
Autonomic Adaptation of Publish/Subscribe 
Middleware in Dynamic Environments 

 
 

Joe Hoffert, Aniruddha Gokhale, and Douglas C. Schmidt 
Vanderbilt University, Nashville, TN, USA 

 
 
ABSTRACT 
Quality-of-service (QoS)-enabled publish/subscribe (pub/sub) middleware provides powerful 
support for scalable data dissemination. It is hard, however, to maintain key QoS properties 
(such as reliability and latency) in dynamic environments for distributed real-time and embedded 
(DRE) systems (such as disaster relief operations or power grids). Managing QoS manually is 
often not feasible in dynamic environments due to slow response times, the complexity of man-
aging multiple interrelated QoS settings, and the scale of the systems being managed. For certain 
domains, DRE systems must be able to reflect on the conditions of their environment and adapt 
accordingly in a bounded amount of time. 

This paper describes our architecture of QoS-enabled middleware and corresponding algorithms 
to support specified QoS in dynamic environments. The results of our work show that the mid-
dleware can monitor and adjust to a changing environment while addressing timeliness concerns 
of DRE systems. In particular, the middleware can autonomically determine and implement ap-
propriate adaptations in microseconds. 

Keywords: Publish/Subscribe, Middleware, Autonomic Adaptation, Quality of Service, Dynamic 
Environments 

INTRODUCTION 
Emerging trends and challenges. The use of publish/subscribe (pub/sub) technologies for DRE 
systems has grown in recent years due to the advantages of performance, cost, and scale as com-
pared to single computers (Huang, 2006; Tarkoma, 2006). In particular, pub/sub middleware has 
been leveraged to ease the complexities of data dissemination for DRE systems. Examples of 
pub/sub middleware include the CORBA Notification Service (Ramani, 2001), the Java Message 
Service (JMS) (Monson-Haefel, 2000), Web Services Brokered Notification (Niblett, 2005), and 
the Data Distribution Service (DDS) (Pardo-Castellote, 2003). These technologies support the 
propagation of data and events throughout a system using an anonymous publication and sub-
scription model that decouples event suppliers and consumers. 

Pub/sub middleware is used across a wide variety of application domains, ranging from ship-
board computing environments to cloud computing to stock trading. Moreover, the middleware 
provides policies that affect the end-to-end QoS of applications running in DRE systems. Poli-
cies that are common across various middleware technologies include grouped data transfer (i.e., 
transmitting a group of data atomically), durability (i.e., saving data for subsequent subscribers), 
and persistence (i.e., saving data for current subscribers). 



Even though tunable policies provide fine-grained control of system QoS, several challenges 
emerge when developing pub/sub systems deployed in dynamic environments. Middleware me-
chanisms used to ensure certain QoS properties for one environment configuration may be inef-
fective for different configurations. For example, a simple unicast protocol, such as the User Da-
tagram Protocol (UDP), may address the specified latency QoS when a publisher sends to a 
small number of subscribers. UDP could incur too much latency, however, when used for a large 
number of subscribers due to its point-to-point property, leaving the publisher to manage the 
sending of data to each subscriber. 

Challenges also arise when considering multiple QoS policies that interact with each other. 
For example, a system might need low latency QoS and high reliability QoS, which can affect la-
tency due to data loss discovery and recovery. Certain transport protocols, such as UDP, provide 
low overhead but no end-to-end reliability. Other protocols, such as the Transmission Control 
Protocol (TCP), provide reliability but unbounded latencies due to acknowledgment-based re-
transmissions. Still other protocols, such as lateral error correction protocols (Balakrishnan, 
2005), manage the potentially conflicting QoS properties of reliability and low latency, but only 
provide benefits over other protocols in specific environment configurations. 

It is hard to determine when to switch from one transport protocol to another or modify para-
meters of a particular transport protocol so that desired QoS is maintained. Moreover, manual 
intervention is often not responsive enough for the timeliness requirements of the system. DRE 
systems operate within strict timing requirements that must be met for the systems to function 
appropriately. The problem of timely response is exacerbated as the scale of the system grows, 
e.g., as the number of publishers or subscribers increases. 

Solution approach → Integrated Supervised Machine Learning Techniques and Flexible 
Transport Protocol Management for Timely and Accurate Autonomic Adaptation of DRE 
Pub/Sub Middleware. This article describes how our work (1) monitors environment changes 
that affect QoS, (2) determines in a timely manner which appropriate transport protocol changes 
are needed in response to environment changes, (3) integrates the use of multiple supervised ma-
chine learning techniques to increase accuracy, and (4) autonomically adapts the network proto-
cols used to support the desired QoS. We have prototyped this approach in the ADAptive Mid-
dleware And Network Transports (ADAMANT) platform (as briefly outlined previously (Hof-
fert, 2009-A)) that supports environment monitoring and provides timely autonomic adaptation 
of the middleware. ADAMANT provides the following contributions to research on autonomic 
configuration of pub/sub middleware in dynamic environments: 

• Leveraging anonymous publish and subscribe middleware based on the DDS specification. 
DDS defines topic-based high-performance pub/sub middleware to support DRE systems. 
ADAMANT leverages the middleware to provide environment monitoring information that 
is disseminated throughout the DRE system (e.g., change in sending rate, change in network 
percentage loss) to updates to the environment occur.  

• Multiple supervised machine learning (SML) techniques as a knowledge base to provide fast 
and predictable adaptation guidance in dynamic environments. ADAMANT provides timely 
integrated machine learning (TIML), a novel approach to provide high accuracy and timely 
determination of which SML technique to use for a given operating environment. 

• Configuration of DRE pub/sub middleware based on guidance from supervised machine 
learning. Our ADAMANT middleware uses the adaptive network transports (ANT) frame-



work (Hoffert, 2009-B) to select the transport protocol(s) that best addresses multiple QoS 
concerns for given computing resources. ANT provides an infrastructure for composing and 
configuring transport protocols using modules that provide base functionality (e.g., an IP 
multicast module that handles multicasting the data to the network). Supported protocols in-
clude Ricochet, which uses a variation of forward error correction called lateral error correc-
tion that exchanges error correction information among receivers (Balakrishnan, 2007), and 
NAKcast, which uses negative acknowledgments (NAKs) to provide reliability.  These pro-
tocols enable trade-offs between latency and reliability to support middleware for enterprise 
DRE pub/sub systems. 

This paper extends our prior work (Hoffert, 2010-A, 2010-B) on ADAMANT by exploring 
the architecture and control flow for autonomic adaption of QoS-enabled pub/sub DRE systems. 
Moreover, this paper (1) empirically evaluates TIML to increase accuracy and maintain constant-
time complexity, (2) leverages the DDS pub/sub infrastructure to disseminate environment 
changes to all data senders and receivers, (3) empirically evaluates the bounded response times 
of the ANT framework when adapting transport protocols, and (4) provides an autonomic con-
troller that manages the adaptation of transport protocols to support QoS as the environment 
changes and details how the controller manages the adaptations. The paper is organized as fol-
lows. We start by describing a motivating example and highlighting the challenges. Next, we 
present the structure and functionality of the ADAMANT framework. We then detail and ana-
lyze our experimental results. We compare our work with related research in autonomic adapta-
tion. Finally, we conclude with lessons learned. 

MOTIVATING EXAMPLE: AMBIENT ASSISTED LIVING IN A SMART CITY ENVI-
RONMENT 
This section describes Smart City Ambient Assisted Living (SCAAL) applications, which com-
bine Ambient Assisted Living (AAL) in the context of a smart city. It also presents research chal-
lenges associated with SCAAL applications. SCAAL applications help motivate the need for 
managing QoS interactions and providing timely adjustments of transport protocols for QoS-
enabled pub/sub middleware deployed in dynamic environments. The objective for smart cities is 
to meld computational infrastructure into the surrounding environment and establish ubiquitous, 
context-aware services in a metropolitan area (Chandy, 2007). The purpose of AAL is to increase 
the independence and quality of life for elderly people, while decreasing the need for direct inte-
raction of healthcare workers so they are freed up for other concerns. 

