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Abstract This paper makes three contributions to research on QoS-enabled middleware for open distrib-

uted real-time embedded (DRE) systems. First, it describes the design and implementation of a 
dynamic scheduling  framework based on the OMG Real-Time CORBA 1.2 specification 
(RTC1.2) that provides capabilities for (1) propagating QoS parameters and a locus of execu-
tion across endsystems via a distributable  thread abstraction and (2) enforcing the scheduling 
of multiple  distributable threads dynamically using standard CORBA middleware. Second, it 
examines the results of empirical studies that show how adaptive dynamic scheduling and man-
agement of distributable threads can be enforced efficiently in standard middleware for open 
DRE systems. Third, it presents results from case studies of multiple adaptive middleware QoS 
management technologies to monitor and control the quality, timeliness, and criticality of key 
operations adaptively in a representative DRE avionics system. 
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1 Introduction 
Emerging trends and challenges for DRE systems and 
middleware. Developing distributed real-time and em-
bedded (DRE) systems whose quality of service (QoS) 
can be assured even in the face of changes in available 
resources or in applications’  QoS requirements is an 
important and challenging R&D problem.  QoS-enabled 
middleware has been applied successfully to closed DRE 
systems where the set of tasks that will run in the system 
and their requirements for system resources are known in 
advance.  For example, middleware based on the Real-
time CORBA 1.0 (RTC1) standard [1] supports statically 
scheduled DRE systems (such as avionics mission com-
puters and industrial process controllers) in which task 
eligibility can be mapped to a fixed set of priorities. 

For an important emerging class of open DRE systems 
(such as adaptive audio/video streaming [2], collaborative 

mission replanning [3], and robotics applications de-
signed for close interaction with their environments [4]), 
however, it is often not possible to know the entire set of 
application tasks that will run on the system, the loads 
they will impose on system resources in response to a 
dynamically changing environment, or the order in which 
the tasks will execute.  This dynamism can occur because 
the number of combinations in which application tasks 
can be mapped to system resources is too large to com-
pute efficiently or because task run-time behaviors are 
simply too variable to predict accurately.  In either case, 
open DRE systems must be able to adapt dynamically to 
changes in resource availability and QoS requirements. 

Assuring effective QoS support in the face of dynamically 
changing requirements and resources, while keeping 
overhead within reasonable bounds, requires a new gen-
eration of middleware mechanisms. In particular, the 
following are important limitations with applying RTC1 
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middleware capabilities to open DRE systems (e.g., by 
manipulating task priorities dynamically at run-time): 
• Limits on the number of priorities supported by com-

mon-off-the-shelf (COTS) real-time operating sys-
tems can reduce the granularity at which dynamic 
variations in task eligibility can be enforced.  

• Without middleware-mediated mechanisms for en-
forcing QoS, the application itself must provide pri-
ority manipulation mechanisms, which is tedious and 
error-prone for DRE system developers.  

• Without open, well-defined, and replaceable schedul-
ing mechanisms within the middleware itself, it is 
hard to integrate middleware features closely for bet-
ter performance or to customize  QoS enforcement 
policies so they meet the needs of each application. 

Solution approach 
�� ��

 Adaptive DRE middleware via 
dynamic scheduling. The OMG Real-Time CORBA 1.2 
specification (RTC1.2) [5] addresses limitations with the 
fixed-priority mechanisms specified in RTC1 by -
introducing two new concepts to Real-time CORBA: (1) 
distributable threads that are used to map end-to-end QoS 
requirements to distributed computations across the 
endsystems they traverse and (2) a scheduling service 
architecture that allows applications to choose which 
mechanisms enforce task eligibility. To facilitate the 
study of standards-based dynamic scheduling middleware, 
we have implemented a RTC1.2 framework that enhances 
on our prior work with The ACE ORB (TAO) [6] (a 
widely-used open-source implementation of Real-time 
CORBA 1.0 [1]) and its Real-time Scheduling Service  
(which supports both static [7] and dynamic scheduling 
[8]). This paper describes how we designed and opti-
mized the performance of our RTC1.2 Dynamic Schedul-
ing framework to address the following design challenges 
for adaptive DRE systems:  
• Defining a means to install pluggable schedulers that 

support more adaptive scheduling policies and 
mechanisms for a wide range of DRE systems, 

• Creating an interface that allows customization of 
interactions between an installed RTC1.2 dynamic 
scheduler and an application, 

• Portable and efficient mechanisms for distinguishing 
between distributable vs. OS thread identities, and 

• Safe, effective mechanisms for controlling distributed 
concurrency, e.g., for canceling distributable threads. 

The results of our efforts have been integrated with the 
TAO open-source software release and are available from 
deuce. doc. wust l . edu/ Downl oad. ht ml . 

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 describes the RTC1.2 speci-
fication and explains the design of our RTC1.2 frame-
work, which has been integrated with the TAO open-
source Real-time CORBA object request broker (ORB); 

Section 3 presents micro-benchmarks we conducted to 
quantify the costs of dynamic scheduling of distributable 
threads in our RTC1.2 framework and also presents two 
broader case studies of applying key dynamic scheduling 
mechanisms to DRE avionics applications; Section 4 
compares our work with related research; and Section 5 
offers concluding remarks. 

2 A Dynamic Scheduling Framework 
for Real-Time CORBA 1.2  

This section outlines the RTC1.2 specification and de-
scribes how the RTC1.2 dynamic scheduling framework 
we integrated with TAO helps with the development of 
adaptive systems.   
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Figure 1: TAO’s RTC1.2 Architecture 

As shown in Figure 1, the key elements of TAO’s RTC1.2 
framework are:  
1. Distributable threads, which applications use to trav-

erse endsystems along paths that can be varied on-
the-fly based on ORB- or application-level decisions, 

2. Scheduling segments, which map policy parameters 
to distributable threads at specific points of execution 
so that new policies can be applied and existing poli-
cies can be adapted at finer granularity, 

3. Current execution locus, which is the head of an 
active distributable thread that acts much like the 
head of an application or kernel thread, i.e., it can 
take alternative decision branches at run-time based 
on the state of the application or supporting system 
software,  

4. Scheduling policies, which determine the eligibility 
of each thread based on parameters of the scheduling 
segment within which that thread is executing, and 

5. Dynamic schedulers, which reconcile and adapt the 
scheduling policies for all segments and threads to 
determine which thread is active on each endsystem. 

