
The Design and Implementation of Real-Time CORBA 2.0:
Dynamic Scheduling in TAO

Yamuna Krishnamurthy

and Irfan Pyarali
Christopher Gill, Louis Mgeta,

Yuanfang Zhang, and Stephen Torri
Douglas C. Schmidt

OOMWORKS LLC

Metuchen, NJ

Washington University
St. Louis, MO

Vanderbilt University
Nashville, TN

{yamuna, irfan}
@oomworks.com

{cdgill,lmm1,yfzhang,storri}
@cse.wustl.edu

d.schmidt@vanderbilt.edu

Abstract

In an emerging class of open distributed real-time and
embedded (DRE) systems with stringent but dynamic
QoS requirements, there is a need to propagate QoS
parameters and enforce task QoS requirements across
multiple endsystems in a way that is simultaneously
efficient and adaptable. The Object Management
Group’s (OMG) Real-Time CORBA 2.0 specification
(RTC2) defines a dynamic scheduling framework for
propagating and enforcing QoS parameters
dynamically in standard CORBA middleware.

 This paper makes two contributions to
research on middleware for open DRE systems. First,
it describes the design and capabilities of the RTC2
dynamic scheduling framework provided by TAO,
which is our open-source CORBA standards-based
Object Request Broker (ORB). Second, it describes and
summarize the results of empirical studies we have
conducted to validate our RTC2 framework in the
context of open DRE systems. The results of those
experiments show that a range of policies for adaptive
scheduling and management of distributable threads
can be enforced efficiently in standard middleware for
open DRE systems.

1. Introduction

Emerging trends. Developing distributed real-time
and embedded (DRE) systems whose quality of service
(QoS) can be assured even in the face of changes in
available resources is an important and challenging
R&D problem. It is useful to distinguish two types of
QoS assurance for DRE systems: (1) static, in which
QoS requirements are known a priori and can be
enforced efficiently due to that knowledge and (2)
dynamic, in which QoS requirements can vary at run-
time and their enforcement requires more flexible

mechanisms that may incur more overhead. Many
DRE systems have a combination of static and dynamic
QoS requirements, and hybrid static/dynamic
enforcement mechanisms have been shown useful in
previous work [1].

Static approaches are often suitable for closed
DRE systems, where the set of application tasks that
will run in the system and the loads they will place on
system resources are known in advance. For example,
the OMG’s Real-time CORBA 1.0 (RTC1)
specification [2] supports statically scheduled DRE
systems in which task eligibility can be mapped to a
fixed set of priorities. Such closed systems can be
scheduled a priori.

Dynamic approaches to resource management
are often essential for open DRE systems, which
consist of independently developed application
components that are distributed across host endsystems
sharing a common network. Due to the heterogeneity of
the components, the complexity of their modes of
interaction, and the dynamic environments in which
they operate, it is hard to specify the resource
requirements of open DRE systems a priori.
New middleware challenges and solutions. The
OMG Real-Time CORBA 2.0 specification (RTC2) [5]
addresses the limitations with the fixed-priority
mechanisms specified by RTC1. In particular, RTC2
extends RTC1 by providing interfaces and mechanisms
that applications can use to plug in dynamic schedulers
and interact with them across a distributed system.
RTC2 therefore gives application developers more
flexibility to specify and use scheduling disciplines and
parameters that accurately define and describe their
execution and resource requirements. To accomplish
this, RTC2 introduces two new concepts to Real-time
CORBA: (1) distributable threads that are used to map
end-to-end QoS requirements to sequential and
branching distributed computations across the

endsystems they traverse and (2) a scheduling service
architecture that allows applications to choose which
mechanisms enforce task eligibility.

We have implemented a RTC2 prototype that
enhances on our prior work with The ACE ORB
(TAO) [6] and its Real-time Scheduling Service [7][8] .
This paper describes how we designed and optimized
the performance of our RTC2 Dynamic Scheduling
framework to address the following design challenges:
• Defining a means to install pluggable dynamic

schedulers that support scheduling policies and
mechanisms for a wide range of DRE applications,

• Creating an interface that allows customization of
interactions between an installed RTC2 dynamic
scheduler and an application,

• Portable and efficient mechanisms for
distinguishing between distributable thread and OS
thread identities, and

• Safe and effective mechanisms for canceling
distributable threads to give applications control
over distributed concurrency.

The results of our efforts have been integrated with the
TAO open-source software release and are available
from deuce. doc. wust l . edu/ Downl oad. ht ml .

Paper organization. The remainder of this paper is
organized as follows: Section 2 describes the RTC2
specification and explains the design of our RTC2
framework, which has been integrated with the TAO
open-source Real-time CORBA ORB; Section 3
presents empirical studies we conducted to validate our
RTC2 approach and to quantify the costs of dynamic
scheduling of distributable threads; and Section 4
offers concluding remarks.

