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Introduction 
Type 1 diabetes (T1D) is a prevalent chronic illness with increasing incidence 

rates reported worldwide [1,2]. It is an autoimmune disorder where the body does not 

produce insulin and requires patients to perform critical self-management tasks multiple 

times per day [3]. Two key self-management tasks inT1D are frequent monitoring of 
blood glucose (BG) and administering insulin. These tasks help manage glycemic control 

to avoid or delay serious short- and long- term consequences, such as retinopathy, 

neuropathy, and mortality [4–6]. Mealtimes are a critical time for diabetes self-

management. 

Adolescents and young adults have the worst glycemic control of any age 

group [4]. For young people with diabetes, living successfully with T1D is 

particularly hard due to many potential psychosocial and contextual barriers 

to self-management [7–9]. A recommended approach used to improve self-management 

involves promoting and supporting problem solving skills to reduce 

barriers [10]. To identify problems related to self-management, patients, caregivers, and 

clinicians must rely on blood glucose and insulin administration data from devices along 

with a patient recall of behavioral, emotional, and/or contextual events that could pose 

barriers to self-management. However, utilizing retrospective memory or recall for events 

that are days or weeks in the past has been identified as generally unreliable and 

potentially biased in nature [11]. Unreliable recall of events in diabetes problem solving 

could result in modifications to the insulin regimen that are not based on reliable 

information. 

To address the limitations of human recall and bias in health behavior research, 

ecological momentary assessment (EMA) methods have been developed and successfully 

utilized in a range of health conditions. In contrast to traditional assessment methods, 

EMA utilizes more frequent and in-vivo ambulatory assessment of factors that impact 

health behaviors and decision-making. EMA methods provide a more proximal, and often 

more accurate, technology-mediated method to monitor and assess the contexts, 

subjective experiences, and processes that surround health decisions in daily life [12,13]. 

In particular, EMA methods provide more relevant and frequent observations per person 

and generates rich data to assess correlates of health behavior more accurately and 

identify novel correlates for intervention [14].  

Many studies in the EMA literature typically use mixed effects or hierarchical 

linear modeling (HLM) [15,16]. That analytic approach does not provide a means to 

automate analyses or use learning algorithms that improve and integrate incoming data 

over time. A promising approach for identifying such a model involves integrating EMA 

with techniques and tools associated with machine learning, which is a data analysis 

method that automates statistical model building by identifying patterns and making 

decisions with minimal human intervention [17,18]. Machine learning has been used with 

wearable sensor data and may also be useful in analyzing intensive self-report data, such 



as EMA. Machine learning techniques provide a viable means to examine both big and 

small data by providing automated classification and prediction for more feasible 

behavioral intervention.  

The objective of our study was to develop a machine learning algorithm to predict 

risk for missed self-management. We sought to identify the momentary psychosocial and 

contextual factors that have an impact on T1D self-management assessed by EMA. To 

achieve these objectives, we trained and compared a number of machine learning models 

through a learned filtering architecture (LFA) to explore the extent to which EMA data 

could predict completion of two self-management behaviors: insulin administration (IA) 

and self-monitoring of blood glucose (SMBG). By integrating these two strategies (EMA 

and machine learning), we aim to provide researchers with not only a better 

understanding of what may hinder or promote adolescents’ adherence of their T1D 

regimen from a behavioral perspective, but also an efficient and adaptive analytic 

computational method. 

Methods 
This study analyzed data from a feasibility trial of the mobile EMA and feedback 

app called MyDay1, which is a self-management feedback and problem-solving tool 

designed for adolescent T1D patients [19]. Youth from the Vanderbilt Eskind Pediatrics 

Diabetes Clinic were invited to participate in a 30-day assessment period if (1) they were 

between the age of 13 and 19, (2) had been diagnosed of T1D for at least 6 months, (3) 

owned either an Android or iPhone smartphone, (4) understood and spoke English, and 

(5) were willing to use a Bluetooth blood glucose meter during the study. 

A total of 48 participants were recruited for the pilot study. Three participants 

dropped out of the study noting competing demands, leaving 45 for our analyses. 

