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Middleware is increasingly being used to develop and
deploy components in distributed real-time and embed-
ded (DRE) systems, such as the NASA sensor web1

composed of networked remote sensing satellites, atmo-
spheric, oceanic, and terrestrial sensors. Such systems
must perform sequences of autonomous coordination and
heterogeneous data manipulation tasks to meet specified
goals [Chien et al., 2005], e.g., accurate weather predic-
tion requires multiple satellites to fly coordinated mis-
sions that collect and analyze large quantities of atmo-
spheric and earth surface data. The utility and quality
of service (QoS) of the task sequences are governed by
dynamic factors, such as data analysis results, changing
goals and priorities, and uncertainties due to changing
environmental conditions.

One way to implement task sequences in DRE systems
is to use component middleware [Heineman and Councill,
2001], which automates remoting, lifecycle management,
system resource management, and deployment and con-
figuration. In large DRE systems, the sheer number of
available components often poses a combinatorial plan-
ning problem for identifying component sequences to
achieve specified goals. Moreover, the dynamic nature of
these systems requires runtime management and modi-
fication of deployed components.

We have developed a novel computationally efficient
algorithm called the Spreading Activation Partial Order
Planner (SA-POP) to support dynamic (re)planning un-
der uncertainty in DRE systems. To handle the comple-
mentary problems of resource allocation and dynamic
control, we combined SA-POP with a Resource Alloca-
tion and Control Engine (RACE) [Shankar et al., 2005].
RACE is a reusable component middleware framework
that separates resource allocation and control algorithms
from the underlying middleware deployment and config-
uration mechanisms to enforce QoS requirements.

To ensure applications do not violate resource con-
straints, SA-POP requires knowledge of each task’s re-
source consumption and execution time. A given task
may be associated with multiple parameterized compo-
nents, each with different resource information. SA-POP
and RACE use a shared task map that maps each task to

1See sensorwebs.jpl.nasa.gov for details.

a set of parameterized components, and their associated
resource information. SA-POP produces a deployment
plan for an application, where each goal is mapped to an
individual operational string, which specifies the tasks,
a suggested implementation for each task, the control
(ordering) dependencies, the data (producer/consumer)
dependencies, and required start and end times for tasks,
if any. Operational strings are the input to RACE, whose
algorithms then (re)deploy components in the string onto
nodes and manage system resource usage and overall per-
formance.

SA-POP operates on a spreading activation net-
work [Bagchi et al., 2000], whose structure captures the
functional relationships between tasks (implemented as
components) and system/environmental conditions (in-
cluding goals). In this network, utility values capture
the importance of desired goals, and probabilities cap-
ture the likelihood of tasks succeeding under different
conditions. Probability values are propagated forward
through the network from preconditions through tasks
to effects. Preconditions and effects can represent both
traditional conditions and data streams, defining sequen-
tial and producer/consumer relationships between tasks.
Utility values are propagated backward through the net-
work from effects through tasks to preconditions, which
allows preconditions of potentially useful tasks to accu-
mulate utility as subgoals. The combination of utility
and probability of success results in an expected utility
value for each task.

As more steps of propagation are performed, SA-
POP’s activation network computes expected utilities
by considering progressively longer sequences of tasks,
as well as utilities associated with multiple goals. When
there is sufficient time for full deliberation, this propaga-
tion is performed until the network has reached a steady
state. If there is only limited time before planning deci-
sions must be made, the spreading activation algorithm
can be stopped at any point, and the operational string
can be generated using the expected utility values com-
puted to that point. The expected utility values may
not be at their optimal value, but they provide a useful
metric for choosing tasks.

SA-POP uses four hierarchical decision points with
backtracking to generate the operational strings. Each



step in the generation of an operational string involves
the following layered decision points:

Goal/Subgoal Choice. SA-POP begins with the mis-
sion goals as the set of open conditions. Since data
manipulation tasks are usually resource intensive and
tend to be concurrent with other data tasks in DRE do-
mains, SA-POP gives priority to data flow conditions.
This heuristic also enables early detection of resource
violations in operational strings.

Task Choice. Task choice is based on expected util-
ity. Tasks with higher expected utilities are preferred,
provided their likelihood of success for the open condi-
tion exceeds a pre-defined threshold. This preference
is a tradeoff between total expected utility, which may
accumulate from multiple goals, and the likelihood of
achieving the subgoal currently under consideration.

Task Instantiation. This step moves from pure plan
generation to task selection that meets stated resource
requirements. SA-POP first determines the change in
potential resource usage for possible components (from
the task map), given current task orderings. The per-
centage decreases in available resource capacities are
summed to provide a resource impact score, and the
component with the lowest score is chosen to implement
the task. This heuristic is comparable to the least con-
straining value heuristic often used in general constraint
satisfaction problems.

Scheduling Decision(s). In tracking resource con-
straints and finding resource violations, SA-POP makes
extensive use of the ordering constraints between
tasks. These constraints are used to create precedence
graphs [Laborie, 2003] that partition all other tasks into
sets based on their ordering with respect to a particular
task under consideration. With this information, SA-
POP applies Laborie’s energy precedence constraint and
balancing constraint techniques [Laborie, 2003] to de-
tect potential resource violations and add other ordering
constraints or limit start/end time windows.

We have integrated the planning capabilities of SA-
POP with RACE allocation and control algorithms.
RACE determines an efficient allocation for deployment
of the operational string generated by SA-POP and mon-
itors the performance of the deployed application. If per-
formance falls below specified QoS requirements, RACE
control algorithms take corrective actions, such as dy-
namically updating task implementations from the task
map, and/or redeploying components to other target
nodes. If these control adaptations cannot correct or
prevent a QoS or resource violation, RACE notifies SA-
POP, and this triggers a plan repair that produces a
revised operational string. This separation of concerns
between SA-POP and RACE allows for more efficient
planning and resource allocation.

Combining the decision-theoretic, resource-
constrained planning of SA-POP with the component
allocation and runtime management of RACE provides
an efficient and scalable architecture for DRE systems
operating in dynamic and uncertain domains. The loose
coupling of SA-POP and RACE enables the generation

of operational strings as a search through a limited
space of potential resource-committed plans, without
considering node-level allocation. Similarly, RACE need
not consider the cascading task choices of planning to
find an allocation of components to available nodes, so
its search space is also limited to a more manageable
size. Moreover, SA-POP only considers the feasibility
of resource allocation and scheduling at a system level,
while RACE considers the harder node-level resource
and allocation optimization problem, but limits it to
the given operational string. We have run experiments
with the SA-POP and RACE system to address data
gathering and analysis for multi-satellite NASA systems
used in weather predictions [Kinnebrew et al., 2007].
The limited size and complexity of the search spaces
used in SA-POP and RACE, as well as the flexibility
afforded by the task map, yields an architecture that
we expect to scale to large planning and allocation
problems, such as a large sensor web, without becoming
intractable.

SA-POP and RACE are open-source software avail-
able from www.dre.vanderbilt.edu/RACE.
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