2. Dynamic Scheduling Framework Design
and Implementation for RT CORBA 2.0

This section describes the key characteristics and
capabilities of RTC2 specification and describes the
RTC2 dynamic scheduling framework that we have
integrated with the TAO Real-time CORBA ORB. The
key elements of TAO’s RTC2 framework, which
Figure 1 illustrates, are:
1. Distributable threads, which applications use to

traverse endsystems,

2. Scheduling segments, which map policy
parameters to distributable threads at specific
points of execution,

3. Current execution locus, the head of an active
thread,

4. Scheduling policies, which determine the
eligibility of each thread based on parameters of
the scheduling segment within which that thread is
executing, and

5. Dynamic scheduler, which reconciles the set of
scheduling policies for all segments and threads on
an endsystem, to determine which thread is active.

Object (Servant)

IDL
Stubs

IDL
Skeletons

ORB Core

Dynamic
Scheduler

BSS-A

ESS-A

Client

Service Context

Scheduling
segment

A

Object
AdapterDynamic

Scheduler

BSS-B

ESS-B

Service Context

Scheduling
segment

B

1 Distr ibutable thread

2

Current locus of execution3

B: MUF

A: EDFA: EDF

Segment scheduling policies4

55

Figure 1: TAO’s RTC2 Architecture

The remainder of this section explains the concepts of
distributable threads and the pluggable scheduling
framework specified by RTC2 and outlines the design
of these concepts in TAO’s RTC2 framework
implementation. We also describe scheduling points,
which govern how and when scheduling parameter
values can be mapped to distributable threads. We
conclude by discussing issues related to distributable
thread identity (such as the need to emulate OS-level
thread-specific mechanisms for storage or locking in
middleware) and examine the interfaces and
mechanisms needed to cancel distributable threads.

2.1. Distr ibutable Threads

DRE applications must manage key resources, such as
CPU cycles, network bandwidth, and battery power, to
ensure predictable behavior along each end-to-end
path. In RTC1-based DRE systems, application end-
to-end priorities can be acquired from clients,
propagated with invocations, and used by servers to
arbitrate access to endsystem CPU resources. For
dynamic DRE systems, the fixed-priority propagation
model provided by RTC1 is insufficient because these
DRE systems require more information than just
priority, e.g., they may need deadline, execution time,
and laxity. A more sophisticated abstraction than
priority is thus needed to identify the most eligible
schedulable entity, and additional scheduling
parameters may need to be associated with it so that it
can be scheduled appropriately.

A natural unit of scheduling abstraction
suggested by CORBA’s programming model is a
thread that can execute operations in objects without
regard for physical endsystem boundaries. In the RTC2
specification, this programming model abstraction is

termed a distributable thread, which can span multiple
endsystems and is the primary schedulable entity in
RTC2-based DRE applications. A distributable thread
replaces the concept of an activity that was introduced
but not formally specified in the RTC1 specification.

Each distributable thread in RTC2 is
identified by a unique system wide identifier called a
Globally Unique Id (GUID) [9]. A distributable thread
may have one or more execution scheduling
parameters, e.g., priority, time-constraints (such as
deadlines), and importance. These parameters specify
the acceptable end-to-end timeliness for completing the
sequential execution of operations in CORBA object
instances that may reside on multiple physical
endsystems.

Within each endsystem, the flow of control of
the distributable thread is mapped onto the execution of
a local thread provided by the OS. At any given instant,
each distributable thread has only one execution point
in the whole system, i.e., a distributable thread does not
execute simultaneously on multiple endsystems it
spans. Instead, it executes a code sequence consisting
of nested distributed and/or local operation
invocations, similar to the way a local thread executes
through a series of nested local operation invocations.
Below, we describe the key interfaces and properties of
distributable threads in the RTC2 specification and
explain how we implement those aspects in TAO.
Scheduling segment. A distributable thread comprises
one or more scheduling segments. A scheduling
segment is a code sequence whose execution is
scheduled according to a distinct set of scheduling
parameters specified by the application. For example,
the worst-case execution time, deadline, and criticality
of a real-time operation is used by the Maximum
Urgency First (MUF) scheduling strategy [4]. These
parameters can be associated with a segment
encompassing that operation on a particular endsystem,
e.g., as shown for segment B in Figure 1. The code
sequence that a scheduling segment comprises can
include remote and/or local operation invocations.
 Appropriate operations defined in the
RTSchedul i ng: : Cur r ent interface described below
are used to open or close a scheduling segment. A DRE
application opens a scheduling segment by calling the
begi n_schedul i ng_segment () operation and then
closes the scheduling segment by calling the
end_schedul i ng_segment () operation. Nested
scheduling segments are allowed so that different parts
of a scheduling segment can be scheduled with
different sets of scheduling parameters.