As an example SCAAL scenario depicted in Figure 1, imagine an elderly person is navigating 
a large metropolitan area equipped with multiple technological devices. These devices aid in var-
ious aspects of the person’s ability to be aware of her environment, e.g., mobility, sensory en-
hancement, communication, and monitoring devices. In particular, the elderly person has a his-
tory of heart disease and 3-dimensional high-resolution heart monitoring equipment is periodi-
cally transmitting data. A personal datacenter publishes and subscribes to the data being ma-
naged by the personal devices including the heart monitoring data, and interfaces with the smart 
city by publishing and subscribing to data from the ambient environment. More specifically, 
health care workers, hospitals, and emergency medical services specialists are subscribing to the 
heart monitoring information that is being published. 

 



 
Figure 1: Smart City Ambient Assisted Living (SCAAL) Example 

The personal datacenter operates in a dynamic environment since (1) the elderly person 
moves through space in the smart city and updates personal information in time and (2) the smart 
city enhances and updates the amount and kind of data that it provides as it moves through time. 
Our research focuses on (1) composite metrics to evaluate transport protocols in support of mul-
tiple QoS concerns (such as reliability and low latency for high-resolution 3D heart monitoring 
information), (2) evaluations of multiple transport protocols in different operating environments 
using the composite metrics, (3) support for monitoring the environment, (4) supervised machine 
learning techniques to determine transport protocols that best support the QoS that a personal 
datacenter device must manage in a SCAAL application, and (5) autonomically adapting the 
transport protocols to provide the best QoS given the changes in the environment. Supporting 
autonomic adaptation of the personal datacenter presents the following challenges: 

Challenge 1: Managing interacting QoS requirements. The personal datacenter must man-
age multiple interacting QoS requirements, e.g., data reliability so enough data is received and 
low latency and jitter for soft real-time data so that detailed 3-dimensional heart monitoring data 
arrive before they are needed. For example, the streamed data must be received soon enough so 
that successive dependent data can also be used, such as dependent MPEG B and P frame data 
being received before the next I frame makes them obsolete. Moreover, the personal datacenter 
must balance the interacting QoS requirements with an environment that varies dynamically, 
e.g., number of data senders and receivers, network bandwidth, network packet loss.  Section Ad-
dressing Challenge 1: Managing Interacting QoS Requirements describes how we address this 
challenge by supporting runtime migration and reconfiguration in bounded time of transport pro-
tocols used as the QoS mechanisms to provide needed QoS. 

Challenge 2: Accurate Adaptation. The personal datacenter must be able to adjust to 
changes in the environment accurately. As changes in environment occur (e.g., increases in heart 
data updates, decreases in networking capability, requests for data from additional senders and 
receivers), the personal datacenter must accommodate data needs for data producers and con-
sumers, take advantage of additional resources, or provide access to additional data producers 



and consumers while maintaining QoS. For a given environment configuration, the SCAAL ap-
plication must accurately implement adjustments that are appropriate to the operating environ-
ment. If the personal datacenter cannot make accurate adjustments as the environment changes 
then situation awareness and critical health information could be lost or delayed causing loss of 
orientation or injury to the elderly person. Section Addressing Challenge 2: Accurate Adaptation 
describes how we address this challenge by leveraging DDS to disseminate the environment 
monitoring information needed to determine an accurate adaptation and TIML to accurately de-
termine the appropriate transport protocol. 

Challenge 3: Timely Adaptation. Due to timeliness concerns of DRE systems such as 
SCAAL applications, the personal datacenter must adjust in a timely manner as the environment 
changes. If the personal datacenter cannot adjust quickly enough it will fail to perform ade-
quately and critical data such as 3-D heart information will not be received in time. As the 
amount of data relevant to the SCAAL application fluctuates and the demand for information va-
ries with a corresponding change in the data update rate, the personal datacenter must be confi-
gured to accommodate these changes with appropriate responsiveness to maintain the specified 
quality of service. Configuration changes must not only be timely in general but they must also 
be bounded – and ideally constant time – so that critical information updates (such as health 
monitoring) are not lost or received too late to be of use. Section Addressing Challenge 3: Timely 
Adaptation describes how we address this challenge by using constant-time complexity machine 
learning techniques, constant-time integration of these techniques, and constant-time migration 
of transport protocols. 

Challenge 4: Reducing development complexity. Many elderly people can use a personal 
datacenter to improve their independence. Likewise, the health care industry can benefit from the 
decreased workload for health care providers. A personal datacenter that is developed for one 
particular elderly individual in a particular operating environment, however, might not work well 
for a different elderly individual in a different operating environment with different personal 
equipment. Personal datacenters should therefore be developed and configured readily between 
the different operating environments presented by different metropolitan areas, differences in 
personal equipment, and differences in the data needs of various individuals to leverage the per-
sonal datacenters across a wide range of individuals and locales. Section  Addressing Challenge 
4: Reducing Development Complexity describes how we address this challenge by leveraging 
DDS to disseminate environment updates, and using machine learning to map environment con-
figurations to the appropriate transport protocols.  

STRUCTURE AND FUNCTIONALITY OF ADAMANT 
This section presents the structure and functionality of the ADAMANT middleware platform, 
focusing on its software architecture and control flow. It also describes how ADAMANT ad-
dresses the challenges of SCAAL applications presented in section Motivating Example: Am-
bient Assisted Living in a Smart City Environment. 

Architecture of ADAMANT 
Figure 2 shows ADAMANT’s control flow and logical architecture. This section details the ar-
chitecture of ADAMANT while the following section Control Flow of ADAMANT describes 
how autonomic adaptation is manifested in ADAMANT in each one of the steps illustrated in 
Figure 2. ADAMANT integrates and enhances the following technologies and innovative tech-



niques to provide autonomic adaptation of DRE pub/sub middleware in dynamic environments 
and address the challenges listed in the motivating example section: 

 
Figure 2: ADAMANT Architecture and Control Flow 

• The OMG Data Distribution Service (DDS) is standards-based QoS-enabled pub/sub middle-
ware for exchanging data in event-based DRE systems. It provides a global data store in 
which publishers and subscribers write and read data, respectively. ADAMANT uses DDS to 
provide the infrastructure for disseminating environment monitoring information needed to 
determine accurate adaptations, as well as normal application data, such as the health moni-
toring information in SCAAL applications. DDS enables applications to communicate by 
publishing information they have and subscribing to information they need in real time.  

DDS enables flexibility and modular structure by decoupling; location, via anonymous 
publish/subscribe; redundancy, by allowing any numbers of readers and writers; time, by 
providing asynchronous, time-independent data distribution; and platform, by supporting a 
platform-independent model that can be mapped to different languages (e.g., Java and C++). 

The DDS architecture consists of two layers: (1) the data-centric pub/sub (DCPS) layer 
that provides APIs to exchange topic data based on chosen QoS policies and (2) the data lo-
cal reconstruction layer (DLRL) that makes topic data appear local. Our work focuses on 
DCPS since it is more broadly supported than the DLRL. Moreover, DCPS provides finer 
grained control of QoS. 

The DCPS entities in DDS include topics, which describe the type of data to write or read; 
data readers, which subscribe to the values or instances of particular topics; and data writers, 



which publish values or instances for particular topics. Moreover, publishers manage groups 
of data writers and subscribers manage groups of data readers. Various properties of these 
entities can be configured using combinations of the 22 DDS QoS policies shown in Table 1.  

