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Abstract

Enterprise distributed real-time and embedded (DRE) systems can benefit from
dynamic management of computing and networking resources to optimize and re-
configure system resources at runtime in response to changing mission needs and/or
other situations, such as failures or system overload. This paper provides two contri-
butions to the study of dynamic resource management (DRM) for enterprise DRE
systems. First, we describe a standards-based multi-layered resource management
(MLRM) architecture that provides DRM capabilities to enterprise DRE systems.
Second, we show the results of experiments evaluating our MLRM architecture in
the context of a representative enterprise DRE system for shipboard computing.

Key words: Dynamic Resource Management, Enterprise DRE Systems,
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1 Introduction

Enterprise distributed real-time and embedded (DRE) systems, such as ship-
board computing environments [1], airborne command and control systems [2],
and intelligence, surveillance and reconnaissance systems [3], are growing in
complexity and importance as more computing devices are networked together
to help automate tasks previously done by human operators. These types of
systems are characterized by stringent quality-of-service (QoS) requirements,
such as low latency and jitter, expected in real-time and embedded systems,
as well as high throughput, scalability, and reliability expected in enterprise
distributed systems.
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Enterprise DRE systems have a range of QoS requirements that may vary at
runtime due to planned [4] and unplanned [5] events. Examples of planned
events include mission goal changes due to refined intelligence and planned
task-completion exceeding mission parameters. Likewise, examples of unplanned
events might include system runtime performance changes due to loss of re-
sources, transient overload, and/or changes in algorithmic parameters (such
as modifying an air threat tracking subsystem to have better coverage).

Dynamic resource management (DRM) [6,7] is a promising paradigm for sup-
porting different types of applications running in enterprise DRE system envi-
ronments - as well as to optimize and reconfigure the resources available in the
system to meet the changing needs of applications at runtime. The primary
goal of DRM is to ensure that enterprise DRE systems can adapt dependably
in response to dynamically changing conditions (e.g., evolving mutli-mission
priorities) to ensure that computing and networking resources are best aligned
to meet critical mission requirements. A key assumption in DRM technologies
is that the levels of service in one dimension can be coordinated with and/or
traded off against the levels of service in other dimensions to meet mission
needs, e.g., the security and dependability of message transmission may need
to be traded off against latency and predictability.

This paper describes a multi-layer resource management (MLRM) architec-
ture we developed to demonstrate DRM capabilities in a shipboard com-
puting environment. This environment consists of a grid of computers that
manage many aspects of a ship’s power, navigation, command and control,
and tactical operations [1] using standards-based DRM services that support
multiple QoS requirements, such as survivability, predictability, security, and
efficient resource utilization. Our MLRM was developed for the DARPA’s
Adaptive and Reflective Middleware Systems (ARMS) program (dtsn.darpa.
mil/ixodarpatech/ixo_FeatureDetail.asp?id=6), which is applying DRM
technologies to coordinate a computing grid that manage and automate many
aspects of shipboard computing. We describe and empirically evaluate how the
ARMS MLRM manages computing resources dynamically and ensures proper
execution of missions in response to mission mode changes and/or resource
load changes and failures, as well as capability upgrades.

2 The ARMS Multi-layered Resource Management Middleware

This section describes the design and functionality of the component middle-
ware used to implement the ARMS MLRM architecture.

2.1 ARMS MLRM Design Goals

Providing effective DRM capabilities for enterprise DRE systems depends on
several factors that span the domain- and solution-space. For example, solu-
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tions to domain-specific issues, such as adapting to mission mode changes,
capability upgrades or resource failures, are impacted by the choice of tech-
nologies and platforms used in the solution space. Addressing the complex
problem of DRM as a single unit, however, can become intractable due to the
tangling of concerns across the domain- and solution-space. Hence, there is a
need to address DRM problems at different levels of abstraction, yet maintain
a coordination between these levels. These design goals motivate the ARMS
MLRM framework described in this section, which we applied to help resolve
key DRM challenges in the ARMS program.