Our RTC2 implementation in TAO currently
places a restriction that the calls to begin and end each

scheduling segment should be made on the same
physical endsystem. We will lift this restriction in
future work so that the begin and end points can be on
different hosts. We will provide different strategies for
the cases where all begin and end points are or are not
collocated, however, since supporting distributed
segment begin and end points incurs more overhead.
The Current inter face. The RTSchedul i ng
modul e’ s Cur r ent interface defines operations that
begin, update, and end the scheduling segments
described above, as well as create and destroy
distributable threads. Each scheduling segment has a
unique instance of this Cur r ent object managed in
local thread specific storage (TSS) [10] on each
endsystem along the overall path of the distributable
thread. A nested scheduling segment keeps a reference
to the Cur r ent instance of its enclosing scheduling
segment. Each operation in the Current interface of the
RT Scheduling module is described below.
begin_scheduling_segment() – A DRE application
calls this operation to start a scheduling segment. If the
caller is not already within a distributable thread, a new
distributable thread is created. If the caller is already
within a distributable thread, a nested scheduling
segment is created. This call is also a scheduling point,
where the application interacts with the RTC2 dynamic
scheduler to select the currently executing thread
(Section 2.3 describes scheduling points in depth).
update_scheduling_segment() – This operation is a
scheduling point for the application to interact with the
RTC2 dynamic scheduler to update the scheduling
parameters and to check whether or not the schedule
remains feasible. It must be called only from within a
scheduling segment. A CORBA: : BAD_I NV_ORDER
exception is thrown if this operation is called outside a
scheduling segment context.
end_scheduling_segment() – This operation marks the
end of a scheduling segment and the termination of the
distributable thread if the segment is not nested within
another scheduling segment. Every call to begi n_
schedul i ng_segment () should have a
corresponding call to end_schedul i ng_segment () .
As noted earlier, in TAO’s RTC2 prototype the
segment begin and end calls should be on the same host
and in the same thread. After a call to
end_schedul i ng_segment () , the distributable
thread is operating with the scheduling parameter of the
next outer scheduling segment scope. If this operation
is performed at the outermost scope, the processing for
the native thread that the distributable thread is mapped
onto reverts back to the fixed priority OS scheduling
where the active thread priority is the sole determinant
of the threads eligibility for execution.

spawn() – A distributable thread can create a new
distributable thread by invoking the spawn()
operation. If the scheduling parameters for the new
distributable thread not specified explicitly, the implicit
scheduling parameters of the distributable thread
calling spawn() are used. The spawn() operation
can only be called by a distributable thread, otherwise a
CORBA: : BAD_I NV_ ORDER exception is thrown.

Distr ibutable thread location. Now that we have
explained the terminology and API for distributed
threads we can illustrate how all the pieces fit together.
A distributable thread may be entirely local to a host or
it may span multiple hosts by making remote
invocations. Figures 2 and 3 therefore illustrate the
different spans that are possible for distributable
threads. In these figures, calls made by the application
are shown as solid dots, while calls made by
interceptors within the middleware are shown as
shaded rectangles.

In Figure 2, DT1 makes a two-way invocation
on an object on a different host and also has a nested
segment started on Host 2 (BSS-B to ESS-B within
BSS-A to ESS-A). DT2 and DT3 are simple
distributable threads that do not traverse host
boundaries. DT2 has a single scheduling segment
(BSS-C to ESS-C), while DT3 has a nested scheduling
segment (BSS-E to ESS-E within BSS-D to ESS-D).
In Figure 3 DT2 is created by the invocation of the
RTSchedul i ng: : Cur r ent : : spawn() operation
within DT1, while DT4 is implicitly created on Host 2
to service a one-way invocation. DT4 is destroyed
when the upcall completes on Host 2.

BSS - A

BSS - B

ESS - A

ESS - B

Host 1 Host 2 Host 3

2 - Way
Invocation

2 - Way
InvocationDT1

BSS - C

ESS - C

DT2

BSS - D

ESS - B

BSS - E

ESS - E

DT3

Figure 2: Distr ibutable Threads and the Hosts They Span

2.2. Pluggable Scheduling

Different distributable threads in a DRE system
contend for shared resources, such as CPU cycles. To
support the end-to-end QoS demands of open DRE
systems, it is imperative that such contention be
resolved predictably, which necessitates scheduling
and dispatching mechanisms for these entities based on
the real-time requirements of the system. In the RTC2
specification, the scheduling policy decides the

sequence in which the distributable threads should be
given access to the resources and the dispatching
mechanism grants the resources according to the
sequence decided by the scheduling policy.

