
HoliCoW: Automatically Breaking Team-based
Software Projects to Motivate Student Testing

Peng Zhang, Jules White, and Douglas
C. Schmidt

Vanderbilt University, Nashville, TN
{peng.zhang,jules.white,d.schmidt}@vanderbilt.edu

ABSTRACT
Intensive testing is often applied by professional software en-
gineers to assure the quality of enterprise information tech-
nology (IT) systems. For example, Netflix’s Simian Army
consists of services that generate various types of failures, de-
tect abnormal conditions, and test the ability of cloud-based
enterprise IT software to survive them. Although software
engineering students should be taught these types of rigor-
ous testing techniques, it often hard to motivate students to
produce high-quality test suites for their assignments since
classroom environments lack the harsh outcomes of unex-
pected system failures.

This paper provides two contributions to work on strength-
ening coding and testing skills of software engineering stu-
dents by aligning educational environment more closely with
real-world industries. First, we describe the Holistic Code-
Wrecker (HoliCoW), which is our testing method and tool
that simulates production environments through forced logi-
cal error injections into student projects. The modified ver-
sions are then run against regression tests written by stu-
dents and the test results are analyzed to determine the ro-
bustness of original software. Second, this paper describes
preliminary results from our ongoing experience applying
HoliCoW to Software Engineering project courses at Van-
derbilt University, where the tool is used to automatically
evaluate student software project submissions to determine
whether regression tests they define detect errors injected
into their code.

Keywords
Software engineering education, software testing, software
error injection

1. INTRODUCTION
Motivating the need for testing in enterprise IT

systems. Ensuring system availability and reliability is a
top priority for software engineers. Enterprise IT systems,
such as Amazon’s cloud infrastructure and Paypal’s payment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

infrastructure, have substantial financial impacts when they
go down. Traditional approaches engineers use to architect
robust highly available and reliable industrial systems are
based on intensive testing, such as unit, integration, and
user acceptance testing. These testing methods are criti-
cal to maintaining availability and reliability in enterprise
IT systems because they help identify software weaknesses
in advance, forcing application developers to continuously
improve the code until it reaches an acceptable level of re-
silient.

Motivating the need for students to focus on test-
ing. When educating software engineering students, it is
important to teach them rigorous testing techniques and
train them to write high quality tests that cover as much
code as possible. The software students typically produce
for their assignments, however, does not confront the same
harsh environments encountered by software engineers de-
veloping production enterprise IT systems, which must han-
dle unanticipated system failures, teams of developers mak-
ing concurrent modifications, and many users providing in-
put. As a result, students are rarely motivated to produce
high-quality test suites, which means that they enter the
workforce with inadequate knowledge and skills to write high
quality software.

Promising solution approach → Forced injection
of logical errors into student software. An approach
being applied to enhance enterprise IT system resiliency is
to intentionally inject errors during the development phase,
thereby forcing software engineers to account for potential
system failures. The Simian Army [5] created by Netflix
is a suite of DevOps tools that (semi-)randomly terminate
virtual machines and perform other erroneous activities to
simulate hardware component failures and force developers
to create effective fault tolerance and recovery mechanisms
for cloud-based software. By ensuring software engineers
encounter these failures during development they are moti-
vated to account for them deliberately, rather than viewing
failures as remote possibilities.

We have adapted the Simian Army approach into our
Principles of Software Engineering course, which is taught to
40 seniors and undergraduates each year at Vanderbilt Uni-
versity. Our approach is called the Holistic Code-Wrecker
(HoliCow), which is a method and tool that motivates stu-
dents to improve their test suites by exposing the software
in their software projects to harsh simulated environments.
Prior approaches for the Simian Army focus on creating
(semi-)random failures in the environment the software de-
pends on, but do not (necessarily) focus on viewing fellow

software developers as part of the Simian Army. In team-
based class projects, however, teammates often make logical
errors and misuse methods written by other team members,
which motivates the need for creating test suites that ensure
the project software is resilient and thoroughly tested.