The goals of the ARMS MLRM design are to provide DRM solutions when
missions change, resources fail or become available, failures occur due to dam-
age, or new capabilities are added to the system. We addressed the following
types of DRM problems to meet the needs of enterprise DRE systems:

• Mission mode changes, where the goal is to enable a much broader set
of resource reallocations beyond mode changes and behaviors typically pro-
vided by domain applications. Meeting this goal requires the ARMS MLRM
to determine at runtime which components should actually run in response to
mission mode changes. Moreover, the MLRM must tune application perfor-
mance parameters dynamically using increasingly finer-grained precision, as
opposed to a coarse-grained, discrete set of configurations.

• Load changes, where the goal is to tolerate out-of-spec variations gracefully.
The ARMS MLRM therefore ensures that available resources are allocated to
the currently most important mission capabilities, allowing the system to scale
to even out-of-spec loads gracefully.

• Resource changes, where the goal is to restore all mission capabilities,
even those that were not designed to tolerate specific failures. Through the
automatic recovery from such failures, the ARMS MLRM maximizes resource
utilization and performance, while simultaneously maximizing the value of
mission capabilities. In addition, we wanted to expand mission capabilities as
new resources become available due to requirement or environment changes.

• Capability upgrades, where the goal is to allow capabilities to be dynami-
cally introduced into the system that were not planned initially. We wanted to
capture the general behavior of the newly introduced artifacts so the ARMS
MLRM can determine the resource requirements of these artifacts dynamically
and make appropriate allocations. In particular, the ARMS MLRM should be
able to make dynamic resource allocation decisions for the newly introduced
artifacts, even when such capabilities were not part of the original system.

• Platform upgrades, where the goal is to support the heterogeneous envi-
ronment in which long-lived enterprise DRE systems operate. This environ-
ment involves diverse middleware, operating systems, CPUs, and networks.
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The ARMS MLRM services are implemented as a set of common and domain-
specific middleware services described in Section 2.2 that communicate using
the standard middleware described in Section 2.3 that coordinates and encap-
sulates a wide range of operating systems, networks, programming languages,
and hardware.

2.2 The Component-based ARMS MLRM Design

The ARMS MLRM architecture integrates resource management and con-
trol algorithms enabled by standard component middleware infrastructure de-
scribed in Section 2.3 to achieve the enterprise DRE system challenges de-
scribed in Section 1 and the ARMS MLRM design goals described in Sec-
tion 2.1. These design goals, combined with the complexity of the enterprise
DRE system domain, led us to model the DRM solution space as a layered
architecture comprising components at different levels of abstraction. Figure 1
depicts the layers in the ARMS MLRM, which has hundreds of different types
and instances of infrastructure components written in ∼300,000 lines of C++
code and residing in ∼750 files developed by different teams at different loca-
tions. The remainder of this section describes the structure and dynamics of
the ARMS MLRM.

Fig. 1. Components in the ARMS MLRM

2.2.1 ARMS MLRM Structure
We first describe the key goals of each layer of the ARMS MLRM structure (as
depicted in Figure 1), including the DRM Services layer, the Resource Pool
layer, and the Physical Resource layer, and explain how key components within
these layers help address the goals described in Section 2.1. The dynamics of
these key MLRM components are described further in Section 2.2.2.

• The DRM Services layer is responsible for satisfying shipboard computing

4



missions, such as allocating system computing and networking resources to
tracks items of interest and planning necessary actions. The goal of this layer
is to maximize the mission coverage and reliability. The DRM Services layer
receives explicit resource management requests from applications, along with
command and policy inputs. It decomposes mission requests into a coordinated
set of software allocation requests on resource pools within the Resource Pool
layer. The DRM Services layer also monitors and coordinates the execution
of operational strings, which are sequences of components that capture the
partial order and workflow of a set of executing software capabilities.

Key components in this layer include the (1) Infrastructure Allocator, which
determines the resource pool(s) where a package’s operational string(s) are
deployed, (2) Operational String Manager, which coordinates the proper de-
ployment of operational strings across resource pools. The DRM services layer
can manipulate groups of operational strings by (1) deploying, stopping, and
migrating them depending on their mode of operation, (2) deploying them in
different configurations to support different modes, and (3) deploying them
in different orders depending on mode transitions within the system. The
ARMS MLRM manages operational strings based on their priority, i.e., it
(re)allocates resources for the operational strings satisfying higher priority
goals. The MLRM may therefore stop or migrate lower priority operation
strings if resources become scare so that mission critical and more important
operational strings remain operational.