Host 2

BSS - A

ESS - A

1 - Way
Invocation

Host 3

DT3
DT4

Host 1

spawn ()DT1

DT2

Figure 3: Ways to Spawn a Distr ibutable Thread

 Various scheduling disciplines exist that require
different scheduling parameters, such as MLF, EDF,
MUF [4], or RMS+MLF [11]. One or more of these
scheduling disciplines (or any other discipline the
system developer chooses) may be used by an open
DRE system to fulfill its scheduling requirements.
Supporting this flexibility requires a mechanism by
which different dynamic schedulers (each
implementing one or more scheduling disciplines) can
be plugged into an RTC2 implementation.

The RTC2 specification provides a common CORBA
IDL interface, RTSchedul i ng: : Schedul er . This
interface has the semantics of an abstract class from
which specific dynamic scheduler implementations can
be derived. In the RTC2 specification, the dynamic
scheduler is installed in the ORB and can be queried
with the standard CORBA ORB: :
r esol ve_i ni t i al _r ef er ences f act or y
oper at i on using the name “RTSchedul er . ” The
application then interacts with the installed RTC2
dynamic scheduler (e.g., passing its scheduling
requirements) using operations defined in the
RTSchedul i ng: : Schedul er interface that is listed
under Scheduler Upcalls in Table 1. Similarly, the
ORB interacts with the RTC2 dynamic scheduler at the
points described in Section 2.3 to ensure proper
dispatching and sharing of scheduling information
across hosts. This is done through scheduler operations
listed under scheduler upcalls in Table 2.

2.3. Scheduling Points

An application and ORB interact with the RTC2
dynamic scheduler at pre-defined points to schedule
distributable threads in a DRE system. These
scheduling points allow an application and ORB to
provide the RTC2 dynamic scheduler information
about the competing tasks in the system, so it can make

scheduling decisions in a consistent and predictable
manner. We now describe these scheduling points,
which are illustrated in Figure 4.

Table 1: Summary of Scheduler Upcalls for User Invoked

Scheduling Points

Table 2: Summary of Scheduler Upcalls for ORB
Invoked Scheduling Points

ORB intercepts Scheduler upcall

Out goi ng r equest Schedul er : : send_r equest

I ncomi ng r equest Schedul er : : r ecei ve_r equest

Out goi ng r epl y Schedul er : : send_r epl y

I ncomi ng r epl y Schedul er : : r ecei ve_r epl y

Scheduling points 1-3 in Figure 4 are points where an
application interacts with the RTC2 dynamic scheduler
and are summarized in Table 1. The key application-
level scheduling points and their characteristics are:
New distr ibutable threads and segments. When a
new scheduling segment or new distributable thread is
created, the RTC2 dynamic scheduler must be
informed so that it can schedule the new segment. The
RTC2 dynamic scheduler then schedules the new
scheduling segment based on its parameters and those
of the active scheduling segments for other
distributable threads in the system when application
code outside a distributable thread calls the
begi n_new_schedul i ng_segment () operation to
create a new distributable thread, or when code within
a distributable thread makes a call to
begi n_nest ed_schedul i ng_segment () to create
a nested scheduling segment.
Changes to scheduling segment parameters. When
the Cur r ent : : updat e_schedul i ng_segment ()
op- er at i on is invoked by a distributable thread to
change its scheduling parameters, it updates scheduling
parameters of the corresponding scheduling segment
via Schedul er : : updat e_schedul i ng_segment () .

Object
(Servant)

IDL
Stubs

IDL
Skeletons

ORB Core

Dynamic
Scheduler

in args

out args + return value

Operation ()

BSS or Spawn

ESS

USS

Client

Service Context

1
2

3

4

1. BSS - RTScheduling::Current::begin_scheduling_segment() or
 RTScheduling::Current::spawn()
2. USS - RTScheduling::Current::update_scheduling_segment()
3. ESS - RTScheduling::Current::end_scheduling_segment()
4. send_request() interceptor call
5. receive_request() interceptor call
6. send_reply() interceptor call
7. receive_reply() interceptor call