Distributable threads help enhance the adaptivity of DRE 
systems by providing an effective abstraction for manag-
ing the lifetime of sequential or branching distributed 
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operations dynamically. The remainder of this section 
explains the concepts of distributable threads and the 
adaptive management of their real-time properties 
through the pluggable scheduling framework specified by 
RTC1.2.  This section also outlines the design of these 
concepts in TAO’s RTC1.2 framework implementation.  
We describe scheduling points, which govern how and 
when scheduling parameter values can be mapped to 
distributable threads.  We also discuss issues related to 
distributable thread identity and examine the interfaces 
and mechanisms needed to cancel distributable threads 
safely. 

2.1 Distributable Threads 

DRE systems must manage key resources, such as CPU 
cycles and network bandwidth, to ensure predictable 
behavior along each end-to-end path.  In RTC1-based 
static DRE systems, end-to-end priorities can be acquired 
from clients, propagated with invocations, and used by 
servers to arbitrate access to endsystem resources.  For 
dynamic DRE systems, the fixed-priority propagation 
model provided by RTC1 is insufficient because more 
information than priority is required, e.g., they may need 
deadline/execution time and the values of these parame-
ters may vary during system execution.  A more sophisti-
cated abstraction is therefore needed to identify the most 
eligible schedulable entity, and additional scheduling 
parameters may need to be propagated with each entity so 
it can be scheduled properly.  

The RTC1.2 specification defines a programming model 
abstraction called a distributable thread, which can span 
multiple endsystems and is the primary schedulable entity 
in RTC1.2-based DRE systems. Each distributable thread 
in RTC1.2 is identified by a unique system wide identifier 
called a Globally Unique Id (GUID ) [10]. A distributable 
thread may also have one or more execution scheduling 
parameters, e.g., priority, deadline time-constraints, and 
importance. These parameters are used by RTC1.2 sched-
ulers for resource arbitration, and also convey acceptable 
end-to-end timeliness bounds for completing sequences of 
operations in CORBA object instances that may reside on 
multiple endsystems.  

On each endsystem, a distributable thread is mapped onto 
the execution of a local thread provided by the OS. At a 
given instant, each distributable thread has only one exe-
cution point in the whole system, i.e., a distributable 
thread does not execute simultaneously on multiple 
endsystems it spans.  Instead, it executes a code sequence 
consisting of nested distributed and/or local operation 
invocations, similar to how a local thread makes a series 
of nested local operation invocations.   

Below, we describe the key capabilities of distributable 
threads in the RTC1.2 specification, explain how we 

implement these capabilities in TAO, and identify their 
relevance to adaptive DRE systems. 

Scheduling segment. A distributable thread comprises 
one or more scheduling segments, which is a code se-
quence whose execution is scheduled according to a set of 
application-specified scheduling parameters, e.g., worst-
case execution time, deadline, and criticality of a real-
time operation is used by the Maximum Urgency First 
(MUF) [4] scheduling strategy. These parameters can be 
associated with a segment encompassing that operation on 
a particular endsystem, e.g., as shown for segment B in 
Figure 1. The code sequence that a scheduling segment 
comprises can include remote and/or local operation 
invocations.    It is possible to adapt the values of pa-
rameters for the current scheduling policy within a given 
scheduling segment, but to adapt the policy itself, a new 
scheduling segment must be entered. 

The Current interface.  The RTSchedul i ng mod-
ule’s Cur r ent  interface defines operations on schedul-
ing segments, including beginning scheduling segments 
(begi n_schedul i ng_segment ( ) ), updating the 
values of their parameters (updat e_schedul i ng_ 
segment ( ) ), and ending them (end_schedul i ng_ 
segment ( ) ), as well as to create (spawn( ) ) distribut-
able threads [9].  Each scheduling segment keeps a unique 
instance of its Cur r ent  object in local thread specific 
storage (TSS) [11] on each endsystem along the path of 
the distributable thread.  Each nested scheduling segment 
keeps a reference to the Cur r ent  instance of its enclos-
ing scheduling segment.  

Distributable thread location. Now that we have ex-
plained the terminology and interfaces for distributable 
threads, we can illustrate how the pieces fit together. A 
distributable thread may be entirely local to a host or it 
may span multiple hosts by making remote invocations. 
Figures 2 and 3 illustrate the different spans that are pos-
sible for distributable threads.   
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Figure 2: Distributable Threads and Hosts They Span 

In these figures, calls made by the application are shown 
as solid dots, while calls made within the middleware (by 
interceptors, which are used to install upcalls to other 
services within mechanisms on the end-to-end method 
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invocation path [11]) are shown as shaded rectangles. 
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Figure 3: Ways to Spawn a Distributable Thread 

In Figure 2, DT1 makes a twoway invocation on an object 
on a different host and also has a nested segment started 
on Host 2 (BSS-B to ESS-B within BSS-A to ESS-A). 
DT2 and DT3 are simple distributable threads that do not 
traverse host boundaries. DT2 has a single scheduling 
segment (BSS-C to ESS-C), while DT3 has a nested 
scheduling segment (BSS-E to ESS-E within BSS-D to 
ESS-D).  In Figure 3, DT2 is created by the invocation of 
the RTSchedul i ng: : Cur r ent : : spawn( )  opera-
tion within DT1, while DT4 is implicitly created on Host 
2 to service a oneway invocation. DT4 is destroyed when 
the upcall completes on Host 2. 