Subjects were randomized on a 2:1 ratio to the MyDay app + Bluetooth blood glucose 

(BG) meter group (n=31) and a control group (n=14). The control group provided SMBG 

data only using Bluetooth BG meters but did not use the MyDay app. Design processes, 

engagement, and momentary relationships results for MyDay were published previously 

[19–21]. 

Momentary Assessments and Glucose Meter Data 
All SMBG data was objectively assessed using iHealth [22] glucometers. The 

iHealth glucometers are commercially available Bluetooth Low-Energy meters that can 

upload data automatically to the iHealth secure cloud server via their open API. Thirty-

one participants were instructed to use the MyDay app at each mealtime and bedtime to 

answer questions that focused on factors likely to impact diabetes self-management. 

MyDay provided notifications to complete the EMA assessment personalized to 

typical mealtimes identified by participants. Timestamps were associated with all data 

entries. Only mealtime EMA were used in analyses. Variables analyzed in relation to 

self-management outcomes were organized into the following subsets. The first two 

domains of variables were collected for all participants: (1) demographics obtained at 
baseline (i.e., gender, age, father’s education, mother’s education, family income, and 

 
1 The study was reviewed and approved by the Vanderbilt University Institutional Review Board (IRB). All 

parents provided consent before adolescents provided assent. Both consent and assent were obtained before 

study procedures commenced. 



race) and (2) time variables that were coded using the original timestamps of the 

collected data entries, e.g., weekday, weekend, and mealtime (breakfast, lunch, dinner). 

The next three domains of EMA data were available only for the 31 participants 

using the MyDay app: (3) context related to who was with the youth at time of self-

management (i.e., parent, sibling, alone, casual friend, close friend, other family, other 

person, strangers, and boyfriend/girlfriend) and where the youth was at time of self-

management (i.e., home, school, work, restaurant, friends’ house, or on the road), (4) 

stress, fatigue, mood levels at the reported self-management event: scored as 0-100 with 

higher scores indicating greater stress, more fatigue, and worse negative mood, and (5) 

selected situational barriers at time of self-management event (i.e., participant was 

rushing, feeling sick, on the road, hungry, wanting privacy, busy, without supplies, or 

having fun). Details of the EMA data collection process can be found in [20]. 

The dataset was preprocessed using the following statistical approaches. First, it 

was observed that the dataset contained missing values in demographic features: 8.89% 

missing for both father’s education and household income, and 26.67% missing for 

mother’s education (the percentage of missing values in each category is also reported as 

an N/A entry in Table 1). In this study, the missing values of a feature were imputed 

using the mode value for features of mother’s education and father’s education and 

median value for the feature of family income. Ordinal categorical variables whose order 

of the values are significant, such as parent education and family income level, were each 

transformed into a single feature with numeric values, whereas nominal variables whose 

significance cannot be assumed, such as participant race and day of week, were converted 

to numeric values using one-hot-encoding. Each feature was normalized using the min-

max scaler such that all final values of that feature were between 0 and 1. The source 

code for data preprocessing is included in Appendix A. 

Outcomes 
We examined three self-management behavioral outcomes: 

1. Daily SMBG frequency of “less than 4” or ”4 or more” times a day. Four 

glucose checks per day is generally considered the minimum recommended 

[23], 

2. Missed SMBG at mealtimes, 

3. Insulin administration (IA) at mealtimes 

Data from all subjects were available (n=45) for analyses examining daily number 

of SMBG from meters. The data that was available for all subjects were demographic and 

time variables. Analyses for outcomes 2 and 3 examined data from participants who used 

the MyDay EMA app (n=31), which obtained mealtimes. 

The Learned Filtering Architecture 
To extract domains of variables to predict IA and SMBG self-management 

behaviors via the training of a series of models, a learned filtering architecture (LFA) was 

created in this study as a byproduct, and a similar process was used in [24] but not 

formally constructed. For this study, the LFA created and compared four machine 

learning models: K-Nearest Neighbors (KNN), Logistic Regression (LR), Random Forest 

(RF), and Support Vector Machines (SVM). These models performed binary 

classification for each behavioral outcome observed in this study. 