Table 1: DDS QoS Policies 

DDS QoS Policy Description 
Deadline Specifies rate at which periodic data should be refreshed 
Destination Order Specifies whether data writer or data reader determines order of 

received data 
Durability Specifies if data outlivesthe time when written or read 
Durability Service Specifies how data that outlives a writer, process, or session is 

stored 
Entity Factory Specifies enabling of DDS entities when created 
Group Data Attaches application data to publishers, subscribers 
History Sets how much data is kept for data readers 
Latency Budget Sets guidelines for acceptable end-to-end delays 
Lifespan Sets time bound for “stale” data 
Liveliness Sets liveness properties of topics, data readers, data writers 
Ownership Specifies if multiple data writers can write to same topic instance 
Ownership Strength Sets ownership of topic instance data 
Partition Controls logical partition of data dissemination 
Presentation Delivers data as group and/or in order 
Reader Data Lifecycle Controls data and data reader lifecycles 
Reliability Controls reliability of data dissemination 
Resource Limits Controls resources used to meet requirements 
Time Based Filter Mediates exchanges between slow consumers and fast producers 
Topic Data Attaches application data to topics 
Transport Priority Sets priority of data transport 
User Data Attaches application data to DDS entities 
Writer Data Lifecycle Controls data and data writer lifecycles 

DDS’ rich support for QoS can be applied for application data and for the environment moni-
toring topic that ADAMANT provides (e.g., prioritization for transporting and managing the 
operating environment updates as well as the application data).  

• TIML provides a novel integration of multiple supervised machine learning techniques as a 
knowledge base. This knowledge base, in turn, provides fast and predictable adaptation guid-
ance in dynamic environments. TIML also uses machine learning techniques to manage the 
inherent complexity of providing the appropriate transport protocol recommendation for a 
given operating environment. TIML utilizes perfect hashing (Brodnik, 1994) on the mapping 
of environment configurations to transport protocols to provide constant-time determination 
of which supervised machine learning technique to use for a given environment configura-
tion. In particular, TIML utilizes the GPERF (Schmidt, 2000-A) open-source implementation 
of perfect hashing. 



For our ADAMANT prototype TIML uses several supervised machine learning tech-
niques, including Artificial Neural Networks (ANNs) (Patterson, 1998) to determine in a 
timely manner the appropriate transport protocol for the QoS-enabled pub/sub middleware 
platform given an environment configuration that is known a priori (i.e., used for training). It 
also uses Support Vector Machines (SVMs) (Meyer, 2003) to determine in a timely manner 
the appropriate transport protocol for an environment configuration unknown until run-time 
(i.e., not used for training). 

An ANN is a super-
vised machine learning 
technique modeled on 
neuron interactions in 
the human brain. As 
shown in Figure 3, an 
ANN has an input layer 
for aspects of the oper-
ating environment, e.g., 
percent network loss 
and sending rate. An 
output layer represents 
the solution generated 
based on the input. A 
hidden layer connects the input and output layers. As the ANN is trained on inputs and cor-
respondingly correct outputs, it strengthens or weakens connections between layers to gene-
ralize based on inputs and outputs. 

Figure 3 also shows how an ANN can be configured statically in the number of hidden 
layers and the number of nodes in each layer that directly affects the processing time com-
plexity between the input of operating environment conditions and the output of an appropri-
ate transport protocol and settings. 
This static configuration structure 
supports bounded response times. 

SVMs are supervised learning 
techniques used for classification and 
prediction. An SVM is first given a set 
of training examples where each ex-
ample is denoted as belonging to a 
particular class or grouping. An SVM 
next builds a model that predicts into 
which grouping a new example should 
be categorized. As shown in Figure 4, 
the SVM creates classification boun-
daries between the different clas-
sification groupings to maximize the 
differences between the groupings. 
Leveraging the heuristic of locality, 
this maximization helps to correctly 

 
Figure 4: Maximizing Grouping Differences in a 

Support Vector Machine 
 

 
Figure 3: Artificial Neural Network for Determining Appropriate 

Transport Protocol 



classify new examples that have not been used in training the SVM model, i.e., examples in 
the same group are deemed fairly close to each other in the classification space. Like ANNs, 
SVMs are configured offline during training to exhibit bounded response times at runtime. 

• ADAMANT uses the ANT framework to select the transport protocol(s) that best address 
multiple QoS concerns for a given operating environment. ANT provides infrastructure for 
composing and configuring transport protocols via base modules, such as the IPMulti-
castModule that supports sending out and receiving data using IP Multicast.  These mod-
ules can flexibly and dynamically be connected together by publishing and subscribing to 
event types (e.g., SEND_PACKET_EVENT, GOT_PACKET_EVENT, SEND_NAK_EVENT, 
and GOT_NAK_EVENT). 

ANT supports transport protocols that balance the need for reliability and low latency. For 
example, Ricochet enables trade-offs between latency and reliability to support middleware 
for DRE pub/sub systems involved with dissemination of multimedia data. The ANT frame-
work allows ADAMANT to change and reconfigure transport protocols (including protocol 
parameters) while an application is running. The time complexity for ANT to reconfigure and 
transition between protocols is bounded as needed for DRE systems. 

• A QoS monitoring topic defines the data for environment information relevant to adapting 
transport protocols. ADAMANT leverages DDS to provide this topic dedicated to describing 
the operating environment of an application. This environment information is used to deter-
mine appropriate adaptation of the QoS mechanisms in ADAMANT, namely, the transport 
protocols. Moreover, since ADAMANT leverages DDS to create the environment monitoring 
topic, DDS QoS policies can also be applied to the dissemination of this topic data providing 
fine-grained control as to when and how environment configuration updates are propagated 
in the SCAAL application (e.g., applying DDS’ transport priority QoS policy to health mon-
itoring data to ensure the data has priority over other data on the network). 

• Autonomic control manages the adaptation process. ADAMANT provides an autonomic con-
troller that responds to changes in the operating environment. Whenever environment 
changes are communicated via ADAMANT’s environment monitoring topic, the controller 
passes the changes to TIML to determine the appropriate response. The controller then passes 
TIML’s recommended adaptation to the ANT framework to change the transport protocols 
while the system is running. 

Control Flow of ADAMANT 
ADAMANT supports the Monitor, Analyze, Plan, Execute – Knowledge approach (Huebscher, 
2008), which abstracts the management architecture into the four needed functions of collecting 
data, analyzing the data, creating a plan of action based on the updated data and corresponding 
analysis, and executing the plan. ADAMANT components are physically distributed across the 
computing platforms in the system, e.g., each computing platform has its own identical instan-
tiation of TIML and the autonomic adaptation controller. Since environment configuration 
changes are published to all subscribers via DDS, all local ADAMANT components receive the 
same updates. Since components are deterministic, they generate the same transport protocol to 
use and initiate the same protocol modifications. This distributed architecture enables scalability 
in the number of publishers, subscribers, and computing platforms. 



The first step in ADAMANT’s control flow (shown as 
Step 1 in Figure 2) is receiving changes to the environ-
ment configuration. ADAMANT creates and supports an 
environment monitoring topic to which various applica-
tion data senders and receivers can publish and subscribe, 
respectively. For example, the heart monitoring portion of 
the SCAAL application can publish changes to the envi-
ronment monitor topic when it adjusts its data sending 
rate based on requests from health workers subscribing to 
the data. Likewise, data subscribers can query the envi-
ronment monitor topic for the periodic sending rate of the 
data and then calculate the percent loss in the network by 
dividing the expected number of data updates for a given period with the actual number of up-
dates received.  

Figure 5 shows the data described in environment monitor topic. The data is described in the 
platform-independent interface definition language (IDL) as defined by the OMG. Our prototype 
is interested in the attributes of the environment information shown in Table 2 since the data val-
ues for these aspects are used to determine the most appropriate transport protocol. 

Table 2:QoSMonitoring Attributes 
Attribute Description 
receiver_count The number of receivers currently receiving application data (e.g., 5 

=> 5 receivers receiving application data). 
percent_network_loss The percent packet loss in the network (e.g., 3 => 3% loss of packets 

in the network). 
send_rate_in_Hz The data sending rate for the heart monitoring data in Hz (e.g., 50 => 

sending rate of 50 Hz, i.e., 50 times a second). 
cpu_speed The speed of the CPU being used in MHz (e.g., “2992.883” => CPU 

speed of 2.992883 GHz). For clarity and simplicity, the ADAMANT 
prototype assumes common CPU speeds for all machines used. 