2.2 Pluggable Scheduling 
 

Different distributable threads in a DRE system contend 
for shared resources, such as CPU cycles. To support the 
end-to-end QoS demands of open DRE systems, it is 
imperative that such contention be resolved predictably – 
yet the conditions under which that occurs may vary sig-
nificantly at run-time.  This tension between dynamic 
environments and predictable resource management ne-
cessitates scheduling and dispatching mechanisms for 
these entities that are (1) based on the real-time require-
ments of each individual system, and (2) sufficiently 
flexible to be applied adaptively in the face of varying 
application requirements and run-time conditions. The 
pluggable scheduling mechanisms in RTC1.2 help make 
DRE systems more adaptive since different scheduling 
strategies can be integrated corresponding to different 
application use cases and needs. In the RTC1.2 specifica-
tion, a pluggable scheduling policy decides the sequence 
in which the distributable threads should be given access 
to endsystem resources and the dispatching mechanism 
grants the resources according to the sequence decided by 
the scheduling policy. 

Various scheduling disciplines exist that require different 
scheduling parameters, such as MLF [4], EDF [12], MUF 
[4], or RMS+MLF [13]. One or more of these scheduling 
disciplines (or any other discipline the system developer 
chooses) may be used by an open DRE system to fulfill 

its scheduling requirements. Supporting this flexibility 
requires a mechanism by which different dynamic sched-
ulers (each implementing one or more scheduling dis-
ciplines) can be plugged into an RTC1.2 implementation.  

The RTC1.2 specification provides an IDL interface, 
RTSchedul i ng: : Schedul er , that has the semantics 
of an abstract class from which specific dynamic sched-
uler implementations can be derived. In RTC1.2, the 
dynamic scheduler is installed in the ORB and can be 
queried by passing the string “ RTSchedul er ”  to the 
standard ORB: : r esol ve_i ni t i al _r ef er ences ( )  
operation. The RTSchedul i ng: : Manager  interface 
allows the application to install custom dynamic schedul-
ers and obtain a reference to the one currently installed. 
The RTSchedul er _Manager  object can be obtained 
by passing the string “ RTSchedul er _Manager ”  to 
the ORB: r esol ve_i ni t i al _r ef er ences( )  op-
eration. The application then interacts with the installed 
RTC1.2 dynamic scheduler using operations defined in 
the RTSchedul i ng: : Schedul er  interface described 
in Section 2.3. 

2.3 Scheduling Points 

To schedule distributable threads in a DRE system, an 
application and ORB interact with the RTC1.2 dynamic 
scheduler at well-defined points shown in Figure 4.   
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Figure 4: RTC1.2 Scheduling Points 

These points can be defined a priori in more static sys-
tems, while in adaptive systems, the traversal of these 
points can be placed under adaptive control by the distri-
butable threads, as described in Section 2.1.  These 
scheduling points allow an application and ORB to pro-
vide the RTC1.2 dynamic scheduler up-to-the-instant 
information about the competing tasks in the system, so it 
can make scheduling decisions in a consistent, pre-
dictable, and adaptive manner. Scheduling points 1-3 in 
Figure 4 are points where an application interacts with the 
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RTC1.2 dynamic scheduler. The key application-level 
scheduling points and their characteristics are described 
below. 

New distributable threads and segments. When a new 
scheduling segment or new distributable thread is created, 
the RTC1.2 dynamic scheduler must be informed so that 
it can schedule the new segment. The RTC1.2 dynamic 
scheduler schedules the new scheduling segment based on 
its parameters and those of the active scheduling seg-
ments for other distributable threads in the system.  This 
occurs whenever code outside a distributable thread calls 
begi n_new_schedul i ng_segment ( )  to create a 
new distributable thread, or when code within a distribut-
able thread calls begi n_nest ed_schedul i ng_ 
segment ( )  to create a nested scheduling segment. 

Changes to scheduling segment parameters. When 
Cur r ent : : updat e_schedul i ng_segment ( )  is 
invoked by a distributable thread to adapt its scheduling 
parameters, it updates scheduling parameters of the corre-
sponding scheduling segment by calling Schedul er : :  
updat e_schedul i ng_segment ( ) . 

Termination of a scheduling segment or distributable 
thread. The RTC1.2 dynamic scheduler should be called 
when Cur r ent : : end_schedul i ng_segment ( )  is 
invoked by a distributable thread to end a scheduling seg-
ment or when a distributable thread is cancelled, so it can 
reschedule the system accordingly.  Hence, the Cur r ent  
: : end_schedul i ng_segment ( )  operation invokes 
the end_schedul i ng_segment ( )  operation on the 
RTC1.2 dynamic scheduler to indicate when the outer-
most scheduling segment is terminated. The dynamic 
scheduler then reverts the thread to its original scheduling 
parameters. If a nested scheduling segment is terminated, 
the  dynamic scheduler will invoke the Schedul er : :  
end_nest ed_schedul i ng_segment ( )  operation. 
The RTC1.2 dynamic scheduler then ends the scheduling 
segment and resets the distributable thread to the parame-
ters of the enclosing scheduling segment scope.  

A distributable thread can also be terminated by calling 
the cancel ( )  operation on the distributable thread. 
When this call is made, Schedul er : : cancel ( )  is 
called automatically by the RTC1.2 framework, which al-
lows the application to inform the RTC1.2 dynamic 
scheduler that a distributable thread has been cancelled.  

Scheduling points 4-7 in Figure 4 are points where an 
ORB interacts with the RTC1.2 dynamic scheduler, i.e., 
when remote invocations are made between different 
hosts. Collocated invocations occur when the client and 
server reside in the same process. In collocated twoway 
invocations, the thread making the request also services 
the request. Unless a scheduling segment begins or ends 
at that point, therefore, the distributable thread need not 

be rescheduled by the RTC1.2 dynamic scheduler.  

