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Detecting Web Attacks with End-to-End Deep Learning

YAO PAN, FANGZHOU SUN, JULES WHITE, DOUGLAS C. SCHMIDT, Vanderbilt University, USA

JACOB STAPLES AND LEE KRAUSE, Securboration Inc., USA

Web applications are popular targets for cyber-attacks because they are network-accessible and often contain vulnerabilities. An
intrusion detection system monitors web applications and issues alerts when an attack attempt is detected. Existing implementations
of intrusion detection systems usually extract features from network packets or string characteristics of input that are manually

selected as relevant to attack analysis. Manually selecting features, however, is time-consuming and requires in-depth security domain
knowledge. Moreover, large amounts of labeled legitimate and attack request data are needed by supervised learning algorithms
to classify normal and abnormal behaviors, which is often expensive and impractical to obtain for production web applications.
This paper provides three contributions to the study of autonomic intrusion detection systems. First, we evaluate the feasibility of
an unsupervised/semi-supervised approach for web attack detection based on the Robust Software Modeling Tool (RSMT), which
autonomically monitors and characterizes the runtime behavior of web applications. Second, we describe how RSMT trains a stacked
denoising autoencoder to encode and reconstruct the call graph for end-to-end deep learning, where a low-dimensional representation
of the raw features with unlabeled request data is used to recognize anomalies by computing the reconstruction error of the request
data. Third, we analyze the results of empirically testing RSMT on both synthetic datasets and production applications with intentional
vulnerabilities. Our results show that the proposed approach can efficiently and accurately detect attacks, including SQL injection,
cross-site scripting, and deserialization, with minimal domain knowledge and little labeled training data.
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1 INTRODUCTION

Emerging trends and challenges.Web applications are attractive targets for cyber attackers. SQL injection [Halfond
et al. 2006], cross site scripting (XSS) [Wassermann and Su 2008] and remote code execution are common attacks
that can disable web services, steal sensitive user information, and cause significant financial loss to both service
providers and users. Protecting web applications from attack is hard. Even though developers and researchers have
developed many counter-measures (such as firewalls, intrusion detection systems (IDSs) [Di Pietro and Mancini 2008]
and defensive programming best practices [Qie et al. 2002]) to protect web applications, web attacks remain a major
threat.
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2 Y. Pan et al.

For example, researchers found that more than half of web applications during a 2015-2016 scan contained significant
security vulnerabilities, such as XSS or SQL Injection [cyberattack 2018]. Moreover, hacking attacks cost the average
American firm $15.4 million per year [cyberattackloss 2018]. The Equifax data breach in 2017 [equifax 2018; equifax2
2018] (which exploited a vulnerability in Apache Struts) exposed over 143 million American consumers’ sensitive
personal information. Although the vulnerability was disclosed and patched in March 2017, Equifax took no action
until four months later, which led to an estimated insured loss of over 125 million dollars.

Conventional intrusion detection systems do not work as well as expected for a number of reasons, including the
following:

•Workforce limitations. In-depth domain knowledge of web security is needed for web developers and network
operators to deploy these systems [Ben-Asher and Gonzalez 2015]. An experienced security expert is often needed to
determine what features are relevant to extract from network packages, binaries, or other inputs for intrusion detection
systems. Due to the large demand and relatively low barrier to entry into the software profession, however, many
developers lack the necessary knowledge of secure coding practices.

• Classification limitations. Many intrusion detection systems rely on rule-based strategies or supervised machine
learning algorithms to differentiate normal requests from attack requests, which requires large amounts of labeled
training data to train the learning algorithms. It is hard and expensive, however, to obtain this training data for arbitrary
custom applications. In addition, labeled training data is often heavily imbalanced since attack requests for custom
systems are harder to get than normal requests, which poses challenges for classifiers [Japkowicz and Stephen 2002].
Moreover, although rule-based or supervised learning approaches can distinguish existing known attacks, new types of
attacks and vulnerabilities emerge continuously, so they may be misclassified.

• False positive limitations. Although prior work has applied unsupervised learning algorithms (such as PCA [Liu
et al. 2007] and SVM [Xu and Wang 2005]) to detect web attacks, these approaches require manual selection of attack-
specific features. Moreover, while these approaches achieve acceptable performance they also incur false positive rates
that are too high in practice, e.g., a 1% increase in false positives may cause an intrusion detection system to incorrectly
flag thousands of legitimate users [Pietraszek 2004]. It is therefore essential to reduce the false positive rate of these
systems.

Given these challenges with using conventional intrusion detection systems, an infrastructure that requires less
expertise and labeled training data is needed.

Solution approach ⇒ Applying end-to-end deep learning to detect cyber-attacks autonomically in real-
time and adapt efficiently, scalably, and securely to thwart them. This paper explores the potential of end-to-end
deep learning [Goodfellow et al. 2016] in intrusion detection systems. Our approach applies deep learning to the entire
process from feature engineering to prediction, i.e., raw input is fed into the network and high-level output is generated
directly. There is thus no need for users to select features and construct large labeled training sets manually.

We empirically evaluate how well an unsupervised/semi-supervised learning approach based on end-to-end deep
learning detects web attacks. Our work is motivated by the success deep learning has achieved in computer vi-
sion [Krizhevsky et al. 2012], speech recognition [Amodei et al. 2016], and natural language processing [Sutskever et al.
2014]. In particular, deep learning is not only capable of classification, but also automatically extracting features from
high dimensional raw input.

Our deep learning approach is based on the Robust Software Modeling Tool (RSMT) [Sun et al. 2017], which is a
late-stage (i.e., post-compilation) instrumentation-based toolchain that target languages designed to run on the Java
Virtual Machine (JVM). RSMT is a general-purpose tool that extracts arbitrarily fine-grained traces of program execution
Manuscript submitted to ACM
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Detecting Web Attacks with End-to-End Deep Learning 3

from running software, which is applied in this paper to detect intrusions at runtime by extracting call traces in web
applications. Our approach applies RSMT in the following steps:

1. During an unsupervised training epoch, traces generated by test suites are used to learn a model of correct program
execution with a stacked denoising autoencoder, which is a symmetric deep neural network trained to have target value
equal to a given input value [Vincent et al. 2010].

2.A small amount of labeled data is then used to calculate reconstruction error and establish a threshold to distinguish
normal and abnormal behaviors.

3. During a subsequent validation epoch, traces extracted from a live application are classified using previously
learned models to determine whether each trace is indicative of normal or abnormal behavior.

A key contribution of this paper is the integration of autonomic runtime behavior monitoring and characterization
of web applications with end-to-end deep learning mechanisms, which generate high-level output directly from raw
feature input.

The remainder of this paper is organized as follows: Section 2 summarizes the key research challenges we are
addressing in our work; Section 3 describes the structure and functionality of the Robust Software Modeling Tool (RSMT);
Section 4 explains our approach for web attack detection using unsupervised/semi-supervised end-to-end deep learning
and the stacked denoising autoencoder; Section 5 empirically evaluates the performance of our RSMT-based intrusion
detection system on representative web applications; Section 6 compares our work with related web attack detection
techniques; and Section 7 presents concluding remarks.

2 RESEARCH CHALLENGES

This section describes the key research challenges we address and provides cross-references to later portions of the
paper that show how we applied RSMT to detect web attacks by applying end-to-end deep learning.