RAM The amount of random-access memory available on the machines be-
ing used in bytes (e.g., “2062172” => 2 GB of RAM). Again, for 
clarity and simplicity, the ADAMANT prototype assumes common 
amount of RAM for all machines used. 

network_speed The speed of the network being used in Mb/sec (e.g., “1000” => 1 
Gb/sec network). 

dds_impl The DDS implementation being used (e.g., “OpenSplice” indicates 
the use of PrismTech’s OpenSplice DDS implementation). For sim-
plicity as a proof of concept, the ADAMANT prototype only current-
ly supports the OpenSplice DDS implementation, though support for 
the other DDS implementations (e.g., OpenDDS or RTI DDS) can 
easily be added. 

composite_metric The composite metric of interest to the application, e.g., “ReLate2”. 
The ReLate2 composite metrics quantitatively evaluate multiple QoS 
properties. For example, the ReLate2 metric combines data reliability 
and latency to produce a single value used for objective comparison. 

 
Figure 5: Environment Monitor Topic 



Other composite metrics include ReLate2Jit that quantitatively eva-
luates data reliability, latency, and jitter; ReLate2Net that evaluates 
reliability, latency, and network bandwidth usage; and ReLate2Burst 
that evaluates reliability, latency, and network data burstiness (Hof-
fert, 2010-A).   

After updates have been made to the environment monitor topic, the autonomic controller 
receives the updated environment configuration (outlined as Step 2 in Figure 2). The autonomic 
controller then compares the new and previous environment configurations. If the configurations 
are different the controller invokes TIML to determine which transport protocol and parameter 
values best support the desired QoS. If the configurations do not differ the autonomic controller 
simply returns since no adaptation is needed. 

Step 3 in Figure 2 shows how TIML receives the new environment configuration and deter-
mines if the configuration is one on which the machine learning techniques have been trained. If 
the machine learning techniques have previously been trained off-line using the configuration, 
TIML uses an ANN to determine the appropriate transport protocol and parameter settings. Since 
we overfitted1

If machine learning techniques have not previously been trained on an environment configu-
ration, however, TIML uses an SVM to determine the appropriate transport protocol and para-
meter settings. Our prior work (Hoffert, 2010-C) shows how an SVM will provide higher accu-
racy for determining the appropriate protocol and parameters than an ANN when the input envi-
ronment configuration was not used during off-line training (i.e., unknown until run-time). The 
overall accuracy of ADAMANT is enhanced by combining the 100% accuracy of an overfitted 
ANN for environment configurations known a priori with the higher accuracy of an SVM for 
environment configurations unknown until run-time. In particular, we see  an increase in accu-
racy of 8.6% combining both an ANN and an SVM, compared to only using an ANN (i.e., 
77.69% average ANN accuracy for environments unknown until run-time compared to 86.29% 
for the SVM = 8.6% increase). 

 the ANN to the training data, the ANN will produce 100% accurate determina-
tions for these known environment configurations.  

Both ANNs and SVM provide constant-time complexity for determining protocols and para-
meters. The mechanism used to determine if the environment configuration have been known a 
priori must therefore also provide constant-time complexity to maintain this time complexity for 
the entire protocol optimization process. TIML utilizes perfect hashing for the environment con-
figurations to determine in constant time whether or not an environment configuration is known 
a priori (i.e., used for training) or unknown until run-time. TIML provides the environment con-
figurations on which the ANN has been trained as keys to the perfect hashing to map to the cor-
responding scaled environment configuration data. If the key is found via the perfect hash the 
TIML knows that the environment configuration has been seen before in off-line training and 
then uses the ANN since it will provide perfect accuracy. If the key is not mapped, then TIML 
will use the SVM since it provides the highest accuracy for environment configurations that are 
unknown until runtime. 

                                                            
1 Overfitted ANNs are specialized for the environments they have seen—and on which they have been trained—
which reduces development complexity and increases accuracy (Dietterich, 1995). 



Once the appropriate transport protocol has been decided, TIML returns this result to the au-
tonomic controller (Step 4 in Figure 2). The controller then compares the recommended transport 
protocol and protocol parameters with the current transport protocol and protocol parameters. If 
there is no difference, the controller need not take any further action. If there are differences be-
tween the current protocol and the recommended protocol, the controller passes the new protocol 
settings to ANT to make the needed adaptation. 

Our ADAMANT prototype uses the OpenSplice DDS implementation, which uses a network-
ing daemon on each machine to send and receive data across machine boundaries. The ANT 
framework resides in the networking daemon since the ANT protocols are used to disseminate 
the application data across the network. The autonomic controller resides in the application ex-
ecutable since it needs to respond to updates in the environment as facilitated by the environment 
monitor topic. For a single computer platform, OpenSplice uses shared memory to communicate 
between the SCAAL application executable and the OpenSplice daemon. Since the daemon runs 
as a separate process from the application executable, some form of interprocess communication 
(IPC) is needed to have the controller inform ANT of the needed protocol changes. 

The form of IPC used when communicating between the autonomic controller and ANT can 
vary depending upon the needs of the application and the IPC mechanisms supported by the op-
erating system. In our ADAMANT prototype the autonomic controller residing in the application 
executable sends a signal to ANT residing in the networking daemon. The OpenSplice network-
ing daemon is enhanced to include a signal handler. In particular, when the controller determines 
the transport protocol must be modified it sends a SIGHUP signal to the networking daemon. 
When the networking daemon processes the SIGHUP signal, the daemon invokes ANT to recon-
figure. ADAMANT utilizes the Component Configurator pattern (Schmidt, 2000-B) for ANT to 
reconfigure itself by constructing the appropriate configuration file and then signaling ANT to 
reconfigure. 

The need for IPC depends upon the DDS implementation. For example, rather than using a 
network daemon, the OpenDDS DDS implementation supports direct point-to-point network 
connectivity between application executables residing on different machines. For ADAMANT 
using OpenDDS, intra-process communication would be needed rather than IPC. ADAMANT 
would set a variable accessible across threads using appropriate locking mechanisms. ANT 
would then wait until the variable was set (e.g., using a condition variable) and reconfigure the 
transport protocol as needed. 

After ANT receives the signal to reconfigure (Step 5 in Figure 2) it determines whether to 
modify an existing transport protocol or switch to a new protocol. ANT keeps track of the cur-
rent transport protocol being used for comparison. If the current protocol must be modified then 
ANT invokes the appropriate methods on the relevant protocol modules to change the protocol 
parameters. If a new protocol must be used ANT first disables the existing protocol and enables 
the new protocol.  

The modules in the ANT framework use pub/sub communication to consume and supply 
events of interest. This approach allows for flexibility in the way modules are connected together 
to create the functionality needed for a particular transport protocol. This approach also allows 
the enabling/disabling of transport protocols simply by registering and unregistering for particu-
lar events. ANT thus unregisters event interest for the modules involved with the old protocol to 



disable the old protocol and registers event interest for the modules involved with the new proto-
col to enable the new protocol. 

Addressing Challenges of SCAAL Applications 
This section describes how ADAMANT addresses the challenges of SCAAL applications pre-
sented in the section Motivating Example: Ambient Assisted Living in a Smart City Environment. 

ADAMANT addresses the challenge of managing interacting QoS requirements by using the 
transport protocols provided by the ANT framework. ANT supports transport protocols that ad-
dress interacting QoS requirements. In particular, it provides the NAKcast and Ricochet transport 
protocols that balance the contentious QoS requirements of data reliability and low latency. As 
shown in previous work (Hoffert, 2009-B), these protocols ameliorate the loss of network data 
packets while imposing low latency overhead. In particular, the NAKcast protocol uses negative 
acknowledgments (a.k.a. NAKs) that the receiver sends to the sender for notification of lost data 
packets. NAKcast provides a tunable timeout parameter to determine when NAKs should be 
sent. The Ricochet protocol supports error correction information that the receivers send to each 
other to recover from lost data packets. Ricochet provides a tunable parameter to determine how 
many data packets need to be received before error correction is sent out. Ricochet also provides 
a tunable parameter to determine how many other receivers receive the error correction informa-
tion from a single receiver. 