The ORB interacts with the RTC1.2 dynamic scheduler at 
points where the remote operation invocations are sent 
and received. Client- and server-side interceptors are 
therefore installed to allow interception requests as they 
are sent and received. These interceptors are required to 
(1) intercept where a new distributable thread is spawned 
in oneway operation invocations and create a new GUID 
for that thread on the server, (2) populate the service con-
texts, sent with the invocation with the GUID and re-
quired scheduling parameters of the distributable thread, 
(3) recreate distributable threads on the server, (4) per-
form cleanup operations for the distributable thread on 
the server when replies  are sent back to a client for 
twoway operations, and (5) perform cleanup operations 
on the client when the replies from twoway operations are 
received. These interception points interact with the 
RTC1.2 dynamic scheduler so it can make appropriate 
scheduling decisions.  The key RTC1.2 ORB-level sched-
uling points and their characteristics are described below. 

Send request. When a remote operation invocation is 
made, the RTC1.2 dynamic scheduler must be informed 
so it can (1) populate the service context of the request to 
embed the appropriate scheduling parameters of the 
distributable thread and (2) potentially re-map the local 
thread associated with the distributable thread to service 
another distributable thread. As discussed in Section 2.4, 
when the distributable thread returns to that same ORB, it 
may be mapped to a different local thread than the one 
with which it was associated previously. The client 
request interceptor’s send_r equest ( )  operation is 
invoked automatically just before a request is sent, which 
in turn invokes Schedul er : : send_r equest ( )  with 
the scheduling parameters of the distributable thread that 
is making the request. The scheduling information in the 
service context of the invocation enables the RTC1.2 
dynamic scheduler on the remote host to schedule the 
incoming request appropriately. 

Receive request. When a request is received, the server 
request interceptor’s r ecei ve_r equest ( )  operation 
is invoked automatically by the RTC1.2 framework 
before the upcall to the servant is made, which in turn 
calls Schedul er : : r ecei ve_r equest ( ) , passing it 
the received service context that contains the GUID and 
scheduling parameters for the corresponding distributable 
thread. The RTC1.2 dynamic scheduler is responsible for 
unmarshaling the scheduling information in the service 
context that is received. The RTC1.2 dynamic scheduler 
uses this information to schedule the thread servicing the 
request and the ORB requires it to reconstruct a 
RTSchedul i ng: : Cur r ent , and hence a distributable 
thread, on the server. 

Send reply. When a distributable thread returns via a 
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twoway reply to a host from which it migrated, the 
RTC1.2 framework calls the send_r epl y( )  operation 
on the server request interceptor just before the reply is 
sent. This operation in turn calls the Schedul er : :  
send_r epl y( )  operation on the server-side RTC1.2 
dynamic scheduler so it can perform any scheduling of 
the thread  making the upcall as required by the schedul-
ing discipline used so the next eligible distributable 
thread in the system is executed.  

Receive reply. Distributable threads migrate across hosts 
via twoway calls. The distributable thread returns to the 
previous host, from where it migrated, through the reply 
of the twoway request. When the reply is received, the 
RTC1.2 framework calls the client request interceptor’s 
r ecei ve_r epl y( )  operation, which in turn invokes 
Schedul er : : r ecei ve_r epl y( )  on the client-side 
RTC1.2 dynamic scheduler to perform any scheduling 
related decisions required by the scheduling discipline. 

2.4 RTC1.2 Implementation Challenges  

To manage the behavior of distributable threads correctly, 
an RTC1.2 framework must resolve a number of design 
challenges, including (1) transferring ownership of stor-
age, locks and other reserved system resources between 
local threads,  (2) switching execution between distribut-
able threads efficiently on an endsystem when one be-
comes more eligible than the other previously executing 
one, (3) dynamically scheduling and canceling non-criti-
cal operations when an endsystem is overloaded, and (4) 
adjusting operation invocation rates adaptively by coordi-
nating multiple resource management services to avoid 
overload and maximize application benefit. We now 
summarize how TAO’s RTC1.2 framework addresses 
these challenges.  Section 3 then presents benchmarks and 
case studies that evaluate our  solutions. 

Distributable vs. OS thread identity. A key design issue 
with the RTC1.2 specification is that a distributable 
thread may be mapped to several different OS threads on 
each endsystem over its lifetime. Figure 5 illustrates how 
a distributable thread can use thread-specific storage 
(TSS), lock endsystem resources recursively so that they 
can be re-acquired later by that same distributable thread, 
or perform other operations that are sensitive to the iden-
tity of the distributable thread performing them. In this 
figure distributable thread DT1 (mapped to OS thread 1) 
writes data into TSS on Host 1 and then migrates to Host 
2. Before DT1 migrates back to Host 1, DT2 migrates 
from Host 2 to Host 1.  For efficiency, flexible con-
currency strategies, such as thread pools [15], may map 
distributable threads to whatever local threads are avail-
able. For example, Figure 5 shows DT2 mapped to OS 
thread 1 and when DT1 migrates back to Host 1 it is 
mapped to OS thread 2. 

Host 1 Host 2

OS
Thread

1

DT 1

tss_write

tss_read

OS
Thread

2

OS
Thread

1

DT 2

 

Figure 5: TSS with Distributable Threads 

Problems can arise when DT1 wants to obtain the infor-
mation it previously stored in TSS. If OS-level TSS was 
used, OS thread 2 cannot access the TSS for OS thread 1, 
so DT1’s call to t ss_r ead( )  in Figure 5 will fail. 
Moreover, OS-level TSS does not offer a way to substi-
tute the OS thread identity used for a TSS call, even tem-
porarily. To resolve these problems, a notion of distri-
butable thread identity is needed that is separate from the 
identities of OS threads.  Likewise, mechanisms are 
needed that use distributable thread GUIDs rather than 
OS thread IDs, resulting in an emulation of OS mecha-
nisms in middleware that can incur additional overhead, 
which we  quantify in Section 3.1. 

