
DISTRIBUTED OBJECT VISUALIZATION

FOR SENSOR-DRIVEN SYSTEMS

Christopher D. Gill, Washington University, St. Louis, MO

David L. Levine, Washington University, St. Louis, MO

Carlos O’Ryan, Washington University, St. Louis, MO

Douglas C. Schmidt, Washington University, St. Louis, MO

Abstract
Many sensor-driven systems, such as those

for avionics mission computing and for
manufacturing process control, have stringent
timing requirements for processing sensor data.
Furthermore, many of these systems must
manage multiple sources of sensor data
simultaneously. Our previous work has shown
that sensor-driven systems can be implemented
efficiently and predictably using a real-time
CORBA Event Service. This approach allows
designers of real-time systems to leverage the
benefits of flexible and open distributed
computing architectures, such as those defined
in the CORBA specification, while still meeting
real-time requirements for efficiency,
scalability, and predictability. To build and
manage these types of systems, application
developers and test engineers must be able to
monitor and visualize the systems’ real-time
behavior.

This paper describes how we have extended
our distributed object visualization environment
(DOVE) framework to monitor the timing
behavior of a real-time application that
generates and processes two separate streams of
simulated sensor data events. The principal
contributions of this paper are: 1) applying the
DOVE framework to a simulated sensor-driven
application, 2) extending the DOVE framework

to support new application requirements, and 3)
demonstrating and visualizing quality of service
(QoS) control for multiple event streams within
a real-time CORBA Event Service.

Introduction
Many real-time systems, particularly hard

real-time systems, are not correct unless they
can meet their deadlines. Rate monotonic
analysis and other scheduling strategies have
been developed to help ensure that real-time
systems achieve this goal. However, scheduling
strategies alone offer little guidance during the
debugging and testing phases. Traditional
debugging techniques do not help either because
they can change the behavior of the system.
Therefore, a distributed object visualization
environment (DOVE)1 framework can offer an
alternative, less obtrusive, way to observe how a
real-time system works at run-time. Thus, it can
be a powerful tool in the real-time system
development cycle.

Key design forces in the sensor-driven
systems domain impose significant constraints
on visualizing the real-time behavior of these
systems, however. Our initial DOVE
framework lacked the extensions described in

1 M. Kircher and D. Schmidt, “DOVE: A Distributed
Object Visualization Environment”, C++ Report,
March 1999.

this paper; it simply provided capabilities to
visualize distributed object computing (DOC)
systems. However, the design forces stemming
from the real-time nature of sensor-driven
systems motivated us to extend the DOVE
framework to resolve these forces.

The remainder of this paper is structured as
follows. The Design Forces section describes
key design forces for real-time sensor-driven
systems. The DOVE Architecture section
describes the architecture of the original DOVE
framework. The Design Forces Resolved
section describes how key design forces are left
unresolved by the original DOVE architecture,
and explores how our extensions to the
framework resolve these key design forces. The
Demonstration Architecture section describes an
integrated architecture suitable for
demonstrating this technology. Finally, the
Concluding Remarks section summarizes the
work and describes our plans for future
development and measurement using DOVE.

Key Design Forces and Requirements
Software for visualizing real-time system

behavior must address the following significant
challenges that are not faced when visualizing
the behavior of non-real-time systems. First, the
visualization framework must not interfere with
the correct timing behavior of the real-time
system. Second, the framework must be
flexible to address diverse system behaviors,
particularly when sources of non-determinism
appear. Finally, the framework must support
both independent and correlated visualizations
of distinct event streams. This section examines
each of these key design forces.

Unobtrusive Visualization: As noted
above, visualizing the behavior of a real-time
sensor-driven system is a valuable engineering
tool, particularly in the validation phase of the
system lifecycle. However, information about
real-time system behavior must be collected and
displayed without interfering with the overall
timing behavior of the system. For example, in
dynamically scheduled avionics mission-

computing systems2, monitoring and displaying
behavioral information must not cause critical
operations to miss their deadlines. Furthermore,
excessive impact of the visualization on non-
critical operations should be avoided, as well.
The visualization mechanisms used to
instrument the sensor-driven system must be
efficient and relatively deterministic.