KNN classifies each sample by finding its K-most similar instances in the training 

set and chooses the class that majority of the neighboring instances belong to [25]. The 

value of K is determined by running KNN models with varying K values iteratively and 

selecting the K value that produced the most optimal model. LR is a statistical model that 

classifies a sample by predicting the probability of an output using the maximum 

likelihood estimation method and using a probability threshold (p = 0.5 was used in our 

study as the threshold such that an output with a probably of p >= 0.5 was classified as 

true and false otherwise) to separate the two classes [26]. RF which is a popular ensemble 

learning method that trains multiple decision trees on different parts of the dataset and 

then averages the results to improve classification accuracy [27]. The number of trees, or 

“estimators” is determined by running a number of RF models with varying estimator 

values, such as 10, 50, 100, etc, and selecting the value that produced the most 

performant model. SVM works by finding an optimal hyperplane in the feature space that 

optimally separates the data points into different classes [28]. 

Figure 1 presents the workflow of this LFA and shows that SMBG data and EMA 

data collected from the MyDay app were integrated as a complete dataset fed into the 

LFA (steps 1 and 2). The LFA then performed specified data pre-processing, such as 

normalizing numeric values, removing entries that were empty or had many missing 

features, and one-hot encoding, based on the type of each column (step 3). After step 3, a 

data filtering process began, where subsets of variables were extracted from the cleaned 

data either based on configurable user input, such as the names of columns which would 

be grouped to create a clinically meaningful, or to-be-observed, feature subset. The 

features were grouped as described above to create multiple data subsets. Due to the 

small sample size of the data available, the data subsets were each split further for 

evaluating each classification model using cross validation (steps 4a and 4b).  

The LFA calculates the distribution of the target variable of each dataset. If the 

dataset is balanced, it evaluates each model using k-fold cross validation that further 

splits the data into training and validation sets k times and produces mean values of the 

performance metrics. Otherwise, if the classes are unevenly distributed, it uses the 

stratified k-fold cross validation to create k (k=7) splits, with each split of training and 

validation sets maintaining the original class distributions. The performance metrics are 

averaged across the results from the k different splits. The process then repeats for each 

of the machine learning models specified (step 6).  

 
Figure 1. Iterative Process of The Learned Filtering Architecture (LFA) 



 

Specifically, we used the following metrics to assess the models: (1) accuracy, 

which is the percentage of correct predictions, (2) precision, which is the ratio of true 

positives and all predicted positives that evaluates what proportion of predicted positives 

was actually correct, (3) recall, which is the ratio of true positives and all actual positives 

that calculates what proportion of actual positives was predicted correctly, (4) F1 score, 

which evenly weighs precision and recall, and (5) for imbalanced classification tasks, the 

Brier score, which is a continuous scoring loss function that evaluates the goodness of 

predicted probabilities in a classification task – a lower number corresponds to a stronger 

model and vice versa. 

The classification results were then used by the filter component to compare them 

across all feature subsets (step 7). The filter component had a configurable tolerance 

value that was used to select feature subset(s) with relatively good classification results 

compared to the best performing model(s). Next, the LFA checked whether additional 

feature groups remained to be processed (step 8). If so, feature selection was repeated to 

create the next data subset (step 9). Otherwise, the filtering process would terminate and 

output the filtered results, i.e., variable groups with relatively strong predictive power of 

the outcomes (step 10). 

The classification results were filtered to extract the best predictor group(s) for the 

target class variable. For example, if the performance metrics overall exceed the specified 

threshold values (such as 15% compared to the performance metrics of the model trained 

with all features together), the predictor group was added to the final output queue. When 

all variable groups were evaluated, LFA returned the final insights obtained from the 

input, i.e., feature groups that had significant predictive power of the outcomes observed 

in this study. 

Although the number of observations per participant was substantial (average 

number of observations = 60), the overall number of participants was relatively small 

(n=45). The collected data thus had some imbalance in the distribution of the outcomes, 

with missed mealtime insulin being a relatively less frequent event. Classification models 

constructed using imbalanced datasets may result in the minority class being neglected 

[29]. Techniques such as Synthetic Minority Oversampling Technique (SMOTE) [30] 

and Tomek link (T-link) [31] have been used in the literature for training imbalanced 

data, especially for small datasets [32–35]. However, given the small size of the 

population under this study, using such sampling methods would risk introducing bias 

and misleading results. In this study we therefore employed a stratified K-fold (k=7) 

cross validation [36] evaluation method instead of randomly oversampling or introducing 

synthetic samples based on the existing data. 