Efficient and portable distributable thread dispatch-
ing.  Two competing design forces – efficiency and port-
ability – impact the decision of which dispatching mecha-
nisms are the most suitable for distributable threads.  
Dispatching using OS thread priorities can offer low 
overhead for each individual context switch between 
threads.  If a large number of thread schedule reordering 
decisions must be made, however, the OS thread priority 
approach may incur more calls from user space to the 
kernel (e.g., to manipulate thread priorities) and result in 
more context switches overall.  Conversely, middleware-
based reordering of distributable threads (e.g., in dis-
patching queues using condition variables to signal execu-
tion of a thread) may reduce the number of expensive 
calls from user space to the kernel, but may not offer as 
fine-grained control over dispatching as the kernel.  Since 
some operating systems limit the number of thread priori-
ties that can be assigned, middleware-based dispatching 
can also be more portable, especially for systems with 
very fine-grained adaptation requirements [20].   We 
compare the relative costs of middleware and OS dis-
patching approaches in Section 3.1. 

Cancellation of operations and distributable threads. 
In addition to the issue of canceling entire distributable 
threads [9], the issue of canceling (and then possibly 
retrying) individual operations performed by distributable 
threads is also essential to consider in adaptive systems 
using dynamic scheduling techniques.  For example, if an 
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individual operation in an end-to-end invocation chain 
will miss an interim local deadline on a particular endsys-
tem, then dynamic schedulers in the RTC1.2 framework 
must be able to decide whether to cancel (and possibly 
retry) the operation or to allow it to execute anyway.   If 
the operation is cancelled and retried, the distributable 
thread may miss its end-to-end deadline, but can free up 
the CPU so that other distributable threads may still meet 
their deadlines.  We present results of our empirical stud-
ies of this issue for an avionics application in Section 3.2. 

Efficient adaptive rescheduling of operation rates.  In 
addition to mechanisms that support cancellation of indi-
vidual distributable thread operations, adaptation of pa-
rameters (such as the invocation rate of each distributable 
thread) can increase a DRE system’s ability to adapt to 
changing application QoS requirements or resource avail-
ability.  This adaptivity is especially important in DRE 
systems using multiple layers of QoS management, where 
dynamic schedulers in the RTC1.2 framework can give 
higher QoS management layers a wider range of options 
for manipulating scheduling behavior at run-time.  Sec-
tion 3.3 describes such a multi-layer QoS management 
architecture and present results of studies of the interac-
tions between dynamic schedulers and QoS managers. 

3 Empirical Evaluation of RTC1.2   
Dynamic Scheduling Issues in TAO  

The studies in this section quantify the overhead of 
TAO’s RTC1.2 dynamic scheduling framework and the 
effectiveness of key dynamic scheduling mechanisms. We 
first present micro-benchmarks of our RTC1.2 implemen-
tation described in Section 2.  We also describe two case 
studies that apply our dynamic scheduling middleware in 
the context of real-time avionics computing systems run-
ning on production computing, communication, and avi-
onics hardware.  The first case study examines the effects 
of applying cancellation mechanisms to non-critical real-
time operations and the second case study examines the 
performance of adaptive operation rate re-scheduling in a 
multi-layered resource management architecture for real-
time image transfer. 

3.1 Micro-benchmark Results 

We conducted two micro-benchmarks to asses the per-
formance of our RTC1.2 framework for different classes 
of DRE systems.  These studies examined two primary 
concerns: the overhead of thread ID management and the 
responsiveness of distributable thread scheduling. 

Overhead of thread ID management. Section 2.4 de-
scribes the challenges associated with emulating distri-
butable thread identity via thread-specific storage (TSS) 
in middleware, rather than using OS-level TSS support. 

To quantify the additional overhead of TSS support in 
middleware, we conducted several experiments to com-
pare and contrast the cost of creating TSS keys, and writ-
ing and reading TSS data on a single endsystem.  

The experiments were conducted on a single-CPU 2.8 
GHz Pentium 4 machine with 512KB cache and 512Mb 
RAM, running Red Hat Linux 9.0 (2.4.18 Kernel) with 
the KURT-Linux patches and using ACE version 5.3.2.  
The experiments were run as root, in the real-time sched-
uling class, and the experimental data were collected 
using the ACE high resolution timer. Experiments to 
assess the cost of TSS key creation were run by iteratively 
creating 500 different keys and measuring the time it took 
to create each one.  The experiment to assess the cost of 
TSS write and read operations repeatedly wrote and then 
read from a storage location associated with one TSS key. 

 slope (nsec/key) y-intercept (nsec) 

Emulated 2.53 2438 

Native OS 1.61 815 

Table 3:  Cost of OS vs. Emulated TSS Key Creation 

Table 3 summarizes the cost of creating the TSS keys, 
which our results showed was a linear function of the 
number of keys previously created.  The key creation cost 
in middleware is higher than for creating TSS keys in the 
OS. Moreover, the slope at which the cost of key creation 
in middleware increased with each additional key was 
higher than the slope at which the cost of each additional 
key increased with OS-level TSS support.  Similarly, 
Table 4 summarizes our results for read and write opera-
tions, which showed that the costs of t hese operations 
in middleware TSS emulation were again higher than in 
OS-level TSS, but did not increase with additional calls. 