Challenge 1: Attacks can have significantly different characteristics. Different types of web attacks, such
as SQL injection, cross site scripting, remote code execution and file inclusion vulnerabilities, use different forms
of attack vector and exploit different vulnerabilities inside web applications. These attacks therefore often exhibit
completely different characteristics. For example, SQL injection targets databases, whereas remote code execution
targets file systems. Conventional intrusion detection systems [Fu et al. 2007; Wassermann and Su 2008], however, are
often designed to detect only one type of attack. For instance, a grammar-based analysis that works on SQL injection
detection will not work on XSS. Section 3 describes how we applied RSMT to characterize the normal behaviors and
detect different types of attacks comprehensively.

Challenge 2: Monitoring can have a significant performance cost. Static analysis approaches that analyze
source code and search for potential flaws incur various drawbacks, including vulnerability to unknown attacks
and the need for source code access. An alternative is to apply dynamic analysis by instrumenting applications.
Instrumentation invariably incurs monitoring overhead [Waddington et al. 2009], however, which may degrade web
application throughput and latency, as described in Section 5.3. Section 3.2 explores techniques applied by RSMT to
minimize the overhead of monitoring and characterizing application runtime behavior.

Challenge 3: Collecting labeled attack training data. Machine learning-based intrusion detection systems rely
on labeled training data to learn what should be considered normal and abnormal behaviors. Collecting this labeled
training data can be hard and expensive in large-scale production web applications since labeling data requires extensive
human effort and it is hard to cover all the possible cases. For example, normal request training data can be generated
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4 Y. Pan et al.

with load testing tools, web crawlers, or unit tests. If the application has vulnerabilities, however, the generated data
may also contain some abnormal requests, which can undermine the performance of supervised learning approaches.

Abnormal training data is even harder to obtain [Chandola et al. 2009], e.g., it is hard to know what types of
vulnerabilities a system has and what attacks it will face. Even manually creating attack requests targeted for a particular
application may not cover all scenarios. Moreover, different types of attacks have different characteristics, which makes
it hard for supervised learning methods to capture what attack requests should look like. Although supervised learning
approaches often distinguish known attacks effectively, they may miss new attacks and vulnerabilities that emerge
continuously, especially when web applications frequently depend on many third-party packages [equifax2 2018].
Section 4.3 describes how we applied an autoencoder-based unsupervised learning approach in RSMT to resolve the
labeled training data problem.

Challenge 4: Developing intrusion detection systems without requiring users to have extensive web se-
curity domain knowledge. Traditional intrusion detection systems apply rule-based approach where users must
have domain-specific knowledge in web security. Experienced security experts are thus needed to determine what
feature(s) are relevant to extract from network packages, binaries, or other input for intrusion detection systems. This
feature selection process can be tedious, error-prone, and time-consuming, such that even experienced engineers often
rely on repetitive trial-and-error processes. Moreover, even web security experts may struggle to keep pace with the
latest vulnerabilities due to quick technology refresh cycles and the continuous release of new tools and packages.
Section 4.1 and 4.2 describe how we applied RSMT to build intrusion detection systems with “featureless” approaches
that eliminated the feature engineering step and directly used high-dimensional request traces data as input.

3 THE STRUCTURE AND FUNCTIONALITY OF THE ROBUST SOFTWARE MODELING TOOL (RSMT)

This section describes the structure and functionality of the Robust Software Modeling Tool (RSMT), which we developed
to autonomically monitor and characterize the runtime behavior of web applications, as shown in Figure 1. This section

Fig. 1. The Workflow and Architecture of RSMT’s Online Monitoring and Detection System

first gives an overview of RSMT, then focuses on RSMT’s agent and agent server components, and finally explains how
these components address Challenge 1 detection different types of attacks) and Challenge 2 (minimizing instrumentation
Manuscript submitted to ACM
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Detecting Web Attacks with End-to-End Deep Learning 5

overhead) summarized in Section 2. Section 4 later describes RSMT’s learning backend components and examines the
challenges from Section 2 that they address.

3.1 Overview of RSMT

As discussed in Section 2, different attacks have different characteristics and traditional feature engineering approaches
lack a unified solution for all types of attacks. RSMT bypasses these attack vectors and instead captures the low-level
call graph. It assumes that no matter what the attack type is (1) some methods in the server that should not be accessed
are invoked and/or (2) the access pattern is statistically different than the legitimate traffic.

RSMT operates as a late-stage (post-compilation) instrumentation-based toolchain targeting languages that run on
the Java Virtual Machine (JVM). It extracts arbitrarily fine-grained traces of program execution from running software
and constructs its models of behavior by first injecting lightweight shim instructions directly into an application binary
or bytecode. These shim instructions enable the RSMT runtime to extract features representative of control and data
flow from a program as it executes, but do not otherwise affect application functionality.

Figure 1 shows the high-level workflow of RSMT’s web attack monitoring and detection system. This system is
driven by one or more environmental stimuli (a), which are actions transcending process boundaries that can be broadly
categorized as either manual (e.g., human interaction-driven) or automated (e.g., test suites and fuzzers) inputs. The
manifestation of one or more stimuli results in the execution of various application behaviors. RSMT attaches an agent
and embeds lightweight shims into an application (b). These shims do not affect the functionality of the software, but
instead serve as probes that allow efficient examination of the inner workings of software applications. The events
tracked by RSMT are typically control flow-oriented, though dataflow-based analysis is also possible.

As the stimuli drive the system, the RSMT agent intercepts event notifications issued by shim instructions. These
notifications are used to construct traces of behavior that are subsequently transmitted to a separate trace management
process (c). This process aggregates traces over a sliding window of time (d) and converts these traces into “bags” of
features (e). RSMT uses feature bags to enact online strategies (f), which involve the following two epochs:

• during a training epoch, where RSMT uses the traces generated by test suites to learn a model of correct program
execution, and

• during a subsequent validation epoch, where RSMT classifies traces extracted from a live application using
previously learned models to determine whether each trace is indicative of normal or abnormal behavior.

Figure 1 also shows the three core components of RSMT’s architecture, which include (1) an application, to which
the RSMT agent is attached, (2) an agent server, which is responsible for managing data gathered from various agents,
and (3) a machine learning backend, which is used to train various machine learning models and validating traces. This
architecture is scalable to accommodate arbitrarily large and complex applications, as shown in Figure 2. For example, a
large web application may contain multiple components, where each component can be attached with a different agent.
When the number of agents increases, a single agent server may be overwhelmed by requests from agents. Multiple
agent servers can therefore be added and agent requests can then be directed to different agent servers using various
partitioning rules.

It is also possible to scale the machine learning backend, e.g., by deploying machine learning training and testing
engine on multiple servers. An application generally comprises multiple tasks. For example, the tasks in a web forum
service might be init, registerNewUser, createThread, and createPost. Machine learning models are built at the task
granularity. Different machine learning backends store and process different models.
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6 Y. Pan et al.

Fig. 2. The Scalability of RSMT

3.2 The RSMT Agent

Problem to resolve. To monitor and characterize web application runtime behavior, a plugin program is needed
to instrument the web application and record necessary runtime information. This plugin program should require
minimum human intervention to avoid burdening developers with low-level application behavior details. Likewise,
instrumentation invariably incurs performance overhead that should be minimized to avoid unduly degrading web
application throughput and latency.

Solution approach. To address the problem of instrumentation with minimum developer burden and performance
overhead, the RSMT agent captures features that are representative of application behavior. This agent defines a
class transformation system that creates events to generalize and characterize program behavior at runtime. This
transformation system is plugin-based and thus extensible, e.g., it includes a range of transformation plugins providing
instrumentation support for extracting timing, coarse-grained (method) control flow, fine-grained (branch) control flow,
exception flow, and annotation-driven information capture.