7

5

6 Object
Adapter

Figure 4: RTC2 Scheduling Points

Termination of a scheduling segment or
distr ibutable thread. The RTC2 dynamic scheduler
should be informed when Cur r ent
: : end_schedul i ng_segment () is invoked by a
distributable thread to end a scheduling segment or
when a distributable thread is cancelled, so it can
reschedule the system accordingly. Hence, the
Cur r ent : : end_schedul i ng_segment () operation
invokes the end_schedul i ng_segment () operation
on the RTC2 dynamic scheduler to indicate when the
outermost scheduling segment is terminated. The RTC2
dynamic scheduler then reverts the thread to its original
scheduling parameters. If a nested scheduling segment
is terminated, an automatic invocation of
Schedul er : : end_nest ed_schedul i ng_segment (
) occurs. The RTC2 dynamic scheduler then ends the
scheduling segment and resets the distributable thread
to the scheduling parameters of the enclosing
scheduling segment scope.
As is described in Section 2.4.2, a distributable thread
can also be terminated from the application or another
distributable thread by calling the cancel ()
operation on the distributable thread. When the
distributable thread is cancelled, the Schedul er : :
cancel operation is called automatically by the RTC2
framework, which informs the RTC2 dynamic
scheduler of the distributable thread cancellation.

Scheduling points 4-7 in Figure 4 are points
where an ORB interacts with the RTC2 dynamic
scheduler, i.e., when remote invocations are made
between different hosts, and are summarized in Table
2. Collocated invocations occur when the client and
server are located in the same process. In collocated
two-way invocations, the thread making the request

User invokes Scheduler upcall

Cur r ent : : spawn Schedul er : :
begi n_new_schedul i ng_segment

Cur r ent : :
begi n_schedul i ng_segment

Schedul er : :
begi n_new_schedul i ng_segment

Cur r ent : :
begi n_schedul i ng_segment

Schedul er : :
begi n_nest ed_schedul i ng_segment

Cur r ent : :
Updat e_schedul i ng_segment

Schedul er : :
Updat e_schedul i ng_segment

Cur r ent : :
end_schedul i ng_segment

Schedul er : :
end_nest ed_schedul i ng_segment

Cur r ent : :
end_schedul i ng_segment

Schedul er : :
end_schedul i ng_segment

Di st r i but abl eThr ead: :
Cancel Schedul er : : cancel

also services the request. Unless a scheduling segment
begins or ends at that point, therefore, the distributable
thread does not have to be rescheduled by the RTC2
dynamic scheduler. Collocated one-way invocations do
not result in creation of a new distributable thread in
TAO’s RTC2 implementation due to (1) the overhead
of distributable thread creation, (2) scheduling
overhead/complexity, (3) lack of interceptor support
for collocated one-ways, and (4) lack of support for
executing collocated calls in separate threads.

The ORB interacts with the RTC2 dynamic
scheduler at points where the remote operation
invocations are sent and received. Client-side and
server-side interceptors are therefore installed to allow
interception requests as they are sent and received.
These interceptors are required (a) to intercept where a
new distributable thread is spawned in one-way
operation invocations and create a new GUID for that
thread on the server, (b) to populate the service
contexts, sent with the invocation, with the GUID and
required scheduling parameters of the distributable
thread, (c) to re-create distributable threads on the
server, (d) to perform cleanup operations for the
distributable thread on the server when replies are sent
back to a client for two-way operations, and (e) to
perform cleanup operations on the client when the
replies from two-way operations are received. These
interception points interact with the RTC2 dynamic
scheduler so it can make appropriate scheduling
decisions. The key RTC2 ORB-level scheduling points
and their characteristics are described below.
Send request. When a remote operation invocation is
made, the RTC2 dynamic scheduler must be informed
to ensure that it can (1) populate the service context of
the request to embed the appropriate scheduling
parameters of the distributable thread and (2)
potentially re-map the local thread associated with the
distributable thread to service another distributable
thread. As discussed in Section 2.4, when the
distributable thread returns to that same ORB during a
nested upcall, it may be mapped to a different local
thread than the one with which it was associated
previously. The client request interceptor’s
send_r equest () operation is invoked automatically
just before a request is sent. This operation in turn
invokes Schedul er : : send_r equest () with the
scheduling parameters of the distributable thread that is
making the request. The scheduling information in the
service context of the invocation enables the RTC2
dynamic scheduler on the remote host to schedule the
incoming request appropriately.
Receive request. When a request is received, the
server request interceptor’s r ecei ve_r equest ()