• The Resource Pool layer is an abstraction for a set of computer nodes
managed by a Pool Manager component. The Pool Manager, in turn, interacts
with a Resource Allocator component to run algorithms that deploy applica-
tion components to various nodes within the resource pool. The goal of this
layer is to handle the two complementary capabilities:

(1) Proactively allocate resources so that QoS requirements for all

critical operational strings are satisfied within a single pool. The
DRM services layer must ensure that resource allocations satisfy QoS
needs of operational strings. The ARMS MLRM employs importance-
ordered, uni-dimensional bin-packing [8] of worst-case application CPU
resources to allocate operational strings to computing nodes. It also em-
ploys a network provisioning algorithm [9] that allocates network band-
width based on operation string interactions. The experiments in Sec-
tion 3.2 demonstrate how unique infrastructure resource allocations were
generated in response to different sequences of mission deployment re-
quests. When appropriate metadata is provided, ARMS MLRM also per-
forms end-to-end response time schedulabililty analysis [10] to verify that
allocations can satisfy real-time deadlines of operational strings.

(2) Reactively re-allocate resources or operational modes to tune

deployed operational strings to current mission priorities. The
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ARMS MLRM defines Condition Monitors, Determinators, and Response
Coordinators components [11] to detect, verify, and recover from classes
of execution and performance problems in deployed operational strings.
These components deploy controllers for managing operational string
overload. The experiments in Section 3.3 and Section 3.4 demonstrate
how these services help to (1) restore maximum capability after a re-
source pool failure and (2) manage operational string overload to allow
critical applications to continue operating.

• The Physical Resources layer deals with the specific instances of resources
in the system. The goal of this layer is to configure physical resources in ac-
cordance with dynamically-generated allocations to support the QoS needs of
a mission. The ARMS MLRM configures OS process priorities and schedul-
ing classes of deployed components across a variety of operating systems (e.g.,
Linux, Solaris, and VxWorks) in a manner that preserves execution precedence
specified in the dynamically generated allocation.

2.2.2 ARMS MLRM Dynamics

The ARMS MLRM acts in response to incidences of resource management
problems. To illustrate the dynamic behavior of the ARMS MLRM, we next
describe the two examples shown in Figure 2: a proactive workflow in response
to a mission mode change request and a reactive workflow in response to a load
change in an operational string [12]. The experimental results for both these

Fig. 2. MLRM Workflow

workflows are described in Section 3. The sequence of activities happening
in a typical shipboard computing environment as the system goes through
proactive and reactive workflows are shown in Figure 2 and described below:
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(1) System mission management services selectively deploy and suspend mis-
sion software packages in response to tactical needs. To plan the deploy-
ment at design time, a mission engineer specifies the sets of operational
strings to deploy based on the current mission and also captures the sys-
tem profile of all operational strings.

(2) Deploying a new mission package begins with a deployment request to
the DRM Service layer’s Infrastructure Allocator, which can split opera-
tional strings across resource to balance resource load or to satisfy various
constraints (e.g., place primary and replicas in different geographic loca-
tions).

(3) In accordance with each operational string’s start-up order constraints,
the DRM services layer’s Operational String Manager directs the Pool
Manager components in each resource pool to deploy one or more oper-
ational strings.

(4) If the deployment policy is dynamic, each Pool Manager uses a Resource
Allocator component in the Resource Pool layer to assign applications to
hosts, generate OS priorities and scheduling classes, and coordinate with
the Bandwidth Broker component in the Resource Pool layer to reserve
network resources. The Resource Allocator obtains the existing resource
allocations from the pool’s Resource Status Service [13] and analyzes
schedulabililty of the newly generated allocation to determine whether
critical path deadlines can be satisfied.

(5) The Pool Manager directs the Node Provisioner components on each node
within the Resource Pool layer to implement those allocation directives.