 read (nsec) 
mean/min/max 

write (nsec) 
mean/min/max 

Emulated 686.2 / 609 / 1203 1292.4 / 1203 / 1893 

Native OS 70.8 / 68 / 101 77.6 / 71 / 130 

Table 4:  Cost of OS vs. Emulated TSS Read/Write Operations 

Dynamic scheduling performance. To examine the 
ability of different scheduling mechanisms to respond 
adaptively to changes in parameters like task importance, 
we plugged two different implementations of the RTC1.2 
Schedul er  interface – a Thread Priority scheduler and 
a Most Important First scheduler – into the TAO ORB to 
test the behavior of its RTC1.2 dynamic scheduling 
framework with different scheduling strategies.  Both 
implementations enforce a scheduling policy that priori-
tizes distributable threads according to their importance.  
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The OS Thread Priority (TP) Scheduler is a RTC1.2 
implementation that schedules the distributable threads by 
mapping each one’s dynamic importance to native OS 
priorities. The onus of dispatching the distributable 
threads is thus delegated to the OS-level thread scheduler, 
according to the native OS priorities assigned to the local 
threads to which the distributable threads are mapped.  
Conversely, the Most Important First (MIF) Scheduler 
uses a ready queue that stores distributable threads in 
order of their importance, with the most important distri-
butable thread that is ready for execution at the head of 
the queue. The local OS thread to which each distribut-
able thread in the queue is mapped then waits on a condi-
tion variable. When a distributable thread reaches the 
head of the queue (i.e., is the next to be executed), the 
MIF scheduler awakens the corresponding local thread by 
signaling the condition variable on which it is waiting. 

The experimental configuration we used to examine both 
the TP and MIF schedulers is identical. The test consisted 
of a set of local and distributed (spanning two hosts) 
distributable threads. The hosts were both running 
RedHat Linux 7.1 in the real-time scheduling class. The 
local distributable threads consisted of threads performing 
CPU bound work for a given execution time. The distrib-
uted distributable threads (1) performed  local CPU 
bound work on the local host, (2) made a remote invoca-
tion performing CPU bound work on the remote host for a 
given execution time, and (3) came back to the local host 
to perform the remaining local CPU bound work.  

Figure 6 shows how distributable threads are scheduled 
dynamically by the MIF scheduler (a nearly identical plot 
was seen for the TP scheduler) as they enter and leave the 
system across multiple hosts by the TP Scheduler and the 
MIF Scheduler respectively. The start times of the distri-
butable threads are offset from T=0 by less than 1 sec, 
which is the time taken to initialize the experiments and 
start the distributable threads. On host 1, DT1 and DT2 
start at time T= 0 and DT3 starts at T=12. Since DT1 is 
of higher importance than DT2 it is scheduled to run first. 
On host 2, DT4 starts at T=0 and is scheduled for execu-
tion as DT5 is not ready to run till T=9. 

After executing for 3 secs DT1 makes a twoway operation 
invocation on host 2 and waits for a reply. DT4 is sus-
pended to allow DT1 to execute on host 2 as DT1 is of 
higher importance. When DT1 is executing on host 2 the 
respective RTC1.2 dynamic scheduler on host 1 continues 
to schedule DT2 on host 1 as it has the highest impor-
tance on host1. DT1 completes execution on host 2 after 
T=3 and returns to host 1 and resumes execution, for 
T=3, after pre-empting DT2. DT4 resumes on host 2. 
DT1 completes its execution cycle of T=9 on host 1. 
Hence, DT2 is scheduled on host 1 for the next 3 secs. On 
host 2 DT5 enters the system at T=9. DT5 pre-empts DT4 

as it is of higher importance and executes for 3 secs. 

 

Figure 6: MIF Scheduler Dispatching Graph 

At T=12 DT2 has completed 6 secs of local execution 
and makes a twoway invocation to host 2. DT3 enters the 
system at T=12 and is scheduled for execution for 3secs. 
On host 2, DT5 completes its cycle of execution and DT4 
is scheduled. DT2 does not get to execute immediately on 
host 2 as DT5 is of higher importance. After DT4 com-
pletes execution on host 2, DT2 is scheduled on host 2 for 
the next 3 secs. DT3 continues execution on host 1. DT2 
completes execution on host 2 and returns to host 1. DT3 
completes its cycle of execution and DT2 is scheduled till 
its cycle of local execution is complete.  Both the TP and 
MIF schedulers use the same scheduling policy based on 
the importance of the distributable threads. The graphs 
are therefore nearly identical, with one important distinc-
tion: in the very last scheduling decision on Host 1 (which 
switched from DT3 back to DT2), a larger delay occurred 
in the MIF scheduler for that switch, as reflected by the 
slope of the line in the graph at T==18 seconds which in 
the TP scheduler (and in all other transitions in both 
schedulers) was essentially vertical on that time scale.   

The experimental results of the TP and MIF schedulers 
show that dynamic scheduling can be achieved with 
TAO’s RTC1.2 framework when distributable threads 
migrate from endsystem to endsystem dynamically. Since 
both the TP and MIF schedulers schedule the distribut-
able threads based on their importance, both graphs are 
nearly identical. The one small but important difference is 
in the times at which the threads are suspended and re-
sumed, due to the context switch time for the MIF sched-
uler (which is at the application level) compared to the TP 
scheduler (which is at the OS level). These results vali-
date our hypothesis that dynamic schedulers implement-
ing different scheduling disciplines and even using differ-
ent scheduling mechanisms can be plugged into TAO’s 
RTC1.2 framework to schedule the distributable threads 
in the system according to a variety of requirements, 



Gill, Krishnamurthy, Schmidt,  Enhancing Adaptivity via Standard  
Pyarali, Mgeta, Zhang, and Torri                            Dynamic Scheduling Middleware 

 9 

while maintaining reasonable efficiency. 

3.2 Case Study 1 
�� ��

 Effects of Cancellation of 
non-Critical Operations 

Overview and configuration. Many complex DRE sys-
tems perform a mixture of critical and non-critical real-
time operations, for which it is desirable to maximize the 
ability of non-critical operations to meet their deadlines, 
while ensuring that all critical operations also meet their 
deadlines.  When the CPU is overloaded (which can hap-
pen all too readily in open systems in dynamic operating 
environments), canceling some operations so that others 
are more likely to meet their deadlines is an important 
strategy for ensuring best use of CPU resources. In our 
first case study, we used an Operational Flight Program 
(OFP) system architecture based upon commercial hard-
ware, software, standards, and practices that supports 
reuse of application components across multiple client 
platforms.  The OFP is primarily concerned with inte-
grating sensors and actuators throughout the aircraft with 
the cockpit information displays and controls used by the 
pilot and other aircraft personnel.  