For example, a profiling transformer can inject ultra-lightweight instructions to store the timestamps when methods
are invoked. A trace transformer could add methodEnter() and methodExit() calls to construct a control flow model.
Each transformation plugin conforms to a common API. This common API can be used to determine whether the plugin
can transform a given class, whether it can transform individual methods in that class, and whether it should actually
perform those transformations if it is able.

We leverage RSMT’s publish-subscribe (pub/sub) framework to (1) rapidly disseminate events by instrumented code
and (2) subsequently capture these events via event listeners that can be registered dynamically at runtime. RSMT’s
pub-sub framework is exposed to instrumented bytecode via a proxy class that contains various static methods.1 In
turn, this proxy class calls various listeners that have been registered with it. The following event types are routed to
event listeners:

• Registration events are typically executed once per method in each class as its < clinit > (class initializer) method
is executed. These events are typically consumed (not propagated) by the listener proxy.

1We use static methods since calling a Java static method is up to 2x faster than calling a Java instance method.
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Detecting Web Attacks with End-to-End Deep Learning 7

• Control flow events are issued just before or just after a program encounters various control flow structures. These
events typically propagate through the entire listener delegation tree.

• Annotation-driven events are issued when annotated methods are executed. These events propagate to the offline
event processing listener children.

The root listener proxy is called directly from instrumented bytecode and delegates event notifications to an error
handler, which gracefully processes exceptions generated by child nodes. Specifically, the error handler ensures that
all child nodes receive a notification regardless of whether that notification results in the generation of an exception
(as is the case when a model validator detects unsafe behavior). The error handler delegates to the following model
construction/validation subtrees:

• the online model construction/validation subtree performs model construction and verification in the current
thread of execution i.e., on the critical path, and

• theoffline model construction/validation subtree converts events into a form that can be stored asynchronously
with a (possibly remote) instance of Elasticsearch [elasticsearch 2018], which is an open-source search and
analytics engine that provides a distributed real-time document store.

To address Challenge 1 (minimizing the overhead of monitoring and charactering application runtime behavior)
described in Section 2, RSMT provides a dynamic filtering mechanism. We analyzed the method call patterns and
observed that most method calls are lightweight and occur in a small subset of nodes in the call graph. By identifying a
method as being called frequently and having a significantly larger performance impact, we can disable events issued
from it entirely or reduce the number of events it produces (thereby improving performance). These observations, along
with a desire for improved performance, motivated the design of RSMT’s dynamic filtering mechanism.

To enable filtering, each method in each class is associated with a new static field added to that class during the
instrumentation process. The value of the field is an object used to filter methods before they make calls to the runtime
trace API. This field is initialized in the constructor and is checked just before any event would normally be issued to
determine if the event should actually occur.

To characterize feature vector abilities to reflect application behaviors, we added an online model builder and model
validator to RSMT. The model builder constructs two views of software behavior: a call graph, which is used to quickly
determine whether a transition is valid, and a call tree, which is used to determine whether a sequence of transitions is
valid. The model validator is a closely related component that compares current system behavior to an instance of a
model assumed to represent correct behavior.

Fig. 3. Call Graph (L) and Call Tree (R) Constructed for a Simple Series of Call Stack Traces
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8 Y. Pan et al.

Figures 4 and 5 demonstrate the complexity of the graphs we have created by applying RSMT on various SQL
statements.

Fig. 4. Call Tree Generated for a Simple SQL Statement Parse

Fig. 5. Call Tree Generated for a Simple SQL Statement Parse (zoomed in on heavily visited nodes)

Each directed edge in a call graph connects a parent method (source) to a method called by the parent (destination).
Call graph edges are not restricted with respect to forming cycles. Suppose the graph in Figure 3 represented correct
behavior. If we observed a call sequence e,a,x at runtime, we could easily tell this was not a valid execution path since
no a,x edge is present in the call graph.

Although the call graph is fast and simple to construct, it has shortcomings. For example, suppose a transition
sequence e,a,d,c,a is observed. Using the call graph, none of these transition edges violated expected behavior. If we
account for past behavior, however, there is no c,a transition occurring after e,a,d. To handle these complex cases, a
more robust structure is needed. This structure is known as the call tree, as shown in the right-hand side of Figure 3.

Whereas the call graph falsely represents it as a valid sequence, there is no path along sequence e,a,d,c,a in the call
tree (this requires two backtracking operations), so we determine that this behavior is incorrect. The call tree is not a
Manuscript submitted to ACM
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Detecting Web Attacks with End-to-End Deep Learning 9

tree in the structural sense. Instead, it is a tree where each branch represents a possible execution path. If we follow the
current execution trace to any node in the call tree, the current behavior matches the expectation.

Unlike a pure tree, the call tree does have self-referential edges (e.g., the c,a edge in Figure 3) if recursion is observed.
Using this structure is obviously more processing-intensive than tracking behavior using a call graph. Section 5.3
presents empirical evaluation of the performance overhead of the RSMT agent.

3.3 The RSMT Agent Server

Problem to resolve. A web application may comprise multiple components where multiple agents are attached.
Likewise, multiple instances of the application may run on different physical hardware for scalability. It is important for
agents to communicate effectively with our machine learning backend to process collected traces, which requires some
means of mapping the task- and application-level abstractions onto physical computing resources.

Solution approach. RSMT defines an agent server component to address the problem of mapping task/application-
level abstractions to physical computing resources. This component receives traces from various agents, aligns them to
an application architecture, maps application components to models of behavior, and pushes the trace to the correct
model in a remote machine learning system that is architecture agnostic. The agent server exposes three different REST
APIs, which are described below:

• A trace API that RSMT agents use to transmit execution traces. This API allows an agent to (1) register a
recently launched JVM as a component in a previously defined architecture and (2) push execution trace(s).

• An applicationmanagementAPI for defining andmaintaining applications by (1) defining/deleting/modifying
an application, (2) retrieving a list of applications, and (3) transitioning components in an application from one
state to another. This design affects how traces received from monitoring agents are handled, e.g., in the IDLE
state, traces are discarded whereas in the TRAIN state they are conveyed to a machine learning backend that
applies them incrementally to build a model of expected behavior. In the VALIDATE state, traces are compared
against existing models and classified as normal or abnormal.

• A classification API that monitors the health of applications. This API can be used to query the status of
application components over a sliding window of time, whose width determines how far back in time traces are
retrieved during the health check and which rolls up into a summary of all classified traces for an applicationâĂŹs
operation. This API can also be used to retrieve a JSON representation of the current health of an application.

4 UNSUPERVISEDWEB ATTACK DETECTIONWITH END-TO-END DEEP LEARNING

This section describes how our unsupervised/semi-supervised web attack detection system augments the RSMT
architectural components described in Section 3 with end-to-end deep learning mechanisms [Amodei et al. 2016; Graves
and Jaitly 2014], which generate high-level output directly from raw feature input. The RSMT components covered in
Section 3 provide feature input for the end-to-end deep learning mechanisms described in this section, whose output
indicates whether a given web request is legitimate or an attack. This capability addresses Challenge 4 (developing
intrusion detection systems without domain knowledge) summarized in Section 2.

4.1 Traces Collection with Unit Tests

The RSMT agent is responsible for collecting application runtime traces, as described in Section 3.2. These collected
traces include the program’s execution path information, which is then used as the feature input for our end-to-end
deep learning system. Below we discuss how the raw input data is represented.
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10 Y. Pan et al.

When a client sends a request to a web application the RSMT agent records a trace, which is a histogram of directed
f-calls-g edges observed beginning after the execution of a method. In particular, from a starting entry method A, we
record call traces up to depth d . We record the number of times each trace triggers each method to fulfill a request from
a client.