In stratified K-fold cross validation, the original dataset is randomly split into k 

folds. Each fold is further split into separate training and testing sets that are used to 

generate evaluation metrics of a model. The distributions of the majority and minority 

classes within each training and testing set follows the distribution of the majority and 

minority classes in the original dataset. After the model has been trained and tested 

against all k folds, the results are averaged to represent the overall classification 

performance.  

In addition to the machine learning methods described above, we also employed a 

Bayesian hierarchical regression model for the entire EMA dataset that has a large 



number of features, but a small sample size. This approach was applied to confirm the 

inferential power of the collected EMA data, rather than focusing on which specific 

category is the most predictive of the outcomes.   

Hierarchical modeling can capture similarities of multiple subjects within a 

dataset while allowing estimations of individual parameters for data containing multiple 

subjects. With the Bayesian approach, the entire dataset is considered known information 

that is used to derive distributions of unknown parameters of the model. It is a 

probabilistic model that intends to estimate expected values or density. 

In our analysis, we applied Markov Chain Monte Carlo (MCMC) methods [37] to 

assist with the model formation and sampling process. Monte Carlo is a method for 

randomly sampling a probability distribution to approximate some desired target 

function. Markov Chain is a sampling technique that can generate a sequence of random 

samples where the current sample is drawn based on the prior sample. The goal of 

MCMC is to construct a Markov Chain that eventually stabilizes on the desired quantity 

to be inferred. Specifically, we created a non-centered Bayesian hierarchical model to 

estimate the likelihoods of SMBG and IA.  

Results 
This section analyzes the results obtained from the LFA constructed in 

accordance with the methods described above. 

Daily SMBG Frequency 
The sample of n=45 participants were on average 13.33 years of age (SD 1.67), 

were 53.33% female, 84.44% White, 57.46% used an insulin pump and had a mean 

HbA1c (indicating overall glycemic control) of 9.03% (SD 1.91). Additional 

characteristics of the sample are summarized in Table 1. 

 

Table 1. Characteristics of the Sample (n=45, entries marked as N/A represent data 

not reported) 

 

Variable Mean (SD) or % 

Age 13.33 (1.67) 

Female 53.33% 

Male 46.67% 

Race / ethnicity  

               White 84.44% 

               African American 10.22% 

               Asian 2.22% 

               Hispanic 2.22% 

               Other 0.00% 

Father education  

               Less than high school 2.22% 

               High school / GED 28.89% 

               2-year college 15.56% 

               4-year college 33.33% 

               Master’s degree 11.11% 

               Doctoral degree 0.00% 



               N/A 8.89% 

Mother education  

               Less than high school 0.00% 

               High school / GED 22.22% 

               2-year college 26.67% 

               4-year college 37.78% 

               Master’s degree 4.44% 

               Doctoral degree 0.00% 

               N/A 26.67% 

Household Income  

               Less than $25,000 4.44% 

               25,001 – 35,000 6.67% 

               35,001 – 35,000 15.56% 

               75,001 – 35,000 31.11% 

               100,001 – 100,000 26.67% 

               More than $70,000 6.67% 

               N/A 8.89% 

Duration of diabetes (years) 5.47 (3.59) 

HbA1c 9.03 (1.91) 

Use insulin pump (yes) 57.46% 

 

A total of 4,475 blood glucose (BG) measurements were obtained from iHealth 

Bluetooth meters used by all participants (n=45). For this analysis the demographic and 

time variables were studied to identify if they had any impact on the outcome of SMBG 

frequency per day. The measurements were aggregated on a daily basis to obtain a new 

dataset of 1,231 entries, with each entry per participant being the total number of 

measurements an individual had each day during the study period. SMBG frequency 

ranged between 1-12 measurements per day. If a participant did not report an entry on a 

particular day, the entry for that day was not assumed to have an SMBG daily frequency 

of 0 and hence the entry for participant on that day was not created. 