Visualizing Non-deterministic Behavior:
Dynamically scheduled sensor-driven systems
can produce non-deterministic behavior for
certain operations when they are overloaded.
For some dynamically scheduled sensor-driven
systems3, a low level of overload is an
acceptable operating characteristic to maximize
utilization of system resources. Therefore,
visualization software should be able to detect
and provide a reasonable visualization of the
load on the system, as well as the effects of
overload on system behavior.

Visualizing Distinct Streams: Multi-sensor
systems may produce distinct streams of sensor
data. The real-time behavior of these systems
often depends on the interactions between
multiple streams. For example, two data
streams may be processed at different priorities,
e.g., processing for the higher priority stream
may preempt processing for the lower priority
stream. Likewise, there may be dependencies
between the streams. Therefore, the
visualization framework must consider data
streams both individually and in the aggregate.

DOVE Architecture
The DOVE framework developed at

Washington University in St. Louis, Missouri,
in the Center for Distributed Object Computing
(DOC) consists of the following major
components: a DOVE-enabled application, an
optional DOVE management information base

2 D. Levine, C. Gill, and D. Schmidt, “Dynamic
Scheduling Strategies for Avionics Mission
Computing”, 17th IEEE/AIAA DASC, 1998.
3 B. Doerr, T. Venturella, R. Jha, C. Gill, and D.
Schmidt, “Adaptive Scheduling for Real-Time,
Embedded Information Systems”, 18th IEEE/AIAA
DASC, 1999.

(MIB), a DOVE agent, and a DOVE-enabled
browser. The DOVE-enabled application
provides visualization information to a DOVE
agent, which can log the information to a DOVE
MIB. A DOVE agent can also pass the
information to a DOVE-enabled browser, which
displays various visualizations of the
information it receives from one or more DOVE
agents.

Figure 1. DOVE Components

The components in DOVE and their high-
level relationships are shown in Figure 1. The
DOVE application contains a proxy that
communicates with the DOVE agent. The
proxy augments the application; it is not
necessary to modify the application to make it
DOVE-enabled. The DOVE agent performs
service advertisement, change notification, data
reduction and correlation, visualization
configuration, and MIB management tasks.
DOVE agents reside on the target processors,
and must therefore be very lightweight in terms
of their resource consumption.

To reduce the load on the operational
system, the DOVE browser and the
visualization components usually run on a host
monitoring processor. To facilitate development
and deployment of visualization components in
such diverse client environments as monitoring
workstations or web browsers, the DOVE
browser and visualization components are
written in JavaTM. Thus, the DOVE framework

must decouple the timing behavior of the
browser and visualization components from the
timing behavior of the application, so that the
application’s real-time behavior is not adversely
affected by the behavior of the Java Virtual
MachineTM.

The DOVE framework described in this
section is implemented in the context of The
ACE ORB (TAO)4. TAO is open source
CORBA-compliant real-time ORB middleware
developed at Washington University in St.
Louis, Missouri, in the Center for Distributed
Object Computing (DOC). The Simulator
example distributed with TAO5 provides the
DOVE application and DOVE browser portions
of this framework. These components interact
with TAO’s Real-Time Event Service6, which
acts as the DOVE agent.

Design Forces Resolved
The original DOVE framework addresses

many of the common design forces encountered
when visualizing the behavior of DOC systems.
These forces include monitoring distributed
components, monitoring components written in
different programming languages, and
monitoring components running on different
end-system platforms.