(6) The allocation directives done by the Node Provisioner include (1) launch-
ing new applications and configuring their QoS parameters (e.g., OS pri-
ority, scheduling class, and Diffserv codepoint tagging) and (2) reconfig-
uring QoS parameters of previously deployed applications that are shared
by the newly deployed operational string. After all pool allocations are
complete, the Operational String Manager initiates the final start-up of
the new operational string(s) by invoking their application-level start()
methods in accordance with their ordering constraints.

(7) Deployed operational strings may declare various performance require-
ments in their metadata, e.g., a minimum average CPU utilization for
each application or an end-to-end deadline. The ARMS MLRM deploys
Condition Monitors in the Resource Pool layer to detect whether such
performance requirements are being satisfied

(8) When a Condition Monitor detects a performance requirement violation,
it notifies a Determinator in the Resource Pool layer, which considers the
violation in the broader context of mission importance, resource avail-
ability, and policy directives to determine whether the problem must be
addressed and on what timeline.

(9) When the Determinator decides that a problem must be addressed it noti-
fies a Response Coordinator in the Resource Pool layer to initiate recovery
actions. We developed a coordinated set of Condition Monitors, Deter-
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minators, and Response Coordinators components to support the string
overload problem described in the experiments discussed in Section 3.4.
In this case, the Condition Monitor detected that after an increase in ex-
ternal threats, which exceeded the design threshold, a critical application
in the threat response operational string was unable handle higher load
because of competing equally important threat tracking strings.

(10) The Response Coordinator addresses starvation by lowering the QoS pa-
rameters (i.e., OS priority and scheduling class) of the competing ap-
plications using resource allocation services provided by the Pool Man-
ager, Resource Allocator, and Node Provisioner components in the lo-
cal resource pool. By reconfiguring the system using these components,
the ARMS MLRM helped ensure that the maximum number of mission-
critical operational strings were scaled to meet out-of-spec load changes
within available resource constraints. In this case, the ARMS MLRM
temporarily elevates the importance of the threat response string in ac-
cordance with changing mission priorities, at the cost of reducing the
performance of the less important threat tracking string.

2.3 The ARMS MLRM QoS-enabled Middleware Infrastructure

To simplify development and enhance reusability, the ARMS MLRM com-
ponents described in Section 2.2 are based on a QoS-enabled component
middleware infrastructure consisting of the Component-Integrated ACE ORB
(CIAO) [14] and the Deployment And Configuration Engine (DAnCE) [15].
CIAO and DAnCE implement the Real-time CORBA Component Model (RT-
CCM). RT-CCM combines standard Lightweight CCM [16] mechanisms (such
as codified specifications for specifying, implementing, packaging, assembling,
and deploying components) and standard Real-time CORBA [17] mechanisms
(such as thread pools, priority preservation policies, and explicit binding ca-
pabilities) to simplify and automate the (re)deployment and (re)configuration
of MLRM and application components in enterprise DRE systems. CIAO and
DAnCE use patterns [18] to achieve highly portable and standards-compliant
component middleware and reflective middleware techniques [1] to support
key QoS aspects for enterprise DRE systems.

As shown in Figure 3, components in CIAO are implementation entities that
collaborate with each other via ports, including (1) facets, which define an
interface that accepts point-to-point method invocations from other compo-
nents, (2) receptacles, which indicate a dependency on point-to-point method
interface provided by another component, and (3) event sources/sinks, which
can be used to exchange typed events with one or more components. Con-
tainers in CCM provide a run-time environment for one or more components
that manages various pre-defined hooks and strategies (such as persistence,
event notification, transaction, and security) used by the component(s). Each
container is responsible for (1) initializing instances of the component types
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it manages and (2) connecting them to other components and common mid-
dleware services. There are two categories of components in CIAO: (1) mono-
lithic components, which are executable binaries, and (2) assembly-based com-
ponents, which are a set of interconnected components that can either be
monolithic or assembly-based (note the intentional recursion).

MLRM and application component assemblies developed using CIAO are de-
ployed and configured via DAnCE, which implements the standard OMG
Deployment and Configuration (D&C) specification [19] shown in Figure 4.
DAnCE manages the mapping of MLRM and application components onto
nodes in our target environment. The information about the component as-
semblies and the target environment in which the components will be deployed
are captured in the form of standard XML assembly descriptors and deploy-
ment plans. DAnCE’s runtime framework parses these descriptors and plans
to extract connection and deployment information and then automatically
deploys the assemblies onto the CIAO component middleware platform and
establishes the connections between component ports.