For example, A calls B one time and A calls B and B calls C one time will be represented as: A-B: 2; B-C: 1; A-B-C:
1. Each trace can be represented as a 1*N vector [2,1,1] where N is the number of different method call sequences.
Unlike sequence-base approaches, we do not capture every order of method call, but instead use the frequency count as
features. The order information, however, is still partially preserved by recording the frequency of call sequences.

We also pad the 1*N histogram feature with an additional dimension to represent un-seen method calls. If a test
dataset contains method calls that never appear in the training dataset, its count will be recorded in this bit. Our goal is
to determine if the request is an attack request when given the trace signatureTi = {c1, c2, ..., cn } produced in response
to a client request Pi .

4.2 Anomaly Detection with Deep Learning

Machine learning approaches for detecting web attacks can be categorized into the following two types

• Supervised learning approaches (such as Naive Bayes [Russell et al. 1995] and SVM [Cortes and Vapnik 1995])
work by calibrating a classifier with a training dataset that consists of data labeled as either normal traffic or
attack traffic. The classifier then classifies the incoming traffic as either normal data or an attack request. Two
general types of problems arise when applying supervised approaches to detect web attacks: (1) classifiers cannot
handle new types of attacks that are not included in the training dataset, as described in Challenge 3 (hard to
obtain labeled training data) in Section 2 and (2) it is hard to get a large amount of labeled training data, as
described in Challenge 3 in Section 2.

• Unsupervised learning approaches (such as Principal Component Analysis (PCA) [Wold et al. 1987] and
autoencoder [Vincent et al. 2010]) do not require labeled training datasets. Instead, they rely on the assumption
that data can be embedded into a lower dimensional subspace in which normal instances and anomalies appear
significantly different. The idea is to apply dimension reduction techniques (such as PCA or autoencoders) for
anomaly detection. PCA or autoencoders try to learn a function h(X ) = X that maps input to itself.

The input traces to web attack detection can have a very high dimension (thousands or more). If no constraint is
enforced, an identity function will be learned, which is not useful. We therefore force some information loss during the
process. For example, in PCA we only select a subset of eigenvalues. In autoencoder, the hidden layers will have smaller
dimension than the input.

For PCA, the original input X will be projected to Z = XV . V contains the eigenvectors and we can choose k
eigenvectors with the largest eigenvalues. To reconstruct the original input, x = XVVT . If all eigenvectors are used,
thenVVT is an identity matrix, no dimensionality reduction is performed, the reconstruction is perfect. If only a subset
of eigenvectors are used, the reconstruction is not perfect, the reconstruction error is given by E = | |x − X | |2.

If a test input shares similar structure or characteristics with training data, the reconstruction error should be
small. To apply the same principle to web attack detection, if a test trace is similar to the ones in the training set, the
reconstruction error should be small and it is likely to be a legitimate request. If the reconstruction error is large, it
implies the trace is statistically different, thereby suggesting it has a higher probability of being an attack request.
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4.3 End-to-end Deep Learning with Stacked Denoising Autoencoders

The transformation performed by PCA is linear, so it cannot capture the true underlying input and output relationships
if the modeled relationship is non-linear. Deep neural networks (DNNs) [LeCun et al. 2015] have achieved success
in computer vision, speech recognition, natural language processing, etc. With non-linear activation functions and
multiple hidden layers, DNNs can model complex non-linear functions.

The decision functions for anomaly detection in web attacks are often complex since no simple threshold can be
used to determine if the request is an attack. Complicated interactions, such as co-occurrence and order of method calls,
are all involved in the decision making. These complexities make DNNs ideal candidates for anomaly detection in web
attacks. In particular, we use a special case of neural network called an autoencoder [Vincent et al. 2010], which is a
neural network with a symmetric structure.

An autoencoder consists of two parts: (1) an encoder that maps the original input to a hidden layer h with an encoder
function h = f (x) = s(Wx + b), where s is the activation function and (2) a decoder that produce a reconstruction
r = д(h). The goal of normal neural networks is to learn a function h(x) = y where the target variable y can be used
for classification or regression. An autoencoder is trained to have target value equal to input value, i.e., to minimize
the difference between target value and input value, e.g., L(x ,д(f (x)) where L is the loss function. In this case, the
autoencoder penalizes д(f (x)) for being dissimilar from x .

Fig. 6. Structure of Stacked Autoencoder.

If no constraint is enforced, an autoencoder will likely learn an identity function by just copying the input to the
output, which is not useful. The hidden layers in autoencoders are therefore usually constrained to have smaller
dimensions than the input x. This dimensionality constraint forces autoencoders to capture the underlying structure of
the training data.

Figure 7 shows a visualization of normal and abnormal requests using the compressed representation learned from
an autoencoder via a t-Distributed Stochastic Neighbor Embedding (t-SNE) [Maaten and Hinton 2008]. Blue dots in this
figure represent normal requests and red dots represent abnormal requests, which can thus be easily distinguished in
the low-dimensional subspace learned with the autoencoder.
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Fig. 7. t-SNE Visualization of Normal and Abnormal Requests.

To address Challenge 2 (detecting different types of attacks) described in Section 2, the autoencoder performs feature
extraction automatically. The input x is mapped to a low dimensional representation and reconstructed trying to restore
input. When the reconstruction g(f(x)) is different from x, the reconstruction error e = | |д(f (x) − x)| |2 can be used as
an indicator for abnormality.

If the training data share similar structure or characteristics, the reconstruction error should be small. An outlier is a
datum that has significantly different underlying structure or characteristic. It is therefore hard to represent the outlier
with the feature we extract. As a result, the reconstruction error will be larger. We can use the reconstruction error as a
standard to distinguish abnormal traffic and legitimate traffic.

Compared to PCA, autoencoders are more powerful because the encoder and decoder functions can be chosen to be
non-linear, thereby capturing non-linear manifolds. In contrast, PCA just does linear transformations, so it can only
create linear decision boundaries, which may not work for complex attack detection problems. Moreover, non-linearity
allows the network to stack to multiple layers, which increases the modeling capacity of the network. While the
combination of multiple linear transformation is still one linear layer deep, it may lack sufficient capacity to model the
attack detection decision.

Challenge 4 (developing intrusion detection systems without domain knowledge) in Section 2 is also addressed by
applying the following two extensions to conventional autoencoders:

1. Stacked autoencoders, which may contain more than one hidden layer [Vincent et al. 2010]. Stacking increases
the expressing capacity of the model, which enables the autoencoders to differentiate attacks and legitimate traffic from
high dimensional input without web security domain knowledge. The output of each preceding layer is fed as the input
to the successive layer. For the encoder: h1 = f (x), hi = f (hi−1), whereas for the decoder: д1 = д(hi ), дi = д(дi−1). Deep
neural networks have shown promising applications in a variety of fields such as computer vision, natural language
processing due to its representation power. These advantages also apply to deep autoencoders.

To train our stacked autoencoder we use a pretraining step involving greedy layer-wise training. The first layer of
encoder is trained on raw input. After a set of parameters are obtained, this layer is used to transform the raw input to
Manuscript submitted to ACM
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a vector represented as the hidden units in the first layer. We then train the second layer on this vector to obtain the
parameters of second layers. This process is repeated by training the parameters of each layer individually, while keep
the parameters of other layers unchanged.