Several distributions of SMBG daily frequency were observed. There were 591 

entries with Below 4 frequency and 640 entries with 4 or Above. Out of all the classifiers 

trained with the same training data, RF was the best performing model based on the 

overall classification metrics using the same test data. The mean and standard deviation 

(SD) values of the evaluation results from the best performing RF model are shown in 

Table 2 for SMBG frequency Below 4 (the source code comparing the performance of all 
machine learning models is included in Appendix A). The filter then compared the 

benchmark value with the outcome classification results obtained from each variable 

group. A tolerance value of 15% was configured for the filter to select subsets with 

significant predictive power. As shown in Table 2, demographics variable group for 

SMBG frequency resulted in a better performance than time variables and all variables. 

 

Table 2. SMBG Below 4 Classification Results 

 

Feature Group Accuracy 

Mean (SD) 

Precision 

Mean (SD) 

Recall    

Mean (SD) 

F1 Score 

Mean (SD) 



Demographics 75.5% (0.044) 0.75 (0.078) 0.72 (0.066) 0.74 (0.062) 
Time variables 49.3% (0.040) 0.46 (0.064)  0.21 (0.142) 0.28 (0.124) 

All 67.9% (0.031) 0.67 (0.063) 0.68 (0.057) 0.67 (0.035) 

Missed Mealtime SMBG and Insulin Administration 
From the app group (n=31), a total of 1,869 entries were associated with 

breakfast, lunch, or dinner and used to analyze factor(s) that could impact SMBG and IA. 

Missed IA had a distribution of 1:5.72 for True (missed) vs False (administered) 

outcomes. In contrast, the outcome missed SMBG had a class distribution of 1:5.44 for 

True (missed) vs False (checked). LFA created classification models for each variable 

group (i.e., demographic, time, social context, and psychosocial) using the stratified K-

fold approach as discussed previously. Similar to the previous experiment, the RF model 

resulted in the best classification performance in all metrics compared to other models 

(the source code comparing the performance of all machine learning models is included 

in Appendix B)..  

Tables 3 and 4 present the average classification results of missed SMBG and 

missed IA, respectively. The results showed mixed sentiments on the predictive power of 

individual groups of indicators on the self-management behavior, but their combined 

effect can be used to infer when the lack of SMBG or IA occurred with a high accuracy 

and high precision. 

 

Table 3. Missing Mealtime Blood Glucose Measurement Classification Results 

Feature Group Accuracy Precision Recall F1 Score Brier 

Demographics 78.3% 0.38 0.62 0.47 0.22 

Time variables 49.9% 0.13 0.42 0.20 0.51 

Social Context 60.7% 0.21 0.55 0.30 0.25 

Stress, Fatigue, 

Mood 

74.1% 0.22 0.29 0.25 0.33 

Barriers 72.5% 0.33 0.44 0.33 0.25 

All 88.3% 0.78 0.35 0.48 0.12 

All (MCMC) 87.3% 0.78 0.25 0.38 0.13 

 

Table 4. Missing Mealtime Insulin Administration Classification Results 

Feature Group Accuracy Precision Recall F1 Score Brier 

Demographics 64.8% 0.25 0.65 0.36 0.36 

Time variables 58.9% 0.21 0.64 0.32 0.41 

Social Context 49.0% 0.16 0.59 0.25 0.51 

Stress, Fatigue, 

Mood 

74.1% 0.22 0.28 0.25 0.32 

Barriers 72.5% 0.26 0.44 0.32 0.27 

All 85.8% 0.61 0.14 0.23 0.14 

All (MCMC) 85.4% 0.54 0.15 0.24 0.15 
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Discussion 
To better understand the factors impacting self-management behavior of 

adolescents with T1D, this study applied machine learning analyses to construct a 

learning filter architecture (LFA) using demographic, and momentary psychosocial and 

self-management data. The relative association of five domains of variables for 

predictability of self-management behaviors was compared using all the variables 

collectively as the benchmark.  

For the demographic data, the results indicated that demographics were most 

associated with average daily SMBG frequency. These results highlight the value of 

social determinants of health, as defined by demographics. While demographic factors 

are generally not modifiable, social determinants of health are increasingly used to adapt 

care to for those who are most vulnerable and may not receive the full benefit of current 

approaches to healthcare [36, 37]. 