HoliCoW simulates the process of software developers mak-
ing mistakes and automatically inserts carefully-crafted logi-
cal changes into student code via an iterative series of error
injects. Each logical change (such as changing a ”<=”condi-
tional statement to ”<”) is designed to produce no compila-
tion errors, but instead create a logically modified program
that is incorrect with respect to the original specification.
The test suite produced by the student(s) for the software
project is then run to see if the injected logic errors are de-
tected. If the tests fail, the students have sufficiently covered
that potential logical error. If the tests pass, the test suite
is not sufficiently robust.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses background and related work; Section 3 gives
an overview of HoliCoW and describes how we are applying
it to motivate our software engineering students to produce
better test suites and higher quality software; and Section 4
presents concluding remarks and outlines future work.

2. BACKGROUND & RELATED WORK
The Simian Army and regression testing are the inspira-

tions behind our research on HoliCoW. This section briefly
explores the key points of each and how they play different
roles in strengthening systems.

2.1 Simian Army
The Simian Army [5] is a suite of DevOps tools developed

and used by the popular subscription service Netflix increase
the resilience of their cloud-based systems by motivating
their software engineering teams to prepare for inevitable
runtime anomalies [3]. These tools randomly induce failures
to Netflix’s development environments in real time, ranging
from shutting down a single hardware component (Chaos
Monkey) to bringing down an entire region of multiple data
centers (Chaos Kong). The goal of the Simian Army is to
enhance user experience by increasing reliability and avail-
ability of cloud-based applications and services since actual
failures in production deployments of the Netflix cloud are
handled by applications and system infrastructure in the
same manner as cases of the injected failures since develop-
ers have already encountered and remedied them throughout
the software system lifecycle.

2.2 Regression testing
Regression tests allow developers to discover bugs and er-

rors in early phases of the software lifecycle, when it is less
costly to make corrections. Each unit test in a regression
test suite targets a particular method, given which a set of
desired inputs to produce corresponding output(s). These
tests should cover all logical pieces of the code, including but
not limited to sequential statements, branching, and loop-
ing conditionals. Generally, the more comprehensive the
unit tests are in a regression test suite, the more resilient
the application is to runtime errors [4]. Test coverage tools
are often used in cases of larger code bases to report the per-
centage of logic covered by the tests. Most coverage tools,
such as Istanbul (github.com/gotwarlost/istanbul), can
also help identify which lines of code are not covered by

unit tests.
The primary difference between the usage of Simian Army

and regression test suites is that the former utilizes exter-
nal components (such as the hardware and/or middleware)
to target weaknesses in cloud-based systems, where as re-
gression testing focuses more on the internal soundness of a
software by predicting possible invalid user inputs and op-
erations. Real-world engineers embrace failures exposed by
both techniques and thrive on the lessons learned from dis-
covering the weaknesses in their systems [1]. Education envi-
ronments, however, often fail to motivate the utility of both
these techniques since classroom settings are traditionally
not well-equipped to emulate a production software envi-
ronment due to the following reasons:

• Students do not encounter users who subject software
to a wide range of use-cases (both anticipated and
unanticipated)

• Students often work on isolated projects that lack other
team members who accidentally misuse or inject errors
into the source code.

• Many students have not been exposed to production
software experience, which makes it hard to predict
possible cases that could crash their solutoins.

• Instead of utilizing code coverage tools as proper lever-
age, students may misapply them by performing par-
tial testing, yet still receive high-percent code coverage
reports [2].

Although schools are increasingly involving software engi-
neering students in more realistic projects, the emphasis is
typically on creating apps rather than systematically pro-
ducing effective test cases.

3. OVERVIEW OF THE HOLISTIC CODE-
WRECKER (HOLICOW)

As described in Section 1, the goal of HoliCoW is to mo-
tivate students to write more comprehensive test suites by
placing their code in a harsh production environment that
is representative of a professional development team with
actual users. The primary technique employed by the Holi-
CoW tool is to inject logical errors that produce no compila-
tion errors into the code, but can help pinpoint inadequacies
in test suites. The workflow of the tool is shown in Figure 3
and summarized below:

• Locate each possible logical error injection point in
the source code written by students, including (but
not limited to) variable intialization, branching state-
ments, and looping iterations.

• Randomly modify vulnerable statements found above,
e.g., by changing variable values or tweaking branch-
ing and/or looping conditions. These modifiations do
not affect the compilation of the software, just the cor-
rectness of its runtime execution.

• Run the same original unit tests for each modified ver-
sion to examine the test results. Test suites that are
well-written should continually detect fails as a result
of the errors injected into the source code.