3 Empirically Evaluating the ARMS MLRM

This section describes the design and results of experiments we conducted to
empirically evaluate the ARMS MLRM architecture described in Section 2.
We focus on the MLRM’s capabilities for (1) dynamically managing comput-
ing and network resources to meet changing mission requirements and (2)
configuring various QoS mechanisms within the middleware to satisfy QoS
and operational requirements.

3.1 Hardware/Software Testbed and Evaluation Criteria

The experiments used up to six Sun SPARC Solaris computers, with two of the
six being Sunfire V1280 servers with 12 processors and other four being desk-
top uniprocessors. All nodes ran the Solaris 8 operating system, which supports
kernel-level multi-threading and symmetric multiprocessing. All nodes were
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connected via a 100 Mbps LAN and used version 0.4.1 of CIAO and DAnCE
as the QoS-enabled component middleware infrastructure. The benchmarks
ran in the POSIX real-time thread scheduling class [20] to enhance the con-
sistency of our results by ensuring the threads created during the experiment
were not preempted arbitrarily during their execution.

Figure 5 shows the scenario that guided the experiments. In this scenario many
sensors (ED) collaborate with planning processes (PLAN), configuration pro-
cesses (CFGOP), and effectors (EFF) to detect different operating conditions
and make adaptive and effective decisions to counteract harmful and adverse
conditions. The sensors, planning processes, and effectors were implemented
as application components using CIAO; groups of application components are
connected in component assemblies to form operational strings. Each opera-
tional string in Figure 5 corresponds to a different set of shipboard computing
capabilities. The MLRM therefore deploys different sets of operational strings
depending on the different contexts and mission modes. For example, a par-
ticular combination of sensors, planning processes, and effectors implemented
as application components and connected together can work in a collaborative
fashion to detect, plan, and implement a corrective action to correspond to a
sensed event, such as sensing of unidentified airborne object and deciding what
types of counter-measures to enact. These operational strings are managed by
the ARMS MLRM as described in Section 2.2.

Fig. 5. Operational Strings Deployed in ARMS MLRM Experiments

Our goals in conducting the experiments shown in Figure 5 were to:

(1) Evaluate the capability of the ARMS MLRM to deploy the operational
strings in different configurations and in different orders so that the ap-
plications can be mapped or hosted into many different combinations of
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physical processors, thereby ensuring that MLRM can dynamically man-
age the available resources by redeploying operational strings to different
hardware nodes as nodes become unavailable due to resource limitations
or hardware failures. The goal was to demonstrate that at least 2 different
dynamic allocations can be achieved based on prevailing conditions.

(2) Quantify the capability of MLRM to recover from data center failures
and redeploy primary operational strings to available data centers in a
timely manner. The goal was to recover in less than half the time of 4
minutes it takes to recover in a manually managed system.

(3) Demonstrate the capability of MLRM to respond to an increasing number
of threats by ensuring that higher priority and more important applica-
tions always operate, so that the utilization of resources are under control
and always available for providing key shipboard computing capabilities.

The remainder of this section describes the experiments we conducted and
evaluates how well the ARMS MLRM meets the stated goals.

3.2 MLRM Capability to Deploy Infinite Set of Configurations

We first present empirical results that demonstrate ARMS MLRM’s ability
to generate different deployment configurations of the same set of operational
strings, depending on different input ordering of strings, different resource
availabilities of the resources, and different resource requirements of the op-
erational strings. We used the scenario described in Figure 5 to identify five
operational strings that map to five different functionalities. Each operational
string involved the applications shown and contain a critical path, i.e., start-
to-finish processing flow over which an end-to-end deadline must be met.