Addressing Challenge 1: Managing interacting QoS requirements 

ADAMANT addresses the challenge of accurate adaptation in several ways. First, it leverages 
the use of DDS to provide the infrastructure to disseminate the environment monitoring infor-
mation needed to determine an accurate adaptation. Second, it uses TIML to provide an integra-
tion of multiple supervised machine learning techniques to provide high accuracy for both oper-
ating environments known a priori and operating environments unknown until runtime. TIML 
supports accurate adaptation guidance in dynamic environments by using the most accurate ma-
chine learning technique for operating environments known a priori (i.e., ANNs) integrated with 
the most accurate technique for operating environments unknown until runtime (i.e., SVMs). 
Third, ADAMANT’s autonomic controller ensures accuracy by managing the adaptation process 
of receiving environment updates, delegating this information to TIML to provide guidance, and 
passing the recommended transitions to ANT. 

Addressing Challenge 2: Accurate adaptation 

ADAMANT addresses the challenge of timely adaptation in several ways. First, it uses DDS to 
disseminate the environment monitoring information needed to determine an accurate adaptation. 
Second, since the monitoring information is realized as a DDS topic, the DDS QoS policies can 
be applied to the topic and the applicable entities involved with the topic (e.g., data readers, data 
writers). For example, the transport priority QoS policy can be applied to the environment mon-
itoring data to ensure the environment updates have priority over other data on the network. 

Addressing Challenge 3: Timely adaptation 

ADAMANT supports constant-time runtime transition and reconfiguration of transport proto-
cols used as the QoS mechanisms to provide needed QoS, as discussed in the section Experi-
mental Results and Analysis. In particular, TIML utilizes an ANN to provide adaptation guidance 
in constant time for operating environments known a priori. TIML uses an SVM to guide adap-
tation in constant time for operating environments unknown until runtime. Moreover, TIML uses 



constant-time perfect hashing to integrate the machine learning techniques and determine the ap-
propriate technique to use. 

ADAMANT addresses the challenge of reducing development complexity by using machine 
learning techniques that manage the inherent complexity of providing the appropriate transport 
protocol recommendation for a given operating environment. The machine learning techniques 
can also be used directly in the ADAMANT implementation. These techniques thus reduce de-
velopment complexity by eliminating the accidental complexity of transforming the mapping of 
environments to protocols from design to implementation (Hoffert, 2010-A). Moreover, ADA-
MANT provides an environment monitoring topic that disseminates and handles the environment 
information updates relevant to adapting the QoS mechanisms of transport protocols. 

Addressing Challenge 4: Reducing development complexity 

EXPERIMENTAL RESULTS AND ANALYSIS 
This section describes the setup, design, and analysis of results from experiments we conducted 
to identify the need for autonomic adaptation of transport protocols and evaluate the timeliness 
of the adaptations in dynamic environments representative of the SCAAL applications presented 
in the section Motivating Example: Ambient Assisted Living in a Smart City Environment. These 
results quantify (1) the effect of changes in the operating environment on the QoS provided by 
ADAMANT as measured by the composite QoS metrics defined below, (2) the timeliness of 
TIML’s determination of an appropriate transport protocol, and (3) the timeliness of ADA-
MANT’s adaptation of transport protocols via the ANT framework.  

Experimental Setup 
We conducted our experiments using the Emulab testbed (www.emulab.net) at the University of 
Utah. Emulab allows the configuration of various types of computing and networking platforms. 
For our experiments highlighting the need for adaptation, we held the computing and networking 
platform constant (i.e., 3 GHz CPU, 1 Gbps LAN). We used the Redhat Fedora Core release 6 
OS with real-time patches across all the computing nodes. 

The points of variability for the experiments were indicative of dynamic environments. In par-
ticular, we varied the number of data receivers, the percent loss in the network, and the data 
sending rate as outlined in section Control Flow of ADAMANT. By adjusting these variables we 
were able to highlight scenarios where changes in the environment mandated changes to the 
transport protocols being used to provide the highest level of QoS for the multiple QoS proper-
ties involved. 

Composite QoS Metrics for Reliability and Timeliness 
Our previous work on QoS-enabled pub/sub middleware performance (Hoffert, 2009-B, 2010-A) 
showed that some transport protocols provide better reliability (as measured by the number of 
network packets received divided by the number sent) and latency for particular environments 
while other protocols are better for other environments. We therefore developed several compo-
site QoS metrics to quantitatively evaluate multiple QoS aspects simultaneously. These compo-
site metrics provide a uniform and objective evaluation of ADAMANT in dynamic environ-
ments. Our family of composite metrics are based on the QoS concerns of reliability and average 
latency and optionally include the QoS aspects of (1) jitter (i.e., standard deviation of the latency 

http://www.emulab.net/�


of network packets), (2) network bandwidth usage, and (3) burstiness (i.e., the standard deviation 
of average bandwidth usage per second of time). 

In particular, we defined the ReLate2 family of composite QoS metrics. The ReLate2 metric 
is defined by the product of the average data packet latency and the percent loss that the transport 
protocol provides + 1 (to account for 0% loss) which implies an order of magnitude increase for 
9% loss. Based on previous research (Bai, 2006, 2007; Ngatman, 2008), this adjustment is rele-
vant for multimedia data such as the high-resolution 3-D health data in our SCAAL example. For 
example, if for a given protocol the average packet latency is 1,000 μs and the percent loss is 0 
(i.e., no packets lost) then the ReLate2 value is 1,000. Having 9% and 19% loss with the same 
average latency produces the ReLate2 values of 10,000 and 20,000, respectively. ReLate2Jit is a 
product of the ReLate2 value and the jitter of the data packets to quantify the multiple QoS con-
cerns of jitter, reliability, and average latency.  

Experiments Highlighting Need for Autonomic Adaptation 
We now present the results of experiments for autonomic adaptation of the QoS mechanisms of 
transport protocols. We apply the composite metrics defined in the previous section to several 
different operating environments to highlight how differences in the environment trigger differ-
ences in the transport protocols used to support QoS. Figure 6 shows a change in the sending rate 
corresponds to a change in the protocol that provides the best QoS. 

 
Figure 6: Changing Data Sending Rate 

In particular, for an operating environment using the OpenSplice DDS implementation, ma-
chines with 3 GHz CPUs, 5 data receivers, and 5% network packet loss, we see that for a data 
sending rate of 25Hz, the NAKcast protocol (with a timeout parameter to determine NAK trans-
missions of 0.001 seconds) performs better (i.e., has lower ReLate2Jit values) than Ricochet 
(with an R value of 4 and a C value of 3). 

Ricochet’s R value determines how many data packets are received before error correction da-
ta is sent (e.g., 4 packets received before one error correction packet is sent) and Ricochet’s C 
value determines how many other receivers this receiver sends error correct data (e.g., 3 receiv-

0.00

10000000.00

20000000.00

30000000.00

40000000.00

50000000.00

60000000.00

70000000.00

1 2 3 4 5

Re
La

te
2J

it 
Va

lu
es

Experiment Run

OpenSplice DDS, 3 Ghz CPU, 5 rcvrs, 5% 
network loss, ReLate2Jit

NAKcast 0.001 - 25Hz
Ricochet R4 C3 - 25Hz
NAKcast 0.001 - 50Hz
Ricochet R4 C3 - 50Hz
NAKcast 0.001 - 100Hz
Ricochet R4 C3 - 100Hz



ers receive error correction data from any one receiver). When the sending rate is changed to 
50Hz, however, Ricochet performs better. Finally, when the sending rate is further increased to 
100Hz NAKcast again performs better (i.e., has lower ReLate2Jit values). 