Figure 1: The Workflow of HoliCoW

• After errors are inserted and tests run, output results
pinpointing the changes made that do not result in any
test failing.

The remainder of this section describes the structure and
functionality of HoliCoW and then explains how HoliCoW
is being applied in our Principles of Software Engineering
course at Vanderbilt University.

3.1 The Structure & Functionality of HoliCoW
HoliCoW is written in JavaScript and NodeJS and pro-

vides a command-line tool that uses regular expressions to
match given source code against a set of code patterns deemed
vulnerable to logical errors. After finding such matches, the
tool automatically modifies these patterns to create new ver-
sions that introduce off-by-1 errors and runs the given test
suite, observing whether these errors are captured as ex-
pected.

Table 1 shows a subset of the changes that applies to stu-
dent code that was written in NodeJS as simply a function
that displays the amount of change a cashier should return
to the buyer, e.g. after a transaction is made at a grocery
store. The input to the function are price of the purchased

Table 1: Subset of Statements HoliCoW Altered
Original Code Modified Version
if (totalCash[1] < change) if (totalCash[1] <= change)
if (currentChange > 0) if (currentChange >= 0)
if (parseInt(change*100) < 0) if (parseInt(change*100) <= 0)

item and two separate arrays containing the amount of each
type of bills and coins in the cash drawer and the payment
from the buyer, respectively. The function is expected to
produce an array output consisting of each type and amount
of change returned to the buyer or display appropriate mes-
sages to the cashier.

For this sample program, HoliCoW automatically applies
minor changes to the if conditions in the original source code
and runs the original unit tests, written in MochaJS, against
each modified version.1 Istanbul, a code coverage tools re-
ports 100% coverage on all unit tests, but all unit tests pass
when run against the third modified version.

Upon further examining the original source code, the change
in version v3 is more efficient because it breaks out of a for
1Due to limited space, the unit test results are not shown
here.

loop containing the if statement at the most opportune time.
This example shows a simple proof-of concept to illustrate
how HoliCoW combines unit testing and code coverage and
provides interesting insights into correctness of code, as well
as the coding style of a software developer.

HoliCoW is a complementary approach to other techniques
that can also be used to measure test suite quality, such as
code coverage. As part of the HoliCoW testing process, test
coverage is also measured to provide students as additional
feedback on their code. The possible outcomes are catego-
rized into the three distinct classes described below.

A. 100% code coverage and no modified versions pass
all unit tests.

Class A is the most desirable outcome of an application
because the unit tests cover all the logical pieces of the source
code under test, and modified versions of well-written code
are expected to fail the tests, therefore, source and test files
falling into this category should be given more confidence in
its correctness.

B. Less than 100% code coverage and some modified
versions pass all unit tests.

Although a less desirable outcome, Class B is the most
common case in student code. HoliCoW thus gives students
better intuition into how to improve the unit tests to cover
all logic in the source code. In particular, the logical er-
rors that HoliCoW injected and passed the test cases pro-
vide direct examples of how a simple programming mistake
by themselves or another developer could break their code.
These logical flaws identify specific section(s) of code that
were neglected in the test suite.

C. 100% code coverage and some modified versions
pass all unit tests.

Class C is the most interesting category and also inspires
future research experiments. If the test suite covers 100%
of the software logic, but HoliCoW is still able to inject a
logical flaw that passes the test suite, then some fundamen-
tal issues or questions must be raised regarding the code,
e.g., are there still potential bugs in the original software
uncaptured by the test suite? If not, then it may identify
some underlying issue centering on code efficiency and ef-
fectiveness, which deserves more attention than writing test
cases for an application in educating software engineers. A
series of questions can be asked to help students discover the
weakness in their coding style, e.g.. Could the original code
be written more efficiently through delayed variable decla-
ration or precise branching/looping conditions or is there
redundant or extraneous variables or logic?

3.2 Observations from Applying HoliCoW in
Practice

HoliCoW is employed in our student software projects as
part of the assignment specification. Students are told that
their assignment will be run through the HoliCoW code
modification tool and automatically have 1,000s of logical
flaws injected into their code. Initial results (which we are
currently rigorously and statistically validating) from ap-
plying HoliCoW to software projects in our Principles of
Software Engineering course are summarized below.