The goal of this experiment was to demonstrate that we could create a va-
riety of different configurations of the same set of five operational strings by
mapping those operational strings onto up to six different hardware nodes in
response to (1) changes in the resource availabilities of the nodes, (2) changes
in the events in the scenario that causes new strings to be deployed beyond
the strings that are already deployed, (3) changes in the configurations of the
strings in response to the mode changes in the scenario, and (4) changes in the
size of the operational strings. The five operations strings comprise of 8, 9, 16,
17, and 20 application components for a total of 70 application components in
the deployed system (not all 70 applications are shown in the Figure 6.) Ap-
plication components are written using the CIAO RT-CCM middleware and
deployed and configured using DAnCE.

The results in Figure 6 demonstrate that the ARMS MLRM was able to
generate six different configurations for those five operational strings deployed
on the six different hardware nodes. The five dynamic deployments differ from
each other by the different order in which various strings are deployed to satisfy
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different mission needs. It can be observed, however, that in all cases dynamic
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Fig. 6. Different Configurations of Operational Strings in Six Nodes

deployment – based on runtime use of bin-packing algorithms [21] – leads to
a fairly balanced workload across the processors. These results indicate that

• The ARMS MLRM allocation algorithms have the capability to generate
different sets of deployment configurations for the operational strings over
the same set of hardware nodes. For static allocation the highest processor
utilization was ∼65 percent and the lowest was ∼38 percent. In contrast,
all dynamic allocations resulted in highest processor loading of less than 60
percent and no processor is loaded less than 40 percent. Keeping maximum
utilization is as low as possible is a DRM goal that ensures adequate safety
margins and system schedulabililty.

• With the help of the standards-based CIAO and DAnCE RT-CCM middle-
ware that deploys and migrates operational strings, the ARMS MLRM can
quickly generate different sets of allocations for operational strings depend-
ing upon resource availabilities and hardware failures. As a result, mission-
critical functionalities need not be compromised in the face of hazardous
events that can trigger resource fluctuations and failures.

3.3 MLRM Capability to Recover from Failures

Section 2.2 described how the ARMS MLRM manages different sets of re-
sources within a single pool and how the resources within a pool can be uti-
lized efficiently to deploy operational strings by mapping them onto different
nodes within a resource pool. To support active replication, the MLRM de-
ploys replica operational strings in different resource pools so that mission
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mode functionality can be available in a dependable manner even in the face
of harmful events. To minimize the utilization of resources, however, all oper-
ational strings may not be duplicated and only certain mission-critical opera-
tional strings would be replicated and deployed onto different resource pools.
In tests results described here all strings were duplicated since the overall test
size is modest and we had sufficient resources at hand.

Figure 7 shows how operational strings consisting of a combination of sensors
and effectors in our scenario are deployed together with their replicas across
two different resource pools. The two resource pools are Pool-1.A and Pool-

Fig. 7. Operational Strings and Replicas Deployed in Different Resource

Pools

1.B and each resource pool has three nodes. The primary and the secondary
replicas for a particular operational string are distributed across the two re-
source pools to ensure reliable replication. For example, the operational string
deployed in the nodes Mako and Champion of the resource pool Pool-1.A
have their replicas deployed in the nodes Chaparal and Javelin of the resource
pool Pool-1.B. Below, we present empirical results that measure how fast the
ARMS MLRM reacts to pool failures to reconstitute the primary operational
strings from the failed pools onto pools that are safe, thereby ensuring critical
mission functionality is available throughout the system lifecycle.

As shown in Figure 7, the failure scenario begins with the failure of host Check-
mate and results in the loss of secondary replicas for the primary applications
in Pool 1.B. The ARMS MLRM is configured to not restart the failed secon-
daries for experimental purposes. We next failed Pool 1.B, which resulted in a
loss of the primary applications in Pool 1.B. There is no active replication since
the secondaries failed first, so the MLRM must restart the applications in the
surviving resource pool to regain lost capability. As described in Section 2.2.1
and Section 2.2.2, the ARMS MLRM defines Condition Monitors, Determi-
nators, and Response Coordinators to detect and recover from pool failures.
We deployed Pool 1.B’s failure detectors in Pool 1.A to monitor heartbeats
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from Pool 1.B’s Resource Status Service 1 . When a failure was induced by dis-
connecting Pool 1.B’s network from the router, the failure detectors detected
the failure after missing three heartbeats, which triggered the Pool Failure
Response Coordinator to start failure recovery actions.