Timeliness of TIML 
We next describe the timeliness of TIML as it decides the most appropriate transport protocol for 
a given environment configuration. As described in Challenge 2 (timely adaptation), the personal 
datacenter for the SCAAL application needs to have timely adaptations. We now provide timing 
information based on the responsiveness of TIML when queried for an optimal transport proto-
col. We used the Emulab configuration as described in the section Experimental Setup. A high 
resolution timestamp was taken right before and right after each call was made to TIML. 

TIML combines and integrates the use of ANN and SVM machine learning techniques. These 
techniques present different response times (although the times for each technique remain con-
stant). We therefore conducted experiments with operating environment configurations that 
would use the ANN (i.e., the configurations that were known a priori) and configurations that 
would use the SVM (i.e., the configurations that were unknown until run-time). Since these tech-
niques provide constant-time performance, their compute times are invariant to the specific envi-
ronment configuration, so we did not run timing test for all different environment configurations. 

 
Figure 7: Integrated Supervised Machine Learning Response Times 

Figure 7 presents the response times for TIML in ADAMANT for 1,000 iterations when 
TIML selects and uses either an ANN or the SVM. The figure highlights the times used within 
the integrated machine learning techniques when the environment configuration is (1) known a 
priori and thus triggers the use of an ANN and (2) unknown until run-time triggering the use of 
an SVM. On average TIML when using the ANN presents the lower response time of 11.161 µs 
while TIML using the SVM presents an average response time of 11.996 µs. The bound on 
TIML is then the maximum between the two (i.e., 11.996 µs). The figure also appears to show 
that TIML using the ANN has more jitter than TIML using the SVM. The jitter is within the res-
olution of the timers (i.e., 1 µs) used for collecting the times, however, since the times only vary 

10

11

12

13

14

1 101 201 301 401 501 601 701 801 901

Ti
m

e 
(µ

s)

Classification Run

Integrated Machine Learning 
Response Times

ANN path
SVM path



by +/- 1 µs from the median values (i.e., 11 µs for the TIML when the ANN is used and 12 µs 
when the SVM is used). 

Timeliness of ANT Reconfiguration 
We now describe the experiments we conducted to show the timeliness of the ANT framework 
as it transitions from one transport protocol to another. As described in Challenge 2 (timely adap-
tation), the personal datacenter for the SCAAL application needs to have timely adaptations. In 
the previous section we presented timing results for determining the appropriate transport proto-
col. In this section we provide timing information on the reconfiguration of transport protocols 
supported in the ANT framework portion of ADAMANT. We used the same experimental envi-
ronment as described in the section Experimental Setup. A high resolution timestamp was taken 
right before and right after each call made to ANT to reconfigure transport protocols. 

Figure 8 shows the times taken for transport protocol reconfiguration across 1000 iterations. 
The figure includes times for three different scenarios. Two of the scenarios are most relevant for 
the transport protocols that best handle reliability and latency (i.e., the NAKcast and Ricochet 
protocols). The third scenario presents a baseline when checks are performed to determine if a 
protocol transition is needed but no transition is needed. 

 
Figure 8: Transport Protocol Reconfiguration Times within ANT 

The baseline times for no reconfiguration shows 0 µs taken to determine that no protocol re-
configuration is needed. Obviously, some time is taken to make the determination that no recon-
figuration is needed but this time is smaller than the resolution of the timestamps taken (i.e., < 1 
µs). These times provide an idea of the overhead required in making any protocol reconfigura-
tion. 

The remaining two scenarios are when (1) the NAKcast protocol is running and a transition is 
made to the Ricochet protocol and (2) when the Ricochet protocol is running and a transition is 
made to the NAKcast protocol. The times for these transitions should be constant since, when 
reconfiguring, ANT registers a constant number of events and event handlers for the new proto-

0

1

2

3

4

5

6

1 101 201 301 401 501 601 701 801 901

Ti
m

e 
(µ

s)

Reconfiguration Run

ANT Reconfiguration Times

No reconfiguration
Ricochet to NAKcast
NAKcast to Ricochet



col and unregisters a constant number of events and event handlers for the old protocol. The 
number of event and event handlers is known a priori at development time. Registering and un-
registering events and event handlers correspond to inserting and removing items from a queue 
which are constant time operations. 

In particular, for the NAKcast and Ricochet protocols we know a priori the number and kinds 
of events and event handlers that each protocol uses. ADAMANT first unregisters all the rele-
vant events and event handlers for an old protocol and then registers all the relevant events and 
event handlers for the new protocol. Since ADAMANT controls how and in what order events 
and event handlers are registered and unregistered in ANT, managing the lists for these events 
and event handlers can be done in constant time. The Ricochet to NAKcast transition consis-
tently takes 4 µs while the NAKcast to Ricochet transition consistently takes 5 µs. For the 
ADAMANT prototype using the OpenSplice DDS implementation, these transitions are hap-
pening within the single network daemon per computing platform. As noted in section Control 
Flow of ADAMANT, ANT’s transitions are deterministic with the DDS middleware ensuring that 
all the computing platform see the same updates and therefore make the same transitions.  These 
empirical transition times verify that ANT protocol transitions are made in a constant amount of 
time. 

Summary of Results 
The results of experiments presented in this section show that there are scenarios where a change 
in the operating environment requires a change in the QoS mechanisms (e.g., transport protocols) 
that ADAMANT is utilizing. Based on this information, the experiments show that ADAMANT 
delivers constant-time decision-making regarding the appropriate transport protocol to use as 
well as constant-time transitioning from one transport protocol to another. For QoS-enabled DRE 
pub/sub applications ADAMANT provides the constant-time complexity needed for detecting 
environment changes, determining the appropriate course of action, and executing that plan. 

RELATED WORK 
This section compares our work on ADAMANT with related work. 
Support for adaptive middleware. 
 The Mobility Support Service (MSS) (Caporuscio, 2003) provides a software layer on top of 
pub/sub middleware to enable end host mobility. The purpose of MSS is to support the move-
ment of clients between access points of a system using pub/sub middleware. In this sense, MSS 
adapts the pub/sub middleware used in a mobile environment. Mobile clients notify MSS when 
mobility starts and ends. MSS buffers messages and manages connections while the client moves 
to a different access point. MSS is designed to support multiple pub/sub technologies, e.g., im-
plementations of JMS, and adapt to the technology-specific characteristics. 

MSS is solely focused on supporting mobility of pub/sub, however, and therefore does not ad-
dress Challenge 1 (managing interacting QoS). Moreover, MSS is not focused on DRE systems 
and therefore fails to address Challenge 2 (timely adaptation). Finally, MSS does not address op-
erating environments where aspects of the environment change and impact QoS.  

Gridkit (Grace, 2005) is a middleware framework that supports reconfigurability of applica-
tions dependent upon the condition of the environment and the functionality of registered com-
ponents. Gridkit focuses on grid applications which are highly heterogeneous in nature. For ex-



ample, these applications will run on many types of computing devices and across different types 
of networks. 

To register components, application developers use Gridkit’s API, which is based on binding 
contracts. Gridkit then uses the contract information along with a context engine to determine 
which components to include in the application. The context engine takes into account the con-
text of the host machines, e.g., battery life, network connectivity. 

Gridkit focuses on reconfiguration for installing an application and does not address Chal-
lenge 2 (accurate adaptation) or Challenge 3 (timely adaptation) for systems operating in dy-
namic environments. Within Gridkit no consideration is given to making timely and accurate 
adaptations based on the environment changing for a single application installation. Moreover, 
Gridkit fails to address Challenge 1 (managing interacting QoS) as it does not address QoS con-
cerns. 

David and Ledoux have developed SAFRAN (David, 2006) to enable applications to become 
context-aware themselves so that they can adapt to their contexts. SAFRAN provides reactive 
adaptation policy infrastructure for components using an aspect-oriented approach. SAFRAN 
follows the structure of a generic AOP system by supporting (1) a base program which corres-
ponds to a configuration of components, (2) point-cuts which are invoked in response to internal 
events (e.g., invocations on interfaces) and external events (e.g., change in system resources), (3) 
advices which define functionality to be executed for point-cuts, and (4) adaptation which uses 
adaptation policies to link join points to advices. 