The original DOVE framework also
addresses some of the design forces for real-
time sensor-driven systems. For instance, using
a DOVE agent to relay information from the
DOVE application to a DOVE-enabled browser
offloads processing from the application and
may reduce the impact of a DOVE-enabled
browser on the DOVE application’s real-time
behavior. Likewise, using a CORBA Event
Service as the DOVE agent4 allows the
visualization framework to scale between
collections of components ranging in size from

4 http://www.cs.wustl.edu/~schmidt/TAO.html
5 The Simulator example is found in the
{$TAO_ROOT}/examples/Simulator/ directory
6 T. Harrison, C. O’Ryan, D. Levine, and D. Schmidt,
"The Design and Performance of a Real-time CORBA
Event Service", IEEE JSAC, 1998.

small to large. Furthermore, the Real-time
Event Service provided with TAO5 allows
filtering and correlation of events to reduce
overall distributed system load.

However, the original DOVE framework
does not address several key design forces for
real-time systems. In particular, aspects of the
DOVE architecture had to be extended to
balance the following design forces:
1) unobtrusive visualization, 2) visualizing non-
deterministic behavior, and 3) visualizing
distinct event streams. This section describes
how we extended the DOVE framework to
address each of these key design forces.

Unobtrusive Visualization
Three features of the original DOVE

architecture facilitate our extensions to support
unobtrusive visualization. First, the DOVE
architecture’s flexibility allows us to add
lightweight decorators7 to the application
components. Thus, existing application code
need not be modified to use DOVE, or to
provide customized forms of real-time
monitoring. Second, the DOVE agent and its
proxies are themselves lightweight, which
means that unnecessary overhead is avoided in
our extensions. Third, the DOVE architecture
loosely couples visualization timing to
application timing via the Active Object
pattern8, which we extend by controlling thread
priorities to further reduce the impact of
visualization on the application’s real-time
behavior.

As shown in Figure 1, a DOVE application
contains the unmodified target application and a
proxy. The proxy adapts the application to the
DOVE agent API. This minimizes the impact
on the application by allowing a suitable,
application-specific data collection interface.

7 E. Gamma, R. Helm, R. Johnson and J. Vlissides,
"Design Patterns: Elements of Reusable Object-
Oriented Software", Addison-Wesley, 1995.
8 R. Lavender D. Schmidt, "Active Object: an Object
Behavioral Pattern for Concurrent Programming",
 Pattern Languages of Program Design, J. Coplien, J.
Vlissides and N. Kerth, eds., Addison-Wesley 1996.

For example to visualize the timing behavior of
an application component, we can extend the
DOVE framework via a thin decorator around
the component. This decorator collects the time
of entry and exit of a call to the component, and
then packages up the times in an event that it
forwards to the DOVE agent.

The DOVE agent and its proxies must
provide deterministic and non-intrusive
behavior because they reside on the embedded
target system. For example, packaging
monitored information in a proxy must not
consume excessive CPU cycles at the expense
of critical application processing. By reducing
the overhead for collecting monitor information
to a few simple steps, DOVE takes only a small
number of CPU cycles away from the
application for each monitoring event.

The DOVE architecture also uses the Active
Object pattern to decouple the thread of control
in the application from the thread of control in
the browser. This pattern prevents timing
delays in the application due to blocking while
JavaTM–based visualization components are
executing. We can reduce this impact even
further by configuring thread priorities in the
Real-time Event Service so that monitored
events are forwarded at a lower priority than the
application’s threads of control.

Visualizing Non-deterministic Behavior
Non-critical operations in sensor-driven

systems using hybrid static/dynamic scheduling
techniques9,10 may exhibit non-deterministic
behavior. For example, a built-in system test
operation for a manufacturing process control
system may run periodically. Moreover, it may

9 C. Gill, D. Levine, and D. Schmidt, "The Design and
Performance of a Real-Time CORBA Scheduling
Service", International Journal of Time-Critical
Computing Systems, special issue on Real-Time
Middleware, Wei Zhao, ed., Kluwer, 1999.