As this scenario unfolded, we focused on the time the ARMS MLRM needed
to (1) detect the pool failure and decide what needs to be redeployed, (2)
redeploy the strings in the available pools and their resources, (3) allow the
OS to spawn a processing environment for the operational strings, (4) give ap-
propriate trigger signals to the strings so that they can be part of the global
mission functionalities by collaborating with other strings, and (5) promote
the new primaries and secondaries in the new deployment configurations. The
results in Figure 8 show that ARMS MLRM takes ∼15 seconds to complete
parts 1 and 2, which are pool failure detection and redeployment, respectively.
The vast majority of this time is taken up in pool failure detection. Conserva-

Fig. 8. Redeployment of Effectors from Failed Pool

tive timeout values were used for failure detection to minimize false alarms. A
more aggressive use of timeouts (either with capabilities native to a compute
node or with custom hardware) can reduce this number to well below a second.
The time taken by part 2 (redeployment decisions) is well below a second. A
relatively large gap is noted for part 3 (time to spawn new processes to host
application components), which is due to overhead in DAnCE that will be
fixed in a future release. Finally, we note another 15 second lag for parts 4
and 5 (initialization and triggering) of the redeployment process. The time to
recover is therefore well below half the 4 minutes needed to recover a manually
managed system.

1 This failure detection scheme was sufficient to evaluate the MLRM framework’s
failure and subsequent reactive resource management capabilities.
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3.4 MLRM Capability to Operate under Limited Resource Availabilities

Section 2.2 described how the ARMS MLRM manages different sets of re-
sources within a single node in a pool and provides the capability to maintain
the operation of critical mission capabilities by gracefully responding to over-
load conditions, such as handling more tracks and threats by offloading, real-
locating, or reprioritizing other not-so-important operational strings operating
in a node. Below, we present empirical results that show (1) how the ARMS
MLRM can handle increased loads in a node to handle additional threats and
tracks and (2) how the MLRM can do this gracefully by offloading less impor-
tant operational strings from a node. The goal is to ensure that critical mission
capabilities meet their QoS requirements in the face of increasing workloads.

Figure 9 shows a scenario where three nodes are used to deploy two operational
strings that provide general tracking and air threat tracking capabilities. We

Fig. 9. Different Threat Tracking Components in the ARMS MLRM

measured the CPU utilization in the Mako node, where parts of both the op-
erational strings are deployed and launched. We also measured Mako’s CPU
utilization as air threats began to increase, which we accomplished by con-
figuring the ED-1.1 sensor to generate more messages – and thereby more
reactive events – within the PLAN-3.1 planner on Mako.

The planner makes decisions and uses the effector EFF-1.1 in the Checkmate
node to take evasive actions. In this scenario, Mako’s CPU utilization went up
sporadically as it processed a series of air threats. In the face of the increasing
air threats, however, the critical operational functionalities provided by Mako
(such as the planning process provided by the PLAN-3.1 planner) need to
operate correctly and efficiently. To evaluate the benefits of DRM, we there-
fore compared the results adding and removing ARMS MLRM capabilities to
highlight its capabilities.

Figure 10 shows the results of an experiment that disabled the ARMS MLRM
capabilities. As the processing load for Plan-1.1 increased beyond a certain
point the system started to become unstable, with significant fluctuations in
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Fig. 10. Handling Threats with

MLRM Disabled

Fig. 11. Handling Threats with

MLRM Enabled

the amount of resources consumed. In contrast, Figure 11 shows the results of
enabling the ARMS MLRM DRM capabilities. as load for Plan-1.1 increased
the MLRM made the necessary dynamic adjustments to deliver steady re-
source availability for this component.

In summary, the experimental evaluations in this section validated that the
ARMS MLRM met its goals, i.e.:

• Multiple dynamic allocations were achieved - five were demonstrated.
• Recovery from a data center failure is achieved in well under half the time

it takes for manual recovery
• Under increased load MLRM makes the necessary resource allocation ad-

justments to permit steady state increase in resource availability to critical
applications without any instability.