The SAFRAN component framework, however, only provides development support of main-
taining specified QoS. The adaptive policies and component implementation are the responsibil-
ity of the application developer. Therefore, SAFRAN does not address Challenge 2 (accurate 
adaptation) and Challenge 3 (timely adaptation). 

Machine learning in support of autonomic adaptation. 
Vienne and Sourrouille (Vienne, 2005) present the Dynamic Control of Behavior based on 
Learning (DCBL) middleware that incorporates reinforcement machine learning in support of 
autonomic control for QoS management. Reinforcement machine learning not only allows 
DCBL to handle unexpected changes but also reduces the overall system knowledge required by 
the system developers. System developers provide an XML description of the system, which 
DCBL then uses together with an internal representation of the managed system to select appro-
priate QoS dynamically. 

DCBL’s use of reinforcement learning, however, does not address Challenge 3 (timely adap-
tation) as reinforcement learning is unbounded in its time complexity. DCBL also focuses on sin-
gle computers rather than addressing scalable DRE systems and therefore does not address Chal-
lenge 4 (development complexity) for DRE systems. Moreover, DCBL requires developers to 
specify in an XML file the selection of operating modes given a QoS level along with execution 
paths, which leaves handling Challenge 1 (managing interacting QoS) to developers. 

Tock et al. (Tock, 2005) utilize machine learning for data dissemination in their work on Mul-
ticast Mapping (MCM). MCM hierarchically clusters data flows so that multiple topics are 
mapped onto a single session and multiple sessions are mapped onto a single reliable multicast 
group. MCM’s approach manages the scarce availability of multicast addresses in large-scale 
systems. MCM leverages machine learning to adapt as user interest and message rate change 



during the day. MCM is designed only to address the scarce resource of IP multicast addresses in 
large-scale systems, however, rather than Challenge 1 (managing interacting QoS). 

Autonomic adaption of service level agreements. 
Herssens et al. (Herssens, 2008) describe work that centers on autonomically adapting service 
level agreements (SLAs) when the context of the specified service changes. This work acknowl-
edges that both offered and the requested QoS for Web services might vary over the course of 
the interaction and accordingly modifies the SLA between the client and the server as appropri-
ate. However, this work does not address Challenge 2 (accurate adaptation) or Challenge 3 (time-
ly adaptation) in dynamic environments but rather negotiates the QoS agreement to fit the dy-
namic environment. 

Autonomic adaption of networks. 

The Autonomic Real-time Multicast Distribution System (ARMDS) (Brynjulfsson, 2006) is a 
framework that focuses on decreasing excessive variance in service quality for multicast data 
across the Internet. The framework supports the autonomic adaptation of the network nodes 
forming the multicast graph so that the consistency of service delivery is enhanced. However, 
ARMDS does not address Challenge 1 (managing interacting QoS). 

CONCLUDING REMARKS 
Developers of systems that utilize DRE pub/sub middleware face a number of challenges when 
developing and deploying their systems in dynamic environments. To address these challenges, 
we developed ADAMANT to integrate and enhance (1) QoS-enabled pub/sub middleware, (2) 
an environment monitoring topic, (3) a flexible transport protocol framework, (4) a novel inte-
gration of supervised machine learning techniques, and (5) an autonomic controller to provide 
fast and predictable reconfiguration of middleware and transport protocols for enterprise DRE 
pub/sub systems. This paper presents the results of experiments that show how ADAMANT can 
adapt autonomically to changing conditions in operating environments to support QoS in a fast, 
constant-time, and accurate manner. 

The following is a summary of lessons learned from our experience evaluating ADAMANT’s 
autonomic adaptation performance in various operating environments: 

• Several trade-offs exist when using machine learning in dynamic environments. There 
are several trade-offs between having machine learning that (1) is completely accurate for 
environments known at training time, (2) highly accurate for environments unknown until 
run-time, (3) can accommodate new data on which to train as the system is running, and (4) 
can expend the appropriate amount of time interactively training machine learning tools 
while the system is running. Since overfitting an ANN to environment configurations known 
a priori provides perfect accuracy and low response times, it is preferable to incorporate new 
operating environment configurations unknown until runtime into the ANN training set while 
the system is running. A low-priority thread could be used to constantly re-train the ANN and 
swap in the updated ANN at appropriate times. While this approach would incorporate new 
environment configurations, our future work is addressing trade-offs between when to mi-
grate to using the updated ANN versus how to determine the importance of the low-priority 
training thread so it will not be starved. 



• Preparing environment information for use in machine learning tools is time consuming 
and tedious. A large amount of data can be generated based on the number and types of en-
vironment variables (e.g., number of receivers, data sending rate, percent loss in the network, 
CPU speed, QoS metric used). In addition to the raw data, the data can be scaled (i.e., trans-
formed to be within minimum and maximum values such as between -1 and 1). Some ma-
chine learning techniques provide better results when the data are scaled. For our experimen-
tal data, scaling the data  produced the best results. When scaling the data produces the best 
results, the environment data received from ADAMANT’s monitoring topic also needed to 
be scaled as well which adds some overhead and complexity. The scaling factors used on the 
data for training the machine learning tools need to be managed and applied to the data col-
lected from the environment during runtime. 

• Multiple machine learning approaches can be integrated to handle configurations 
known a priori and environment configurations not known until runtime.  Some ma-
chine learning techniques provide higher accuracy than others for operating environments 
known a priori. In particular, ANNs can be overfitted to the data to provide 100% accuracy 
for these kinds of environments. Other techniques provide higher accuracy for environments 
unknown until runtime. An integration of multiple machine learning techniques can provide 
higher overall accuracy than can be provided by any single machine learning technique. If 
timeliness is a concern, then when integrating multiple techniques, care must be taken to en-
sure that the integration itself does not change the time complexity characteristics. ADA-
MANT incorporates TIML to increase its overall accuracy for both operating environments 
known a priori and environments unknown until runtime while also ensuring that the inte-
gration itself maintains the constant-time complexity needed by DRE systems. 

• Transport protocols need to be selectively used based on the QoS specified. While sev-
eral DDS implementations (e.g., OpenDDS and OpenSplice) provide pluggable transport 
frameworks to leverage standard and custom transport protocols the properties of these -
protocols must be dictated by application-specified QoS policies. For example, in our work 
we wanted to specify that the environment monitoring topic information be sent and received 
reliably. DDS implementations, however, provide no infrastructure for mapping between the 
transport protocols (e.g., Ricochet and NAKcast) used and the QoS properties (e.g., reliable 
data communication, or “best-effort”) specified. Our future work is therefore developing a 
transport protocol taxonomy that QoS-enabled middleware can leverage to determine which 
protocol to apply based on QoS specified at the application level using DDS QoS policies. 
The properties that transport protocols provide can be used to classify the protocols with re-
spect to QoS. The middleware can then select (1) the most appropriate transport protocol 
based on the QoS properties needed and (2) different transport protocols for different QoS 
properties. 

• QoS-enabled middleware provides a fairly coarse-grained approach to reliability. Uti-
lizing transport protocols such as Ricochet and NAKcast allows QoS-enabled middleware to 
provide finer-grained reliability as well as considering latency. Reliability is typically only 
supported, however, as the dichotomy of best-effort or reliable with no consideration of high-
ly probabilistic reliability. Moreover, the semantics of combining multiple QoS aspects (e.g., 
reliability and latency) are not clearly defined at the middleware level. Transport protocols, 
such as Ricochet and NAKcast, capture the finer-grained reliability property of high proba-
bility of reliability but not perfect reliability 



• High-level metrics are useful to quickly differentiate the performance of various confi-
gurations. The use of metrics—even coarse-grained metrics—helps explore a large configu-
ration space efficiently. Developing composite metrics (e.g., ReLate and ReLate2) helps 
ameliorate navigating a configuration space with several points of variability. 

All the source code and documentation for ADAMANT is available in open-source form at 
www.dre.vanderbilt.edu/~jhoffert/ADAMANT. 