operation is invoked automatically by the RTC2
framework before the upcall to the servant is made.
This operation in turn invokes
Schedul er : : r ecei ve_r equest () , passing it
the received service context that contains the GUID
and scheduling parameters for the corresponding
distributable thread. It is the responsibility of the RTC2
dynamic scheduler to unmarshal the scheduling
information in the service context that is received. The
RTC2 dynamic scheduler uses this information to
schedule the thread servicing the request, and the ORB
requires it to reconstruct a
RTSchedul i ng: : Cur r ent , and hence a distributable
thread, on the server.
Send reply – When the distributable thread returns via
a two-way reply to a host from which it migrated, the
send_r epl y() operation on the server request
interceptor is called automatically by the RTC2
framework just before the reply is sent. This operation
in turn calls the Schedul er : : send_r epl y()
oper at i on on the server-side RTC2 dynamic
scheduler so it can perform any scheduling of the
thread making the upcall as required by the scheduling
discipline used so the next eligible distributable thread
in the system is executed.
Receive reply. Distributable threads migrate across
hosts through two-way calls. The distributable thread
returns to the previous host, from where it migrated,
through the reply of the two-request. When the reply is
received the client request interceptor’s
r ecei ve_r epl y() operation is invoked. This
operation in turn invokes Schedul er : :
r ecei ve_r epl y() on the client-side RTC2 dynamic
scheduler, which then performs any scheduling related
decisions required by the scheduling discipline, as a
distributable thread re-enters the system.

2.4. Challenges of Implementing an RTC2
Framework in TAO

To manage distributable threads correctly, an RTC2
framework must resolve a number of design challenges.
Below we examine two challenges we faced when
implementing distributable threads (1) managing
distributable vs. OS thread identities and (2) canceling
distributable threads. For each challenge, we describe
the context in which the challenge arises, identify the
specific problem that must be addressed, describe our
solution for resolving the challenge, and explain how
this solution was applied to TAO’s RTC2 framework.

2.4.1. Distr ibutable vs. OS Thread Identity
Context. A key design issue with the RTC2
specification is that in modern ORB middleware with
alternative concurrency strategies [11], a distributable

thread may be mapped on each endsystem to several
different OS threads over its lifetime. Figure 5
illustrates how a distributable thread can use thread-
specific storage (TSS), lock resources recursively so
that they can be re-acquired later by that same
distributable thread, or perform any number of other
operations that are sensitive to the identity of the
distributable thread performing them.

In Figure 5, distributable thread DT1
associated with OS thread 1 writes information into
TSS on endsystem A and then migrates to endsystem
B. Before DT1 makes a nested two way call back to an
object on endsystem A, DT2 migrates from endsystem
B to endsystem A. For efficiency, flexible concurrency
strategies (such as thread pools [2]) may map
distributable threads to whatever local threads are
available. For example, Figure 5 shows DT2 mapped to
OS thread 1 and when DT1 returns to endsystem A it
maps to OS thread 2.

Host 1 Host 2

OS
Thread

1

DT 1

tss_write

tss_read

OS
Thread

2

OS
Thread

1

DT 2

Figure 5: TSS with Distr ibutable Threads

Problem. Problems can arise when DT1 wants to
obtain the information it previously stored in TSS. If
native OS-level TSS was used, OS thread 2 cannot
access the TSS for OS thread 1, so DT1’s call to
t ss_r ead() in Figure 5 will fail. Moreover, the OS-
level TSS mechanism does not offer a way to substitute
the OS thread identity used for a TSS call, even
temporarily.
Solution. To resolve these problems, some notion of
distributable thread identity is needed that is separate
from the identities of operating system threads.
Likewise, mechanisms are needed that use distributable
thread GUIDs rather than OS thread IDs, which results
in an emulation of OS-level mechanisms in middleware
that can incur additional overhead.

2.4.2. Canceling a Distr ibutable Thread
Context. DRE applications may need to cancel
distributable threads that become useless due to
deadline failure or to changing application
requirements at run-time, or that might interfere with
other distributable threads that have become more
important. In the RTC2 specification, a distributable
thread supports the following Di st r i but abl eThr ead

interface whose cancel () operation can be invoked to
stop the corresponding distributable thread.

l ocal i nt er f ace
RTSchedul i ng: : Di st r i but abl eThr ead
{
 / / r ai ses CORBA: : OBJECT_NOT_FOUND
 / / i f di st r i but abl e t hr ead i s not
known
 voi d cancel () ;
} ;
The Di st r i but abl eThr ead instance is created when
the outer most scheduling segment is created. All
nested scheduling segments are associated with the
same distributable thread that they constitute.
Problem. Safe and effective cancellation of a
distributable thread requires that two conditions are
satisfied: (1) cancellation must only be invoked on a
distributable thread that in fact exists in the system and
multiple cancellation of a distributable thread must not
occur and (2) because a distributable thread may have
locked resources or performed other operations with
side effects outside that distributable thread, the effects
of those operations must be reversed before the
distributable thread is destroyed.
Solution. To cancel a distributable thread, the
application can only call the cancel () operation on
the instance of the distributable thread that is to be
cancelled. Moreover, once cancellation is successful
that instance becomes invalid for further cancellation.
In the TAO RTC2 framework, this operation causes the
CORBA: : THREAD_CANCELLED exception to be (1)
raised in the context of the distributable thread at the
next scheduling point for the distributable thread and
(2) propagated to where the distributable thread started,
as illustrated in Figure 6. A distributable thread can be
cancelled any time on any host that it currently spans.
As shown in Figure 6, the distributable thread was
cancelled on Host 2, even though it is currently
executing on Host 3.