2. Denoising, which prevents the autoencoder from over-fitting. Our system must be able to generalize to cases
that are not presented in the training set, rather than only memorizing the training data. Otherwise, our system would
not work for unknown or new types of attacks. Denoising works by corrupting the original input with some form of
noise. The autoencoder now needs to reconstruct the input from a corrupted version of it, which forces the hidden layer
to capture the statistical dependencies between the inputs. More detailed explanation of why denoising autoencoder
works can be found in [Vincent et al. 2008]. In our experiment (outlined here and described further in Section 5) we
implemented the corruption process by randomly setting 20% of the entries for each input to 0.

We chose a denoising autoencoder with three hidden layers for our experiments in Section 5. The structure of
the autoencoder is shown in Figure 6. The hidden layer contains n/2, n/4, n/2 dimensions respectively. Adding more
hidden layers does not improve the performance and can easily overfit. Relu [Nair and Hinton 2010] was chosen as the
non-linear activation function in the hidden layer. Section 5.5 presents the results of experiments that evaluate the
performance of a stacked denoising autoencoder in web attack detection.

The architecture of our unsupervised/semi-supervised web attack detection system is shown in Figure 8 and described
below (each numbered bullet corresponds to a numbered portion of the figure):

Fig. 8. The Architecture of the Unsupervised/Semi-supervised Web Attack Detection System.

1. RSMT collected a large number of unlabeled training traces by simulating normal user requests. These unlabeled
training traces should contain mostly normal requests, although a few abnormal requests may slip in.

2.A stacked denoising autoencoder is used to train on the unlabeled training traces. By minimizing the reconstruction
error, the autoencoder learns an embedded low dimensional subspace that can represent the normal requests with low
reconstruction error.
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Fig. 9. Cyber-attacks Exploited in the Test Video Management Application

3. A semi-supervised learning step can optionally be performed, where a small amount of labeled normal and
abnormal request data is collected. Normal request data can be collected by running repetitive unit tests or web traffic
simulators, such as Apache JMeter [jmeter 2018]. Abnormal request data can be collected by manually creating attack
requests, such as SQL injection and Cross-Site Scripting (XSS) attacks against the system. The transformation learned
in unsupervised learning is applied to both normal and abnormal requests and their average reconstruction error is
calculated respectively. A threshold for reconstruction error is chosen to maximize a metric, such as the F1 score, which
measures the harmonic average of the precision and recall.

4. If no semi-supervised learning is conducted, the highest reconstruction error for unlabeled training data is recorded
and the threshold is set to a value that is higher than this maximum by a adjustable percentage.

5.When a new test request arrived, the trained autoencoder will encode and decode the request vector and calculate
reconstruction error E. If E is larger than the learned threshold θ , it will be classified as attack request. If E is smaller
than θ , it will be considered as a normal request.

5 ANALYSIS OF EXPERIMENTAL RESULTS

This section presents the results of experiments that empirically evaluate our deep learning-based intrusion detection
system. We first describe the test environment and evaluation metrics. We then compare the performance of our
end-to-end deep learning approach with alternative methods.
5.1 Testbed

We used the following two web applications as the basis for the testbed in our experiments: (1) a video management
application built on Apache Spring framework using an embedded HSQL database and which handles HTTP requests
for uploading, downloading, and viewing video files, and (2) a compression service application built upon the Apache
Commons Compress library and which takes a file as input and outputs a compressed file in the chosen compression
format. Figure 9 shows how the test video management application provides several RESTful APIs, including: (1) user
authentication, where a GET API allows clients to send usernames and passwords to the server and then checks the
SQL database in the back-end for authentication, (2) video creation, where a POST API allows clients to create or modify
video metadata, and (3) video uploading/downloading, where POST/GET APIs allow users to upload or download videos
from the server’s back-end file system using the video IDs.

Our test web applications (webapps) were engineered in a manner that intentionally left them susceptible to several
widely-exploited vulnerabilities. The test emulated the behavior of both normal (good) and abnormal (malicious) clients
by issuing service requests directly to the test webapp’s REST API. For example, the test harness might register a user
Manuscript submitted to ACM
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with the name “Alice” to emulate a good client’s behavior or “Alice OR True” to emulate a malicious client attempting a
SQL injection attack.

To evaluate the system’s attack detection performance, we exploited three attacks fromOWASP’s top ten cybersecurity
vulnerabilities list [owasp2013 2018a] and used them against the test webapp. These attacks included SQL injection,
Cross-Site Scripting (XSS), and object deserialization vulnerabilities, as described below.

SQL injection. The SQL injection attack was constructed by creating queries with permutations/combinations of
keywords INSERT, UPDATE, DELETE, UNION, WHERE, AND, OR, etc. The following types of SQL injections were
examined:

• Type1: Tautology-based. Statements like OR ’1’ = ’1’ and OR ’1’ < ’2’ were added at the end of the query to
make the preceding statement always true. For example, SELECT * FROM user WHERE username = ’user1’ OR
’1’ = ’1’.

• Type2: Comment-based. A comment was used to ignore the succeeding statements, e.g., SELECT * FROM user
WHERE username = ’user1’ AND password = ’123’.

• Type3: Use semicolon to add additional statement, e.g., SELECT * FROM user WHERE username = ’user1’;
DROP TABLE users; AND password = ’123’.

Cross-Site Scripting (XSS). For the XSS attack, we added a new method with a @RequestMapping2 in a controller
that was never called in the “normal” set. We then called this method in the abnormal set to simulate an XSS attack
that accessed code blocks a client should not be able to access. We also modified an existing controller method with
@RequestMapping so a special value of one request path called a completely different code path to execute. This
alternate code path was triggered only in the abnormal set.

Object deserialization. Object deserialization vulnerabilities [owasp2013 2018b] can be exploited by crafting
serialized objects that will invoke reflective methods that result in unsafe behaviors during the deserialization process.
For example, we could store ReflectionTransformer items in an ArrayList that result in Runtime.exec being reflectively
invoked with arguments of our choice (effectively enabling us to execute arbitrary commands at the privilege level of
the JVM process). To generate such serialized objects targeting the Commons-Collections library, we used the ysoserial
tool [ysoserial [n. d.]].

We collected 1,000 traces for the compression service application. All runs compressed 64 MB of randomly generated
data using a differentmethod of randomdata generation for each run. For each ofx ∈ {1, 2, 4, 8, 16, 32, ..., 1024, 2048, 4096},
a single chunk of size 64 MB/x was generated and duplicated times (with x = 4096 the data is repetitive, whereas with x
= 1, the data is not repetitive at all). This test shows the input dependency of compression algorithm control flow, so it
was not feasible to create inputs/test cases that would exercise all possible control flow paths.
5.2 Evaluation Metrics

An ideal intrusion detection system should classify the legitimate traffic as normal and classify attack traffic as abnormal.
Two types of errors therefore exist: (1) A false positive (FP) or false alarm, which refers to classifying benign traffic as
an attack, and (2) A false negative (FN), which refers to classifying attack traffic as benign traffic. A key goal of an
intrusion detection system is to minimize both the FP rate and FN rate. A tradeoff exists, however, since a more strict
algorithm will tend to reduce the FN rate at the cost of classifying benign traffic as attack traffic.

Anomaly detection is an imbalanced classification problem, i.e., the attack test cases appear much less frequently than
the normal test cases. Accuracy is therefore not a good metric because simply predicting every request as normal will

2@RequestMapping is an annotation used in Spring framework for mapping web requests onto specific handler classes or handler methods.
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give very high accuracy. To address this issue, we use the following metrics to evaluate our approaches: (1) Precision
= TP/(TP+FP), which penalizes false positives, (2) Recall = TP/(TP+FN), which penalizes false negatives, and (3) F1
score = 2*precision*recall/(precision+recall), which evenly weights precision and recall.

