest performing epoch
(epoch 10) are labeled. ADSD = adductor spasmodic dysphonia.
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accuracy from the averaged ADSD data, the model still per-
formed substantially better than the baseline accuracy of
the naïve algorithm (55%). Similar results for averaged data
were obtained for PCord, UVFP, Polyp, and RRP, with
highest validation accuracies equal to 84%, 87%, 86%, and
80% respectively, as shown in Figure 5b-e. While the aver-
aged accuracy for ETV (78%) and MTD (58%) models were
comparably lower, they still performed better than the naïve
algorithm’s baseline accuracy (Figure 5f-g). Despite these
lower accuracies from the averaged data, the ETV and MTD
models performed much better than the naïve algorithm for

classifying spectrograms from select individual speakers
within these diagnostic groups, as shown in Figure 6a-b.

The difference between the accuracy and loss values
from the training data (dashed line) and the validation
data (solid line) is a qualitative measure of overfitting.
The similar training and validation curves in the ADSD,
PCord, and UVFP averaged models (Fig. 5a-c) indicate
minimal overfitting. Although overfitting was prominent
in the Polyp, RRP, ETV, and MTD averaged models
(Fig. 5d-g), individual folds within these models demon-
strated an absence of overfitting as shown in Figure 6a-b.

Fig. 5. Average results of all folds obtained from 10-fold cross validation for the binary classification of (a) adductor spasmodic dysphonia,
(b) polypoid corditis or Reinke’s edema, (c) unilateral vocal fold paralysis, (d) vocal fold polyp, (e) recurrent respiratory papillomatosis, (f ) essen-
tial tremor of voice, and (g) muscle tension dysphonia. Baseline accuracies, as well as the accuracy and loss results from the highest
performing epochs are labeled for each model.
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DISCUSSION

Current Findings
In this proof-of-concept study, we investigated the util-

ity of employing image analysis with deep learning to differ-
entiate between normal and disordered voices using
spectrograms. The averaged models achieved substantially
higher accuracy in the validation set compared to the naïve
algorithm for classifying normal vs adductor spasmodic dys-
phonia (90%), polypoid corditis (84%), unilateral vocal fold
paralysis (87%), vocal fold polyp (86%), and recurrent respi-
ratory papillomatosis (80%) voice samples, as shown in
Figure 5a-e. While the average models for muscle tension
dysphonia and essential tremor of voice were comparably
less robust (Fig. 5f-g), results are consistent with other stud-
ies that employ artificial intelligence models to differentiate
normal vs dysphonic voices.5 Furthermore, within these
diagnostic groups, spectrograms from individual speakers
(ie, specific folds) were classified with accuracies greater
than 90%, as shown in Figure 6. We hypothesize that the
variability in results from individual folds stem from indi-
vidual patients’ symptom severity, and subsequently, indi-
viduals with a more severe presentation of the voice
disorder may be classified more accurately. These results
are promising (despite the small dataset used for this study)
and the accuracy of these models should improve with addi-
tional training data.

The cross-validation models for all seven classifica-
tion tasks demonstrated overfitting after the tenth epoch
of training, despite the dropout layers added for regulari-
zation. Overfitting occurs when the model adapts too
closely to the idiosyncrasies of the training set and is
unable to generalize to new data (ie, the validation set).
This type of modeling error is common in highly complex
models and is exacerbated by small sample sizes. The
training set augmentation technique employed in this
study both decreased overfitting and increased the accu-
racy of these models by a minimum of 5% (mean of 8%,
data not shown). While spectrograms are sensitive to ori-
entation for correct interpretation, other augmentation
techniques to be explored include time scaling, time
shifting, and pitch shifting.16 Ultimately, increasing the

sample size would reasonably reduce overfitting and
improve the generalizability of the model without the use
of any image augmentation.

Challenges and Future Directions
The primary limiting factor in our proof-of-concept

study is a lack of sufficient data. The current results are
based on data from 80 individuals with a total sample size
of 451 spectrograms. Each classification task, however,
included data from the normal group and only one disor-
dered group. The mean sample size for each classification
task was therefore only 103, 3-second spectrograms (Table I).

While initial results for these seven voice disorders
are promising, a robust dataset that represents the full
range of severities across a broad range of voice disorders,
as well as the wide variability among vocally healthy
speakers, is critical to improve the models. Current efforts
are underway to gather thousands of new and existing voice
samples from patients and vocally healthy participants.
However, the need for big data necessitates data collection
protocols that minimize salient variabilities in recording
conditions, and similarly requires models that are robust
against these inconsistencies. Recordings must also be
actively curated to maintain the fidelity of the training set,
which is time-consuming and expensive.

Although these challenges are non-trivial, the poten-
tial clinical import of a robust, artificial intelligence-
driven, acoustic analysis tool is worth the effort. Such a
tool has the potential to improve diagnostic accuracy and
reliability and provide a standardized metric for interpre-
tation within and between clinical institutions.

CONCLUSION
In this paper we applied image classification tech-

niques with deep learning to classify spectrograms into
normal vs disordered voices. Despite the small size of the
available dataset, satisfactory results were obtained for
the adductor spasmodic dysphonia, polypoid corditis, uni-
lateral vocal fold paralysis, vocal fold polyp, and recurrent

Fig. 6. Accuracy and loss results for the best fold for (a) muscle tension dysphonia and (b) essential tremor of voice. Baseline accuracies, as
well as the accuracy and loss results from the highest performing epochs are labeled for each model.
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respiratory papillomatosis diagnostic groups, with accuracy
in the validation set substantially higher than the baseline
accuracy of the naïve algorithm. These preliminary results
support further study of deep neural networks for clinical
detection and diagnosis of human voice disorders.
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