1. Students become much more aware and concerned
about testing when HoliCoW is applied.

Our initial analysis indicates that student assignments
produced with this process typically have 2-3 times more
tests than assignments that do not employ HoliCoW.2 An
interesting aspect of assignments employing HoliCoW is that
students quickly become aware of what easy and hard test
is, which in itself can be a valuable feedback to them. One
of the most common questions in office hours is how user
interface or network code can be tested effectively. Prior
to applying HoliCoW, students would not typically consider
testing this type of code. When faced with random changes
being injected by HoliCoW, they become much more con-
cerned about how they are going to provide end-to-end test
coverage of their application.

2. Students tend to focus on integration testing when
HoliCoW is used.

In assignments without HoliCoW (but where part of the
assignment grade is based on test suite quality), students
focus more heavily on large numbers of unit tests. This out-
come may result because students believe these tests appear
more substantial and indicative of a large amount of work.
Units are often not thoughtfully produced, however, and
have limited effectiveness in detecting bugs. In assignments
with HoliCoW, conversely, students tend to focus on inte-
gration tests and are much more rigorous and detail oriented
with regard to ensuring input and output coverage through
boundary value analysis.

4. LESSONS LEARNED & FUTURE WORK
This paper described how HoliCoW’s “random bug injec-

tion”approach modifies a piece of code in an application and
runs the same regression tests against the modified code.
This approach complements and enhances conventional unit
testing methods. In particular, by combining a code cov-
erage tool, HoliCoW helps make software engineering edu-
cation more comprehensive by motivating students to write
additional end-to-end tests, training them think more holis-
tically when testing than simply achieving high code cov-
erage, and increasing their awareness of the importance of
code quality.

The following are the key lessons we learned thus far from
developing and applying HoliCow to our Principles of Soft-
ware Engineering course at Vanderbilt University.

1. Limitations of existing approaches in an educational
environment.

Existing approaches like Netflix’s Simian Army and re-
gression testing are helpful in improving the availability and
reliability of enterprise IT systems. In software engineering
education, however, these approaches alone often do not mo-
tivate students to follow best practices for quality assurance.
Students are often not motivated to test their code because
they do not have real users of their applications. However,
using a random bug injection approach shows promise in
improving test production and coverage by students.

2. Advantages gained from employing HoliCoW.
2Throughout the discussions of initial results below we cau-
tion readers that the HoliCoW research is ongoing and that
these results are preliminary.

Figure 2: The Role of HoliCoW in Software-reliant
Systems.

Informing students in advance that a tool will be used to
randomly change their code motivates them to write bet-
ter unit tests and trains them to pay attention to software
development fundamentals so they their code passes their
tests. An interesting emerging result is that students tend
to focus on integration testing when random bug injection
is applied rather than more simplistic unit testing.

Our future work focuses on completing detailed experi-
mental validation of the informally observed outcomes dis-
cussed in Section 3.2. We also studying interesting relations
between different logical modifications that commonly pro-
duce results falling into Class C discussed above and con-
ducting experiments to capture metrics relating number of
lines of code and percentage of passed test run against modi-
fied code. We are extending the HoliCoW tool and integrat-
ing it into existing code coverage tools to collect more data
for further analyses. Finally, we are conducting experiments
to see how directly providing HoliCoW to students enables
continuous feedback during their assignments, thereby im-
pacting their test suite and code quality.

5. REFERENCES
[1] T. Limoncelli, J. Robbins, K. Krishnan, and J. Allspaw.

Resilience engineering: learning to embrace failure.
Communications of the ACM, 55(11):40–47, 2012.

[2] B. Marick. How to misuse code coverage. In Proceedings
of the 16th Interational Conference on Testing
Computer Software, pages 16–18, 1999.

[3] H. Maruyama, R. Legaspi, K. Minami, and
Y. Yamagata. General resilience: taxonomy and
strategies. In Green Energy for Sustainable
Development (ICUE), 2014 International Conference
and Utility Exhibition on, pages 1–8. IEEE, 2014.

[4] R. Osherove. The art of unit testing. MITP-Verlags
GmbH & Co. KG, 2015.

[5] A. Tseitlin. The antifragile organization.
Communications of the ACM, 56(8):40–44, 2013.