5.3 Overhead Observations

To examine the performance overhead of the RSMT agent described in Section 3, we conducted experiments that
evaluated the runtime overhead in average cases and worst cases, as well as assessed how “real-time” application
execution monitoring and abnormal detection could be. As discussed in Section 3, RSMT modifies bytecode and
subsequently executes it, which incurs two key sources of overhead: (1) the cost of the instrumentation itself and (2)
the performance cost of executing the new instructions injected into the original bytecode.

Such instruction-level tracing can significantly increase execution time in the worst case. For example, consider a
while loop that iterates 100,000 times and contains 5 instructions. If a visitInstruction() method call is added to each
static instruction in the loop, roughly 500,000 dynamic invocations of the visitInstruction() method will be incurred,
which is a two-fold increase in the number of dynamic instructions encountered. Moreover, this overhead can be
even greater when considering the number of instructions needed to initialize fields and make the appropriate calls to
visitMethodEnter() or handle exceptions.

RSMT has low overhead for non-computationally constrained applications. For example, a Tomcat web server that
starts up in 10 seconds takes roughly 20 seconds to start up with RSMT enabled. This startup delay is introduced since
RSMT examines and instruments every class loaded by the JVM. This startup cost typically occurs only once, however,
since class loading usually happens just once per class.

In addition to startup delays, RSMT incurs runtime overhead every time instrumented code is invoked. We tested
several web services and found RSMT had an overhead ranging from 5% to 20%. The factors most strongly impacting
its overhead are the number of methods called (more frequent invocation results in higher overhead) and the ratio of
computation to communication (more computation per invocation results in lower overhead).

To evaluate worst-case performance, we used RSMT to monitor the execution of an application that uses ApacheâĂŹs
Commons Compress library to “bz2 compress” randomly-generated files of varying sizes ranging from 1x64 byte blocks
to 1024x64 byte blocks, which is a control-flow intensive task. Moreover, the Apache Commons implementation of bz2
is “method heavy,” (i6e.., there are a significant number of setter and getter calls), which are typically optimized by
the JVMâĂŹs hotspot compiler and converted into direct variable accesses. The instrumentation performed by RSMT
prevents this optimization from occurring, however, since these lightweight methods are wrapped in calls to the model
construction and validation logic. As a result, our bz2 benchmark represents the worst case for RSMT performance.

Figure 10 shows that registration adds a negligible overhead to performance (0.5 to 1%), which is expected since
registration events only ever occur once per class, at class initialization. Adding call graph tracking incurs a significant
performance penalty, particularly as the number of randomly generated blocks increases. Call graph tracking ranges
from 1.5x to over 10x slower than the original application, whereas call tree tracking results in a 2-5x slowdown.
Similarly, fine-grained control flow tracking results in a 4-6x slowdown. With full fine-grained tracking enabled,
therefore, an application might run at 1% its original speed. By filtering getters and setters, however, it is possible to
reduce this overhead by several orders of magnitude, as described later.

To further quantify RSMT’s performance overhead, we used SPECjvm2008 [spec2008 2018], which is a suite comprising
various integer and floating point benchmarks that quantitatively compare the performance of JVM implementations
(e.g., to determine whether one implementationâĂŹs JIT compiler is superior to another for a certain type of workload).
Manuscript submitted to ACM
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Fig. 10. Analysis of RSMT Performance Overhead

We used the same JVM implementation across our tests, but varied the configuration of our instrumentation agents to
measure the performance tradeoffs.

We evaluated the following configurations: (1) no instrumentation (no RSMT features emitted), (2) reachability
instrumentation only (disabled after first access to a code region), (3) call tracing but all events passed into a null
implementation, and (4) reachability + call tracing (null). We executed each configuration on a virtualized Ubuntu 14
instance provisioned with two cores and 8 GB of memory. The results of this experiment are shown below in Figure 11.
We would expect a properly tuned RSMT system to perform somewhere between configurations 3 and 4.

Although we observed that the overhead incurred by naively instrumenting all control flows within an application
could be quite large (see Figure 10), a well-configured agent should extract useful traces with overheads ranging from
nearly 0% (for computation-bound applications) to 40% (for control-bound applications). Most production applications
contain a blend of control-bound and computation-bound regions. Under this assumption we anticipate an overhead of
15-20% based on the composite score impact shown in Figure 11.

5.4 Supervised Attack Detection with Manually Extracted Features

Before evaluating the performance of our deep learning approach, we present several supervised learning methods as
benchmarks for comparison. We also describe the manually extracted features we used.

5.4.1 Experiment Benchmarks. Datasets and feature vectors are crucial for cyber-attack detection systems. The
following feature attributes were chosen as the input for our supervised learning algorithms:

(1) Method execution time. Attack behaviors can result in abnormal method execution times, e.g., SQL injection
attacks may execute faster than normal database queries.

(2) User Principal Name (UPN). UPN is the name of a system user in an e-mail format, such asmy_name@my_domain_name.
When attackers log into the test application using fake user principal names, the machine learning system can
use this feature to detect it.

Manuscript submitted to ACM



885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Y. Pan et al.

Fig. 11. SPECjvm2008 Performance Impact for Various Benchmarks and Test Configurations

(3) The number of characters of an argument, e.g., XSS attacks might input some abnormally large argument lengths,
such as http://www.msn.es/usuario/guias123/default.asp?sec=\discretionary{-}{}{}&quot;&gt;&lt;/script&gt;&lt;
script&gt;alert(&quot;Da\discretionary{-}{}{}iMon&quot;)&lt;/script&gt;

(4) Number of domains, which is the number of domains found in the arguments. The arguments can be inserted
with malicious URLs by attackers to redirect the client “victim” to access malicious web sources.

(5) Duplicate special characters. Many web browsers ignore and correct duplicated characters, so attackers can insert
duplicated characters into requests to fool validators.

(6) N-gram. Feature vector was built using the n-gram [Powers 2011] model. The original contents of the arguments
and return values are filtered by Weka’s StringToWordVector tool (which converts plain word into a set of
attributes representing word occurrence) and the results are then applied to make the feature vectors.

After instrumenting the runtime system to generate measurements of the system when it is executing correctly or
incorrectly, supervised approaches use these measurements to build a training data set. In this data set the measurements
are viewed as features that can characterize the correct and incorrect system operation. Machine learning algorithms
use these features to derive models that classify the correctness of the execution state of the system based on a set of
measurements of its execution. When new execution measurements are given to the machine-learned model, algorithms
can be applied to predict whether the previously unseen trace represents a valid execution of the system.

To provide an environment for classification, regression, and clustering we used the following three supervised
machine learning algorithms from the Weka workbench:

• Naive Bayes, whose classification decisions calculate the probabilities/costs for each decision and are widely used
in cyber-attack detection [Buczak and Guven 2015].

• Random forests, which is an ensemble learning method for classification that train decision trees on sub-samples
of the dataset and then improve classification accuracy via averaging. A key parameter for random forest is the
number of attributes to consider in each split point, which are selected automatically by Weka.
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• Support vector machine (SVM), which is an efficient supervised learning model that draws an optimal hyperplane
in the feature space and divides separate categories as widely as possible. RSMT uses Weka’s Sequential Minimal

Optimization algorithm to train the SVM.

Likewise, to reduce variance and avoid overfitting [Opitz and Maclin 1999], we also used the following two aggregate
models:

• Aggregate_vote, which returns ATTACK if a majority of classifiers detect attacks and NOT_ATTACK otherwise.
• Aggregate_any, which returns attack if any classifier detects attacks and NOT_ATTACK otherwise.