4 Related Work

A significant amount of research on dynamic resource management (DRM) ap-
pears in the literature, spanning several orthogonal dimensions. For example,
DRM capabilities have been applied to specific layers, such as the applica-
tion layer [22] or network layer [9]. DRM capabilities have also been applied
either in standalone [23] or distributed [24] deployments. In this section we
summarize related DRE research along the two dimensions.

Application-driven distributed DRM was described in [22], where the authors
leverage the reconfigurability of their parallel applications to dynamically
change the number of executing tasks and allocate resources based on changes
in resource availability. This work deals with systems in which the arrival of
jobs is unpredictable and highly variable, which is similar to the shipboard
computing scenarios that are the focus of this paper. This work, however, is
application-specific and provides a point solution that is not based on stan-
dard middleware platforms. In contrast, our ARMS MLRM work provides
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standards-based reusable middleware that are designed to support a broad
class of enterprise DRE systems that can benefit from DRM.

The work described by [25] presents an integrated architecture for automatic
configuration of component-based applications and DRM for distributed het-
erogeneous environments. The authors, however, do not describe how end-
to-end QoS capabilities are maintained for mission-critical applications. In
contrast, our work provides the results of empirical benchmarks that evaluate
how well our MLRM supports end-to-end QoS.

Early work on middleware-based DRM solutions in the context of DRE ship-
board computing systems is described in [24], where the authors describe the
DeSiDeRaTa middleware that provides DRM for QoS-sensitive applications.
This work and related efforts in [26] describe the characteristics necessary for
DRM and provide the conceptual foundations for much of the ARMS MLRM
efforts. Our work on MLRM extends this earlier work to support more finer
grained DRE capabilities that ties mission needs to the management of phys-
ical resources, while also allowing for capability upgrades.

Network layer DRM capabilities conducted in the DARPA ARMS program
are described in [9]. The network layer DRM solution in that paper focus on
realizing DRM capabilities for one layer (the network layer) and for a specific
resource (bandwidth). The MLRM approach described in this paper extends
the network layer DRM capabilities to manage multiple resources, including
CPU and network bandwidth, thereby providing a more comprehensive multi-
layered and end-to-end solution.

5 Concluding Remarks

This paper described a standards-based, multi-layered resource management
(MLRM) architecture developed in the DARPA ARMS program to support
dynamic resource management (DRM) in enterprise distributed real-time and
embedded (DRE) systems. The ARMS MLRM is designed to enable enterprise
DRE systems to adapt to dynamically changing conditions (e.g., during a tac-
tical engagement) for the purpose of always utilizing the available computers
and networks to the highest degree possible in support of mission needs un-
der various operating conditions. The lessons learned while developing MLRM
and applying it to a shipboard computing environment include:

• ARMS MLRM research and experiments shows that dynamic resource man-
agement (DRM) – using standards-based middleware technologies – is not
only feasible, but can (1) handle dynamic resource allocations across a wide
array of configurations and capacities, (2) provide continuous availability
for critical functionalities – even in the presence of node and pool fail-
ures – through reconfiguration and redeployment and (3) provide QoS for
critical operational strings even in the conditions of overload and resource
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constrained environments.
• Enterprise DRE systems that are provisioned statically require a great deal

of manual engineering effort to create and validate any (re)configuration
and (re)allocation. This tedious and error-prone manual process marginal-
izes any advantage that might be gained by leveraging allocation and config-
uration as a means of application resilency. The DRM capabilities provided
by ARMS MLRM help alleviate much of this inflexibility by consistently
achieving well-balanced allocation under varying conditions, and permiting
a range of automated, dynamic management of resources that greatly extend
operational flexibility of the system without human intervention. Moreover,
our experiments clearly demonstrate that the performance of ARMS MLRM
is enhanced when DRM services are enabled – and in fact allow MLRM to
operate in the presence of failures that can not be accommodated by static
resource management.

• Enterprise DRE systems have a significant number of software architecture
components that require QoS, configuration, and deployment information.
Although ARMS MLRM provides an effective software infrastructure for
DRM, it is a complex task to capture the required application information
for all components. To deal with this complexity, we are exploring model-
driven development (MDD) tools [27] that enable a software infrastructure
consisting of standards-based middleware and components so that MLRM
functions and workflow can be performed more effectively and productively.
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