The EMA data was able to infer non-adherence for SMBG and insulin with a high 

accuracy and precision. Although the recall score is low, there is high confidence that the 

non-adherence events identified by the model are truly non-adherence ones. One reason 

for the lower recall score has to do with the small datasets that have disparities in the 

frequencies of observed classes or outcomes. Nonetheless, this study shows promise in 

the collection of larger datasets that would more effectively power a classifier that is 

deployable in the real world. 

These results support the feasibility and value of integrating EMA and machine 

learning to improve behavioral assessment and automate behavioral pattern recognition in 

healthcare [18,38]. Our learned models show promise to quantify the impact of 

psychosocial factors on self-management. In diabetes, stress and mood are modifiable 

factors that may be positively influenced through coping and problem-solving 

interventions [39,40]. The use of machine learning and EMA was also seen in a recent 
study on Tinnitus (the phantom perception of sounds), where a random forest classifier 

was applied on EMA data collected from the TrackYourTinnitus mobile app across 

devices to predict the mobile operating system used [41].  

Social context also provides a frame for understanding risk and may be modified 

in by interventions focused on social competence and problem solving [39].  In previous 

studies [42,43] using behavioral observation in the context of identifying patterns of hand 

hygiene compliance monitoring, from which we obtained useful initial insights into 

which domains of variables had the most impact on compliance behavior. Based on the 

current findings, similar experiments are needed with larger samples to prioritize multiple 

potential domains of influence on health behaviors, and advance the assessment and 

analytic approaches utilized here.  

Moving forward, the use of primarily intensive self-reported and passive 

psychosocial and behavioral data streams combined with machine learning could provide 

the basis for population-based monitoring systems to help guide automated pattern 

detection for clinical risk management. For example, experimental unobtrusive indicators 

of mealtimes are in development [44] and insulin administration is available via pumps 

[44]. If successful, additional passive data streams would greatly improve our 

methodological rigor and reach [45].  

The LFA machine learning methods employed here should be applied to a large 

diverse sample of patients to confirm and expand results reported in this paper. Although 



passive methods are increasingly used to infer behavior and psychosocial status [46,47], 

there are important subjective experiences, such as mood, which may continue to require 

self-report. For the foreseeable future, both self-reported real-time data and passive data, 

such as social networking [48], may be integrated to optimize insights for healthcare. 

Prior research using traditional retrospective questionnaire methods has focused 

largely on identifying psychosocial correlates and predictors of self-management in 

chronic illness in general and specifically in diabetes [9]. With few exceptions, little 

research using EMA has been conducted in diabetes. The few studies conducted have 

uniquely identified time-based factors, such as time of day and momentary negative 

mood, as related to self-management behaviors  [49–51]. 

Machine learning analyses have been applied in various studies, focusing largely 

on the improvement of diabetes management and control. Earlier studies have 

constructed and fine-tuned different machine learning models to predict future blood 

glucose levels based on historical physiological data, [52–54], detect incorrect blood 

glucose measurements in [55], predict hypoglycemia [56,57], manage insulin dosing [58], 

and applied to provide lifestyle support integrating food recognition, and energy 

expenditures [59,60]. Our study results reported here advance the assessment and 

analysis of factors previously associated with self-management, including stress [49], 

mood [61,62], stigma [9,63], and social contexts [8,12]. Our study also uniquely assesses 

novel factors not previously studied in the T1D population, such as fatigue [64], location 

[65], social contexts [8], and contextual factors, such as rushing and traveling. The 

collected EMA data has a promising ability to infer the two diabetes self-management 

behaviors under study.  

Future work will enhance MyDay’s ability to utilize unobtrusive indicators of 

behaviors. For example, experimental unobtrusive indicators of mealtimes are in 

development and if successful would greatly enhance our methodological approach [45]. 

Finally, the LFA machine learning methods employed here will be applied to a large 

diverse sample of patients to confirm and expand results reported in this paper. Future 

systems will benefit from combining self-report of subjective human experiences together 

with passive indicators of factors that impact health behavior decision-making in daily 

life. 
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