The  system architecture for our first case study included 
an OFP consisting of approximately 70 operations, the 
Boeing Bold Stroke avionics domain-specific middleware 
layer [16] built upon The ACE ORB (TAO) [6], the TAO 
Reconfigurable Scheduling Service [7,8], and the TAO 
Real-Time Event Service [17], configured for various 
scheduling strategies described in Sections 2 and 3. This 
middleware isolates applications from the underlying 
hardware and OS, enabling hardware or OS advances to 
be integrated more easily with the avionics application.  

We conducted measurements of two key areas of resource 
management: cancellation of non-critical operations that 
are at risk of missing their deadlines, and protecting criti-
cal operations. The analysis below features a comparison 
of two canonical scheduling strategies, the hybrid 
static/dynamic Maximum Urgency First (MUF) [4] strat-
egy, which assigns operations to strict priority lanes ac-
cording to their criticality and then schedules them dy-
namically within each lane according to laxity, and the 
static Rate Monotonic Scheduling (RMS) [12] strategy, 
which assigns operations to priority lanes according to 
their rates of invocation, and schedules each lane in FIFO 
order. Measurements were made on 200 MHz Power PC 
Single Board Computers running VxWorks 5.3. 

Operation cancellation. Figure 7 shows the effects of 
canceling non-critical operations in the MUF hybrid 
static/dynamic scheduling strategy in conditions of CPU 
overload.  

 

Figure 7: Effects of non-Critical Operation Cancellation 

Operation cancellation can potentially help reduce the 
amount of wasted work performed in operations that miss 
their deadlines. This wasted time increases the amount of 
unusable overhead. We observed that while the MUF 
strategy with operation cancellation was more effective in 
limiting the number of operations that were dispatched 
and then missed their deadlines, the number of operations 
that made their deadlines in each case was comparable. 
We attribute this observation to the short execution times 
of several of the non-critical operations. In fact, the varia-
tion with cancellation had slightly lower numbers of non-
critical operations that were successfully dispatched, as 
operation cancellation is necessarily pessimistic.  

Protecting critical operations. We also compared the ef-
fects of non-critical operation cancellation on critical and 
non-critical operations under overload in the hybrid 
static/dynamic MUF and static RMS scheduling strate-
gies. Figure 8 shows the number of deadlines made and 
missed for each strategy.  

 

Figure 8: Effects of Cancellation under Overload Conditions 
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With no operation cancellation, MUF met all of its dead-
lines, while RMS missed between 2 and 6 critical opera-
tions per sample. Moreover, MUF successfully dis-
patched additional non-critical operations. We investi-
gated whether adding operation cancellation might reduce 
the number of missed deadlines for critical operations 
with RMS, by reducing the amount of wasted work. It 
appears, however, that the overhead of operation cancel-
lation actually makes matters worse, with between 6 and 7 
misses per sample, which we interpret to mean that there 
were few opportunities for effective non-critical operation 
cancellation in RMS under the experimental conditions. 

Case study analysis. The results from our first case study 
offer the following insights about the use of adaptive 
middleware to support DRE systems more effectively. 
First, operation cancellation can be an effective way to 
shed tasks that cannot meet their deadlines during re-
source overload. Second, these results indicate that hybrid 
static/dynamic scheduling strategies are more likely to 
benefit from operation cancellation than purely static ones 
since (1) hybrid static-dynamic scheduling strategies 
prioritize critical tasks as a whole over non-critical ones 
and (2) the availability of the CPU to non-critical tasks is 
more variable and more sparse so that more non-critical 
tasks are likely potential candidates for cancellation.  
Moreover, because operation cancellation is necessarily 
pessimistic, it is essential to avoid overestimating the risk 
of operations missing their deadlines, which can result in 
overly aggressive cancellation degrading – rather than 
improving – overall system performance.  As usual, the 
more accurate the information that the cancellation 
mechanism has about deadline failure risks, the more 
accurate its cancellation decisions and the better its effect 
on overall system performance.  

3.3 Case Study 2 
�� ��

 Adaptive Scheduling in 
Multi-level Resource Management 

Overview and configuration. Our second case study 
examines the performance of adaptive rescheduling of 
operation rates within the context of multi-layered re-
source management [20].  We have applied the layered 
resource management architecture shown in Figure 9 to 
provide an open systems “bridge”  between legacy on-
board embedded avionics systems and off-board informa-
tion sources and systems. The foundation of this bridge is 
the interaction of two Real-time CORBA [1] ORBs (TAO 
and ORBExpress) using a pluggable protocol to commu-
nicate over a very low (and variable) bandwidth Link-16 
data network. Higher-level middleware technologies then 
manage key resources and ensure the timely exchange and 
processing of mission critical information. In combina-
tion, these techniques support browser-like connectivity 
between server and client nodes, with the added assurance 
of real-time performance in a resource-constrained and 

dynamic environment.   
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Figure 9: Multi-Level Resource Management Model 

System resource management model. When a client 
operator requests an image, that request is sent from the 
browser application to an application delegate [20], 
which then sends a series of requests for individual tiles 
via TAO over a variable low-bandwidth Link-16 connec-
tion to the server. The delegate initially sends a burst of 
requests to fill the server request queue; it then sends a 
new request each time a tile is received. For each request, 
the delegate sends the tile’s desired compression ratio, 
determined by the progress of the overall image download 
when the request is made.   

On the server, an ORBExpress/RT (www. oi s. com) Ada 
ORB receives each request from the Link-16 connection, 
and from there each tile goes into a queue of pending tile 
requests. A collaboration server pulls each request from 
that queue, fetches the tile from the server’s virtual folder 
containing the image, and compresses the tile at the ratio 
specified in the request. The collaboration server then 
sends the compressed tile back through ORBExpress and 
across Link-16 to the client.  