5.4.2 Experiment Results. Table 1 and Table 2 show the performance comparison of different machine learning
algorithms on testbed web applications. For the SQL injection attacks, the training dataset contains 160 safe unit tests
and 80 attack unit tests, while the test dataset contains 40 safe unit tests and 20 attack unit tests. The SQL injection
attack samples bypass the test applicationâĂŹs user authentication and include the most common SQL injection attack
types.

Table 1. Machine Learning Models’ Experimental Results for SQL Injection Attacks

Precision Recall F-score
Naive bayes 0.941 0.800 0.865

Random forest 1.000 0.800 0.889
SVM 0.933 0.800 0.889

AGGREGATE_VOTE 1.000 0.800 0.889
AGGREGATE_ANY 0.941 0.800 0.865

The XSS training dataset contains 1,000 safe unit tests and 500 attack unit tests, while the test dataset contains 150
safe unit tests and 75 attack unit tests (XSS attack samples were obtained from www.xssed.com). All three classifiers
are similar in detecting XSS attacks.

Table 2. Machine Learning Models’ Experimental Results for Cross-site Scripting Attacks

Precision Recall F-score
Naive bayes 0.721 1.000 0.838

Random forest 0.721 1.000 0.838
SVM 0.728 1.000 0.843

AGGREGATE_VOTE 0.724 1.000 0.840
AGGREGATE_ANY 0.710 1.000 0.831

5.5 Unsupervised Attack Detection with Deep Learning

5.5.1 Experiment benchmarks. Several techniques can be applied to differentiate benign traffic and attack traffic.
The first is the naive approach, which learns a set of method calls from a training set (obtained by unit test or simulated
legitimate requests). When a new trace is encountered, the naive approach checks if the trace contain any method call
that is never seen from the training set. If there is such method, the trace will be treated as attack trace, otherwise it is
considered safe.

The naive approach can detect attack traces easily since attack traces usually contains some dangerous method
calls that will not be used in legitimate operation. The naive approach, however, also suffer from high false positive
rate since it may not be possible to iterate through all the legitimate request scenarios. A legitimate request may thus
contain some method call(s) that do not exist in the training set, which results in blocking benign traffic.
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A more advanced technique is one-class SVM [Wang et al. 2004]. Traditional SVM solves the two or multi-class
situation. While the goal of a one-class SVM is to test new data and find out whether it is similar to the training data
or not. By just providing the normal training data, one-class classification creates a representational model of this
data. If newly encountered data is too different (e.g., outliers in the projected high-dimensional space), it is labeled as
out-of-class.

5.5.2 Experiment Results. Table 3 and Table 4 compare the performance of different machine learning algorithms on
our two testbed web applications. For the video upload application, the attack threat is SQL injection and XSS. The
results in these tables show that autoencoder outperforms the other algorithms. For the compression application, we
evaluate the detection performance in terms of a deserialization attack. Figure 12 plots the precision/recall/F-score

Fig. 12. Threshold is Chosen with Max F-score.

Table 3. Performance Comparison of Different Machine Learning Algorithms on Video Management Application

Precision Recall F-score
Naive 0.722 0.985 0.831
PCA 0.827 0.926 0.874
One-class SVM 0.809 0.909 0.858
Autoencoder 0.898 0.942 0.914

Table 4. Performance Comparison of Different Machine Learning Algorithms on Compression Application

Precision Recall F-score
Naive 0.421 1.000 0.596
PCA 0.737 0.856 0.796
One-class SVM 0.669 0.740 0.702
Autoencoder 0.906 0.928 0.918
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curve along with threshold value. This figure shows a tradeoff between precision and recall. If a threshold is choosen
that is too low, many normal request will be classified as abnormal, resulting in higher false negative and low recall
score. In contrast, if a threshold is choosen that is too high, many abnormal requests will be classified as normal, leading
to higher false positive and low precision score. To balance precision and recall in our experiements, we choose a
threshold that maximizes the F-score in the labeled training data.

To understand how various parameters (such as training data size, input feature dimension, and test coverage ratio)
affect the performance of machine learning algorithms, we manually created a synthetic dataset to simulate web
application requests. Figure 13 compares the performance of machine learning algorithms with different unlabeled

Fig. 13. Performance of Different Machine Learning Algorithm Under Different Unlabeled Training Data Size.

training data sizes. Since the test case contains method calls that were not presented in the training data, the naive
approach simply treats every request as abnormal, resulting 100% recall, but 0% precision. Both PCA and autoencoder’s
performance improves since we have more training data.

PCA performs better, however, when there is limited training data (below 1,000). The autoencoder needs more
training data to converge, but outperforms the other machine learning algorithms after it is given enough training
data . Our results show the autoencoder generally needs 5,000 unlabeled training data to achieve good performance.
Figure 14 shows the performance of machine learning algorithms under different test coverage ratios. The test coverage
ratio is the percentage of method calls covered in the training dataset. For large-scale web applications, it is impossible
to traverse every execution path and method calls due to the “path explosion problem” [Boonstoppel et al. 2008], where
the number of feasible paths in a program grows exponentially with an increase in program size.

If only a subset of method calls are present in the training dataset, the naive approach or other supervised learning
approaches may classify the legitimate test request with uncovered method calls as abnormal. In contrast, PCA and
autoencoder algorithms can still learn a hidden manifold by finding the similarity in structure instead of exact method
calls. They can thus perform well even given only a subset of coverage for all the method calls.
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Fig. 14. Performance of Different Machine Learning Algorithms Under Different Test Coverage Ratios.

Fig. 15. Performance of Different Machine Learning Algorithms Under Different Input Feature Dimensions.

Figure 15 shows the performance of machine learning algorithms under different input feature dimensions (the
unique feature ratio is kept constant). This figure shows the difference between the autoencoder and other approaches
are not significant when the number of feature is small. As the number of feature increases, however, this gap becomes
larger. The autoencoder shows robust performance even with complicated high dimension input data.

Figure 16 compares the performance of machine learning algorithms under different unique feature ratios. This
figure shows that the performance of the machine learning algorithms improves as the unique feature ratio increases.
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Fig. 16. Performance of Different Machine Learning Algorithm Under Different Unique Feature Ratios.

This result is not surprising because the statistical difference between normal and abnormal requests is larger and
easier to capture. For the autoencoder algorithm at least 2% of unique features are needed in the abnormal requests for
acceptable performance. The experiment was conducted on a desktop with Intel i5 3570 and GTX 960 GPU running
Windows 10. The autoencoder was implemented using Keras 2.0 with a TensorFlow backend.

Table 5 compares the training/classification time for different algorithms. The training was performed with the same
set of 5,000 traces with default parameters specified in Section 4.3. The classification time is the average time to classify
one trace over 1,000 test traces.

The results in Table 5 show that the training time of the deep autoencoder is significant longer than other approaches.
This training need not be performed frequently, however, and can also be done offline. Moreover, existing deep learning
frameworks (such as TensorFlow) support powerful GPUs, which can also significantly accelerate training time.

For the classification time, all machine learning algorithms can perform classification in an acceptable short period
of time with the trained model. Moreover, hardware advances (such as the Tensor Processing Unit [Schneider 2017]) are
bringing high performance and low cost computing resources in the future. Computation cost should thus not be a
bottleneck for future deployments of deep learning to detect web attacks.

Table 5. Comparison of Training/Classification Time for Different Algorithms.