When the cancel () operation is called, a
thread cancelled exception is propagated to the start of
the distributable thread. As shown in Figure 6, the
CORBA: : THREAD_CANCELLED exception is propagated
from Host 2 to Host 1 where the distributable thread
started. Since the cancellation is not forwarded to the
head of the distributable thread if it is not on the same
host, the cancellation will only be processed after the
distributable thread returns to Host 2 from Host 3.
Note that while the distributable thread is a local
interface, the head of the distributable thread may not
be executing within the same address space as the
thread calling cancel () . Hence, cancel () is
implemented by setting a flag in the
Di st r i but abl eThr ead interface to mark it as
cancelled. At the next local scheduling point of the

distributable thread a check for cancellation of the
distributable thread will be performed. If the flag is set,
then the distributable thread is cancelled and the
CORBA: : THREAD_CANCELLED exception is raised
and the relevant resources are released. After
CORBA: : THREAD_ CANCELLED is raised and the
distributable thread is cancelled, the local thread that
the distributable thread was mapped is released,
possibly to be used by another distributable thread.

BSS - A

cancel DT

Process the
cancel at next

scheduling point

Propagate
cancel

Head of DT

Host 1 Host 2 Host 3

DT cancelled

Figure 6: Distr ibutable Thread Cancellation

3. Empir ical Studies

This section describes empirical benchmarks we
conducted to validate TAO’s RTC2 architecture
described in Section 2. We describe experiments that
evaluated alternative mechanisms for scheduling
distributable threads according to importance.
Exper iment overview and configuration. We
plugged two RTC2 dynamic scheduler implementations
into the TAO ORB to test the behavior of its RTC2
dynamic scheduling framework with different
scheduling mechanisms. Both implementations use a
scheduling policy that prioritizes distributable threads.
Our Fixed Priority (FP) Scheduler implementation
schedules distributable threads by mapping each one’s
dynamic importance to native OS priorities. Our Most
Important First (MIF) Scheduler implementation
maintains its own ready queue that stores distributable
threads in order of their importance, and the local
thread to which each distributable thread in the queue
is mapped waits on a condition variable. When a
distributable thread reaches the head of the queue (i.e.,
it is next to execute), the MIF Scheduler signals the
corresponding condition variable on which the local
thread is waiting, to awaken it.
 The experimental configuration we used to examine
both the FP and MIF schedulers is identical. The test
consisted of a set of local and distributed (spanning two
hosts) distributable threads. The hosts were both
running RedHat Linux 7.1 in the real-time scheduling
class. The local distributable threads consisted of
threads performing CPU bound work on the local host

for a given execution time. The distributed
distributable threads (1) performed the specified local
CPU bound work on the local host, (2) then made the
remote invocation performing CPU bound work on the
remote host for a given execution time, and (3) came
back to the local host to perform the specified local
CPU bound work. Tables 3 and 4 show the scheduling
parameters of distributable threads on Host 1 and Host
2 respectively: execution times for local work before
and after the remote invocation are separated by a ‘+’ .
In the Execution Time column, “Loc.” represents local
execution times while “Rem.” represents remote
execution times.

Table 3: Distr ibutable Thread Schedule on Host 1

GUID
Start
Time
(secs)

Importance
Execution Time

(secs)
Spa
n

 Loc. Rem.

1
0 9 3+3 3 Dis

t
2 0 3 6+6 3

Dis
t

3 12 1 6 N/A Lo
cal

Table 4: Distr ibutable Thread Schedule on Host 2

Execution
Time

GUID

Start
Time
(secs)

Importanc
e

Loc. Rem.
Span

4 0 5 9 N/A Local
5 9 7 3 N/A Local

Summary of Empir ical results. Since both the FP and
MIF schedulers use the same scheduling policy based
on the importance of the distributable threads, the
resulting performance was nearly identical. This result
demonstrates that system-wide dynamic scheduling can
be achieved with TAO’s RTC2 framework when tasks
(represented by the distributable threads) enter and
leave the system dynamically. Since both the FP and
MIF schedulers schedule the distributable threads
based on their importance, it is not surprising based on
policy that the performance was nearly identical. The
one small but important difference from a mechanism
perspective was in the times at which the threads are
suspended and resumed, due to the context switch time
for the MIF scheduler (which is at the middleware
level) compared to the FP scheduler (which is at the OS
level). These results validate our hypothesis that
dynamic schedulers implementing different scheduling

disciplines and even using different scheduling
mechanisms can be plugged into TAO’s RTC2
framework to schedule the distributable threads in the
system according to a variety of requirements, while
maintaining reasonable efficiency.