Server-side environmental simulation services emulate 
additional workloads that would be seen on the command 
and control (C2) server under realistic operating con-
ditions. Back on the client, each compressed tile is re-
ceived from Link-16 by TAO and delivered to a servant 
that places the tile in a queue where it waits to be proc-
essed. The tile is removed from the queue, decompressed, 
and then delivered by client-side operations to Image 
Presentation Module (IPM) hardware which renders the 
tile on the cockpit display. The decompression and IPM 
delivery operations are dispatched by a TAO Event Ser-
vice [17] at rates selected in concert by the RT-ARM [18] 
and the TAO Reconfigurable Scheduler [7,8]. 
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Schedule re-computation latency. We measured sched-
ule recomputation overhead resulting from priority and 
rate reassignment by the TAO Reconfigurable Scheduler. 
Figure 10 plots schedule recomputations while the system 
is performing adaptation of both image tile compression 
and decompression and IPM operation rates, at deadlines 
for downloading the entire image of 48, 42, and 38 sec-
onds. The key insight from these results is that the num-
ber and duration of re-scheduling computations is both 
(1) reduced overall compared to our earlier results [19] 
and (2) proportional to the degree of rate adaptation that 
is useful and necessary for each deadline. 
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Figure 10: Adaptive Schedule Computation Latency 

The main feature of interest in Figure 10 is the downward 
settling of schedule computation times, as ranges of avail-
able rates are narrowed toward a steady-state solution and 
the input set over which the scheduler performs its com-
putation is thus reduced. We also observed a phase tran-
sition in the number of re-computations between the in-
feasible and barely feasible deadlines. If we arrange trials 
in descending order according to the number of re-com-
putations in each, we get 42, 46, 48, 50, 52, 54, and then 
58 seconds, and then finally 38 second and 1 second 
deadlines showed the same minimal number of computa-
tions. The duration of the experiment for the 42 second 
deadline was comparable to that for other deadlines. 

Case study analysis. This case study demonstrates that 
adaptive rescheduling techniques can be applied to adjust 
the rates of operation invocation at run-time in response 
to dynamically varying environments.  The convergence 
of the scheduling behavior toward lower latencies and 
smaller input sets is a good example of desirable adapta-
tion performance in open DRE systems. 

4 Related Work 
The Quality Objects (QuO) distributed object middleware 
is developed at BBN Technologies [20]. QuO is based on 
CORBA and provides (1) run-time performance tuning 
and configuration and (2) feedback based on a control 

loop in which client applications and server objects re-
quest levels of service and are notified of changes in 
service. We have integrated our earlier dynamic schedul-
ing service (Kokyu [23]) with the QuO framework in the 
context of the case study described in Section 3.3. 

The RTC1.2 specification allows pluggable dynamic 
schedulers. However, this means that endsystems, or even 
segments within an endsystem, along an end-to-end path 
could be applying differing scheduling disciplines and 
scheduling parameters. For example, one endsystem 
could order the eligibility of distributable threads per the 
EDF scheduling discipline using deadlines, and another 
per the MUF scheduling discipline using criticality, dead-
lines, and execution times. RTC1.2 does not address the 
issue of interoperability of schedulers on the endsystems 
that a distributable thread spans. Juno [22], a meta-pro-
gramming architecture for heterogeneous middleware 
interoperability, addresses the above issues. It formalizes 
the above problems, defines formalisms to express differ-
ent instances of the problem and maps the formalisms to a 
software architecture based on Real-time CORBA. 

5 Concluding Remarks  
The OMG Real-time CORBA 1.2 (RTC1.2) specification 
defines a dynamic scheduling framework that enhances 
the development of open DRE systems that possess dy-
namic QoS requirements. The RTC1.2 framework pro-
vides a distributable thread capability that can support 
execution sequences requiring dynamic scheduling and 
enforce their QoS requirements based on scheduling 
parameters associated with them. RTC1.2 distributable 
threads can extend over as many hosts as the execution 
sequence may span. Flexible scheduling is achieved by 
plugging in dynamic schedulers that implement different 
scheduling strategies, such as MUF, or RMS+MLF, as 
well as the TP and MIF strategies described in Section 3. 

TAO’s RTC1.2 implementation has addressed broader 
issues than the standard covers, including mapping distri-
butable and local thread identities, supporting static and 
dynamic scheduling, and defining efficient mechanisms 
for enforcing a variety of scheduling policies. We learned 
the following lessons from our experience developing and 
evaluating TAO’s RTC1.2 framework:  

• RTC1.2 is a good beginning towards addressing the 
dynamic scheduling issues in DRE systems. By inte-
grating our earlier work on middleware scheduling 
frameworks [7,8,23] within the RTC1.2 standard, we 
have provided an even wider range of scheduling 
policies and mechanisms. 

• Some features that are implemented for the efficiency 
of thread and other resource management can hinder 
the correct working of the RTC1.2 framework, e.g., 
managing distributable threads is more costly and 
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complicated due to the sensitivity of key mechanisms 
to their identities, as discussed in Section 2.4.  

• System-wide dynamic scheduling is not yet as perva-
sive as fixed-priority static scheduling, which has 
limited the scope of the RTC1.2 specification, e.g., it 
does not yet address interoperability of dynamic 
schedulers on different hosts, but only ensures propa-
gation of scheduling parameters across the hosts it 
spans so it can be scheduled on each host. 

• Empirical case studies based on actual DRE systems 
(such as those presented in Section 4) are essential to 
(1) understand how techniques such as cancellation 
and adaptive rescheduling can be applied effectively 
in complex DRE systems and (2) determine the ap-
propriate role of RTC1.2 mechanisms with respect to 
other middleware mechanisms that could be used. 
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