REFERENCES 
Bai, Y., & Ito, M. (2007). A new technique for minimizing network loss from users’ perspective. 
Journal of Network Computing Applications, 30(2), 637–649. 

Bai, Y., & Ito, M. (2006). A study for providing better quality of service to VoIP users. In 20th 
International Conference on Advanced Information Networking and Application (pp. 799–804). 
Washington, D.C.: Lecture Notes in Computer Science. 

Balakrishnan, M., Birman, K., Phanishayee, A., & Pleisch, S. (2007). Ricochet: Lateral error cor-
rection for time-critical multicast. In NSDI 2007: Fourth Usenix Symposium on Networked Sys-
tems Design and Implementation (pp. 73 – 86). New York: ACM Press. 

Balakrishnan, M., Pleisch, S., & Birman, K. (2005). Slingshot: Time-critical multicast for clus-
tered applications. In Fourth IEEE International Symposium on Network Computing and Appli-
cations (pp. 205-214). New York: ACM Press. 

Brodnik, A., Munro, J. (1994). Membership in constant time and minimum space. In Algorithms 
- ESA '94 (pp. 72 – 81). Berlin / Heidelberg: Springer LNCS. 

Brynjulfsson, B., Hjalmtysson, G., Katrinis, K., & Plattner, B. (2006). Autonomic network-layer 
multicast service towards consistent service quality. In 20th International Conference on Ad-
vanced Information Networking and Applications (pp. 494–498). Los Alamitos, CA: IEEE Com-
puter Society. 

Caporuscio, M., Carzaniga, A., & A. Wolf. (2003) Design and evaluation of a support service for 
mobile, wireless publish/subscribe applications. IEEE Transactions on Software Engineering, 
29(12), 1059–1071. 

Chandy, M., Etzion, O., von Ammon, R., & Niblett, P. (2007) “07191 summary – event 
processing,” presented at Event Processing, ser. Dagstuhl Seminar Proceedings, M. Chandy, O. 
Etzion, and R. von Ammon, Eds., no. 07191. Dagstuhl, Germany: Internationales Begegnungs- 
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007. 

David, P.-C., & Ledoux, T. (2006). An aspect-oriented approach for developing self-adaptive 
fractal components, In W. Löwe & M. Südholt (Eds.) Software Composition (pp. 82–97). Ber-
lin/Heidelberg : Springer LNCS. 

Dietterich, T. (1995). Overfitting and undercomputing in machine learning. ACM Computing 
Surveys, 27(3), 326 – 327. 

Grace, P., Coulson, G., Blair, G., & Porter, B. (2005). Deep middleware for the divergent grid. In 
Middleware ’05: Proceedings of the ACM/IFIP/USENIX 2005 International Conference on Mid-
dleware (pp. 334–353). New York: Springer-Verlag New York, Inc. 



Herssens, C., Faulkner, S., & Jureta, I. J. (2008). Context-driven autonomic adaptation of sla. In 
Proceedings of the 6th International Conference on Service-Oriented Computing (pp. 362–377). 
Berlin, Heidelberg : Springer-Verlag. 

Hoffert, J., Schmidt, D., & Gokhale, A. (2010-A). Adapting and Evaluating Distributed Real-
time and Embedded Systems in Dynamic Environments. In 1st  International Workshop on Data 
Dissemination for Large scale Complex Critical Infrastructures (pp. 23-28). New York: ACM 
Press. 
Hoffert, J., Schmidt, D., & Gokhale, A. (2010-B). Adapting Distributed Real-time and Embed-
ded Pub/Sub Middleware for Cloud Computing Environments. In I. Gupta & C. Mascolo (Eds.), 
ACM/IFIP/USENIX 11th International Middleware Conference (pp. 21-41). Berlin/Heidelberg : 
Springer LNCS. 

Hoffert, J., Mack, D., & Schmidt, D. (2010-C). Integrating Machine Learning Techniques to 
Adapt Protocols for QoS-enabled Distributed Real-time and Embedded Publish/Subscribe Mid-
dleware. Network Protocols and Algorithms, 2(3), 37 – 69. 

Hoffert, J. & Schmidt, D. (2009-A). Maintaining QoS for Publish/Subscribe Middleware in Dy-
namic Environments. In 3rd International Conference on Distributed Event-based Systems (pp. 
28:1-28:2). New York: ACM Press. 

Hoffert, J., Gokhale, A., & Schmidt, D. (2009-B). Evaluating Transport Protocols for Real-time 
Event Stream Processing Middleware and Applications. In R. Meersman, T. Dillon, & P. Herrero 
(Eds.), 11th International Symposium on Distributed Objects, Middleware, and Applications. 
Berlin/Heidelberg : Springer-Verlag. 

Huang, Q., Freedman, D., Vigfusson, Y., Birman, K., & Peng, B. (2010). Kevlar: a flexible in-
frastructure for wide-area collaborative applications. In I. Gupta & C. Mascolo (Eds.), 
ACM/IFIP/USENIX 11th International Middleware Conference (pp. 148 – 168). Berlin: Sprin-
ger-Verlag. 

Huang, Y. & Gannon, D. (2006). A comparative study of web services-based event notification 
specifications. In International Conference on Parallel Processing Workshops (pp. 7–14). Los 
Alamitos : IEEE Computer Society. 

Huebscher, M. & McCann, J. (2008). A survey of autonomic computing—degrees, models, and 
applications. ACM Computing Surveys, 40(3), 7:1 – 7:28. 

Meyer, D., Leisch, D., & Hornik, K. (2003). The support vector machine under test. Neurocom-
putting, 55(1-2), 169 – 186. 

Monson-Haefel, R., & Chappell, D. (2000). Java Message Service. Sebastopol, CA: O'Reilly & 
Associates, Inc. 

Niblett, P., & Graham, S. (2005). Events and service-oriented architecture: the OASIS web ser-
vices notification specifications. IBM Systems Journal, 44(4), 869 – 886. 

Ngatman, M., Ngadi, M., & Sharif, J. (2008). Comprehensive study of transmission techniques 
for reducing packet loss and delay in multimedia over ip. International Journal of Computer 
Science and Network Security, 8(3), 292–299. 



Pardo-Castellote, G. (2003). OMG data-distribution service: architectural overview.  In 23rd In-
ternational Conference on Distributed Computing Systems (pp. 200 – 206). Los Alamitos : IEEE 
Computer Society. 

Patterson, D.W. (1998). Artificial Neural Networks: Theory and Applications. Upper Saddle 
River, NJ: Prentice Hall PTR. 

Ramani, S., Trivedi, K.S., and Dasarathy, B. (2001). Performance analysis of the CORBA notifi-
cation service. In 20th IEEE Symposium on Reliable Distributed Systems (pp. 227 – 236). Los 
Alamitos : IEEE Computer Society. 

Schmidt, D. C. (2000-A). GPERF: a perfect hash function generator. In R. Martin (Ed.), More 
C++ Gems (pp. 461 – 491). New York, NY: Cambridge University Press. 

Schmidt, D. C., Stal, M., Rohnert, H., & Buschmann, F. (2000-B). Pattern-oriented software ar-
chitecture: patterns for concurrent and networked objects, Volume 2. New York, NY: Wiley & 
Sons. 

Tarkoma, S., & Raatikainen, K. (2006). State of the art review of distributed event systems 
(Tech. Rep. C0-04). Helsinki: University of Helsinki. 

Tock, Y., Naaman, N., Harpaz, A., & Gershinsky, G. (2005). Hierarchical clustering of message 
flows in a multicast data dissemination system. In S. Q. Zheng (Ed.), International Conference 
on Parallel and Distributed Computing Systems (pp. 320 – 326). Phoenix : IASTED/ACTA 
Press. 

Vienne, P. & Sourrouille, J.-L. (2005). A middleware for autonomic QoS management based on 
learning. In 5th International Workshop on Software Engineering and Middleware (pp. 1–8). 
New York : ACM Press. 