4. Concluding Remarks

The Real-time CORBA 2.0 (RTC2) specification
defines a dynamic scheduling framework that enhances
the development of open distributed real-time and
embedded (DRE) systems that possess dynamic QoS
requirements. The RTC2 framework provides a
distributable thread capability that can support
execution sequences requiring dynamic scheduling and
enforce their QoS requirements based on scheduling
parameters associated with them. The RTC2
distributable threads abstraction can extend over as
many hosts that the execution sequence may span.
Flexible scheduling is achieved by plugging in dynamic
schedulers that implement different scheduling
disciplines, such as EDF, MLF, MUF, or RMS+MLF.
 TAO’s implementation of the RTC2 specification
has addressed a broader set of issues than the standard
itself covers, such as mapping distributable and local
thread identities, supporting hybrid static and dynamic
scheduling, and defining efficient mechanisms for
enforcing a variety of scheduling policies. We learned
the following lessons based on our experience
developing and empirically evaluating TAO’s RTC2
framework:
• RTC2 is a good beginning towards addressing the

dynamic scheduling issue in DRE systems. To
achieve correctness, however, there is a need for a
robust implementation of a Scheduling Service that
works in conjunction with the RTC2 framework.
By integrating our earlier work on the Kokyu
scheduling framework [7], [8] within the RTC2
standard, we have provided a wider range of
scheduling policies and mechanisms.

• Some features that are implemented for the
efficiency of thread and other resource
management can hinder the correct working of the
RTC2 framework. For example, managing
distributable threads is more costly and
complicated due to sensitivity of key mechanisms
to their identities, as is discussed in Section 0.

• In practice, relatively few DRE applications need
system-wide dynamic scheduling, which has
limited the scope of the RTC2 specification. In
particular, it presently does not address
interoperability of the dynamic schedulers on

different hosts. Instead, it only ensures propagation
of timeliness requirements of an execution
sequence across the hosts it spans so it can be
scheduled on each host.

References

[1] Gill, Schmidt, Cytron, “Multi-Paradigm
Scheduling for Distributed Real-Time Embedded
Computing” , IEEE Proc. 91(1), Jan. 2003.

[2] Real-Time CORBA Specification, Aug. 2002,
www.omg.org/docs/formal/02-08-02.pdf

[3] Pyarali, D. Schmidt, R. Cytron, “Techniques for
Enhancing Real-Time CORBA Quality of Service” ,
IEEE Proc., 91(7), July 2003.

[4] D. B. Stewart and P. K. Khosla, “Real-Time
Scheduling of Sensor-Based Control Systems,” in
Real-Time Programming (W. Halang and K.
Ramamritham, eds.), Tarrytown, NY: Pergamon
Press, 1992.

[5] Real –Time CORBA 2.0: Dynamic Scheduling
specification, OMG Final Adopted Specification,
Sept. 2001, www.omg.org/docs/ptc/01-08-34.pdf

[6] Schmidt, Levine, and Mungee. “The Design and
Performance of the TAO Real-Time Object
Request Broker” , Computer Communications
21(4), April 1998.

[7] Gill C., Levine D., Schmidt, D. “The Design and
Performance of a Real-Time CORBA Scheduling
Service,” The International Journal of Time-
Critical Computing Systems 20(2), Kluwer, March
2001.

[8] Gill, Schmidt, and Cytron, “Multi-Paradigm
Scheduling for Distributed Real-Time Embedded
Computing” , IEEE Proceedings 91(1), Jan 2003.

[9] UUIDs and GUIDs Internet-Draft, Paul J. Leach,
Rich Salz, www.opengroup.org/dce/info/draft-
leach-uuids-guids-01.txt

[10] Douglas C. Schmidt, Michael Stal, Hans Rohnert,
and Frank Buschmann, "Pattern-Oriented Software
Architecture: Patterns for Concurrent and
Networked Objects, Volume 2", Wiley, NY, 2000.

[11] Chung, Liu, Lin, “Scheduling Periodic Jobs that
Allow Imprecise Results,” IEEE Transactions on
Computers, vol. 39, Sept 1990.

[12] Pyarali, C. O’Ryan, D. Schmidt, N. Wang, V.
Kachroo, A. Gokhale, “Using Principle Patterns to
Optimize Real-Time ORBs”, IEEE Concurrency,
Vol. 8, No. 1, Jan-Mar 2000.