Training Time Classification Time
Naive 51s 0.05s
PCA 2min 12s 0.2s
One-class SVM 2min 6s 0.2s
Autoencoder 8min 24s 0.4s
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6 RELATEDWORK

Intrusion detection systems monitor a network and/or system for malicious activity or policy violations [Di Pietro and
Mancini 2008]. These types of systems have been studied extensively in the literature based on various approaches,
including static analysis [Fu et al. 2007; Wassermann and Su 2008], sequence-based [Sekar et al. 2001; Wagner and Dean
2001], manual modeling [Friedenthal et al. 2014; Scott 2004], and machine learning [Farid et al. 2010; Zolotukhin et al.
2014]. This section describes prior work and compares/contrasts it to our research on RSMT presented in this paper.

6.1 Static Analysis

Static analysis approaches examine an applicationâĂŹs source code and search for potential flaws in its construction
and expected execution that could lead to attack. For example, Fu et al. [Fu et al. 2007] statically analyzed SQL queries
and built grammars representing expected parameterization. Wassermann et al. [Wassermann and Su 2008] presented
a static analysis for detecting XSS vulnerabilities using tainted information flow with string analysis. Kolosnjaji et
al. [Kolosnjaji et al. 2016] proposed an analysis on system call sequences for malware classification.

Statically derived models can also be used at runtime to detect parameterizations of the SQL queries that do not
fit the grammar and indicate possible attack. Static analysis approaches, however, typically focus on specific types of
attacks that are known as a priori. In contrast, RSMT bypasses these various attack vectors and captures the low-level
call graph under the assumption that the access pattern of attack requests will be statistically different than legitimate
requests, as shown in Section 3.

Moreover, many static analysis techniques require access to application source code, which may not be available for
many production systems. Employing attack-specific detection approaches requires building a corpus of known attacks
and combining detection techniques to secure an application. A significant drawback of this approach, however, is that
it does not protect against unknown attacks for which no detection techniques have been defined. In contrast, RSMT
models correct program execution behaviors and uses these models to detect abnormality, which works even if attacks
are unknown, as shown in Section 4.

6.2 Sequence-based

Sequence-based anomaly detection approaches [Sekar et al. 2001; Wagner and Dean 2001] either try to model the call
sequences as a finite-state automaton (FSA), HiddenMarkovModels (HMM) [Warrender et al. 1999] or N-gram [Hofmeyr
et al. 1998]. FSA can capture common program structures such as loops or branches and predict future behaviors from
past behaviors. Although sequence-based approaches achieved early success, their time complexity is high.

It has also been shown that there is no polynomial time algorithm for learning an optimal FSA [Kearns and Valiant
1994]. N-gram [Hofmeyr et al. 1998] breaks a system call sequence into subsequences of fixed length N. The limitation
of N-gram, however, is the number of N-gram grow exponentially with N. N must therefore be small, though a small N
makes the algorithm ineffective at capturing long-term correlations. Moreover, the false alarm rate is high for N-gram
because it cannot generalize to any N-gram that are not present in the training dataset.

6.3 Manual Modeling

Manual modeling relies on designers to annotate code or build auxiliary textual or graphical models to describe expected
system behavior. For example, SysML [Friedenthal et al. 2014] is a language that allows users to define parametric
constraint relationships between different parameters of the system to indicate how changes in one parameter should
propagate or affect other parameters. Scott [Scott 2004] proposed a Bayesian model-based design for intrusion detection
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systems. Ilgun et al. [Ilgun et al. 1995] used state transitions to model the intrusion process and build a rule-based
intrusion detection system.

Manual modeling is highly effective when analysis can be performed on models to simulate or verify that error
states are not reached. Although expert modelers can manually make errors, many errors can be detected via model
simulation and verification. A key challenge of using manual modeling alone for detecting cyber-attacks, however, is
that it may not fully express or capture all characteristics needed to identify the attacks. Since manual models typically
use abstractions to simplify their usage and specification of system properties, these abstractions may not provide
sufficient expressiveness to describe properties needed to detect unknown cyber-attacks. Our deep learning approach
uses RSMT to analyze raw request trace data without making any assumption of the relationships or constraints of the
system, thereby overcoming limitations with manual modeling, as shown in Section 3.

6.4 Machine Learning

Machine learning approaches require instrumenting a running system to measure various properties (such as execu-
tion time, resource consumption, and input characteristics) to determine when the system is executing correctly or
incorrectly due to cyber-attacks, implementation bugs, or performance bottlenecks. For example, Farid et al. [Farid
et al. 2010] proposed an adaptive intrusion detection system by combining naive bayes and decision tree. Zolotukhin et
al. [Zolotukhin et al. 2014] analyzed HTTP request with PCA, SVDD, and DBSCAN for unsupervised anomaly detection.
Likewise, Shar et al. [Shar et al. 2015] used random forest and co-forest on hybrid program features to predict web
application vulnerabilities.

Anomaly detection is another machine learning [Chandola et al. 2009] application that addresses cases where
traditional classification algorithms work poorly, such as when labeled training data is imbalanced. Common anomaly
detection algorithms include mixture Gaussian models, support vector machines, and cluster-based models [Leung and
Leckie 2005]. Likewise, autoencoder techniques have shown promising results in many anomaly detection tasks [Erfani
et al. 2016; Sakurada and Yairi 2014; Xiong and Zuo 2016].

Our RSMT-baesd approach described in this paper uses a stacked autoencoder to build an end-to-end deep learning
system for the intrusion detection domain. The accuracy of conventional machine learning algorithms [Farid et al.
2010; Shar et al. 2015] rely heavily on the quality of manually selected features, as well as the labeled training data. In
contrast, our deep learning approach uses RSMT to extract features from high-dimensional raw input automatically
without relying on domain knowledge, which enables it to achieve better detection accuracy with large training data,
as shown in Section 5.5.

7 CONCLUSIONS

This paper describes the architecture and results of applying a unsupervised end-to-end deep learning approach to
automatically detect attacks on web applications. We instrumented and analyzed web applications using the Robust
Software Modeling Tool (RSMT), which autonomically monitors and characterizes the runtime behavior of web
applications. We then applied a denoising autoencoder to learn a low-dimensional representation of the call traces
extracted from application runtime. To validate our intrusion detection system, we created several test applications and
synthetic trace datasets and then evaluated the performance of unsupervised learning against these datasets.

The following are key lessons learned from the work presented in this paper:
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• Autoencoders can learn descriptive representations from web application stack trace data. Normal and
anomalous requests are significantly different in terms of reconstruction error with representations learned by autoen-
coders. The learned representation reveals important features, but shields application developers from irrelevant details.
The results of our experiments in Section 5.5 suggest the representation learned by our autoencoder is sufficiently
descriptive to distinguish web request call traces.

• Unsupervised deep learning can achieve over 0.91 F1-score in web attack detection without using do-
main knowledge. By modeling the correct behavior of the web applications, unsupervised deep learning can detect
different types of attacks, including SQL injection, XSS or deserialization with high precision and recall. Moreover, less
expertise and effort is needed since the training requires minimum domain knowledge and labeled training data.

• End-to-end deep learning can be applied to detect web attacks. The accuracy of the end-to-end deep learning
can usually outperform systems built with specific human knowledge. The results of our experiments in Section 5.5
suggest end-to-end deep learning can be successfully applied to detect web attacks. The end-to-end deep learning
approach using autoencoders achieves better performance than supervised methods in web attack detection without
requiring any application-specific prior knowledge.

In future work, we plan to investigate more complex network structures such as LSTM autoencoders or autoencoders
with CNNs. We would like to see whether these structures can provide better accuracy for web attack detection tasks.
Also, we plan to develop mechanisms to distribute the machine learning analysis workload across remote machines and
support coordinated distributed detection across hosts.
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