10 D. Stewart and P. Khosla, "Real-Time Scheduling
of Sensor-Based Control Systems”, Real-Time
Programming, Halang W. and Ramamritham, K. eds.,
Pergamon Press, Tarrytown, NY, 1992.

be preempted by higher priority operations, such
as system alarm processing. When the test
operation is preempted, no test data will be
logged until the higher priority operations
complete. Therefore, timing of test operation
data updates will be non-deterministic.

Even in the face of such non-determinism,
the work done by such low priority operations is
often still useful to the system. Below, we
describe two classes of real-time algorithms that
can withstand a moderate level of timing non-
determinism: 1) those that can withstand
missing data but not timing delays, and 2) those
that can withstand timing delays but not missing
data.

Resilience to Missing Data: Algorithms
that are time-sensitive, but resilient to missing
data points may simply drop data that arrives
after its deadline. For example, a non-critical
video streaming operation may drop an
occasional frame without noticeable degradation
in video quality.

Resilience to Timing Delays: Other low
priority algorithms may not be able to tolerate
missing data points, but may be able to
withstand timing delays for data. For example,
the “Persian” Recursion11 (PR) algorithm,
which performs successive refinement of a
drawn image, cannot tolerate missing data in a
sequence but can tolerate delays in the arrival of
data itself. It provides an effective way to
visualize the real-time behavior of time
insensitive algorithms, as the completeness of
the pattern corresponds to the degree of
refinement of the algorithm. Real-time
algorithms, such as built-in system tests that are
timing-insensitive, can be visualized using
DOVE framework extensions that are similar to
the PR algorithm extensions described below.

As Figure 2 illustrates, the PR algorithm
subdivides a square by drawing two
perpendicular bisectors of the square, and then
performing this step recursively on each of the
four quadrants of the original square, halting

11 A. Burns, ““Persian” Recursion”, Mathematics
Magazine, vol. 70, no. 3, MAA, 1997.

each recursive descent when the remaining
squares are only a pixel wide. The colors of the
bisecting lines are a function of the colors of the
sides of the square being subdivided in the
current recursive step. Different color mappings
supplied to this algorithm will produce different
resulting patterns, some of which are suggestive
of the pattern in a Persian rug (thus the name of
the algorithm).

Figure 2. “Persian” Recursion

Because the color assignment at each
recursive step of the PR algorithm depends on
the colors assigned in the previous step,
dropping the data for one recursive step and
proceeding to the next one could produce an
incorrect pattern. However, delaying the data
will simply retain the pattern at its current level
of refinement without affecting the correctness
of subsequent refinements.

Extending the DOVE Framework:
Applications such as video streaming, which
were previously common only in non-real-time
systems, are increasingly useful for real-time
systems. For example, the ability to stream
terrain footage from a ground-based tracking
center to a number of remote search aircraft can
greatly assist in search and rescue operations.

Video streaming is also a representative
example an algorithm that is resilient to missing
data. The stream itself often provides adequate
visualization of the real-time behavior of the
application. Therefore, we focus on extending
the DOVE framework to algorithms that can
withstand data delays but not missing data.

The PR algorithm is a reasonable surrogate
for this second class of algorithms. The rate of

update also provides an animated indicator of
the rate of arrival of updates, as well as
conveying any extended delays. Extending the
DOVE visualization framework to support the
PR algorithm consists of adding a new
application component, a new browser data
handler, and a new browser display component.

The application component calculates the
colors and endpoints of the horizontal and
vertical bisectors at each recursive step. The
application component packages up the
coordinates and colors for each pair of bisectors
in a data event, and passes it, via the
Application Proxy to the DOVE agent. In this
case, the DOVE agent is TAO’s Real-time
Event Service, as shown in Figure 3.

Figure 3. Extended DOVE Framework

The DOVE agent passes the data event to a
DOVE-enabled browser, which invokes the new
data handler that was registered for that type of
event. The new data handler unpacks the color
and endpoint data for each bisector, and updates
an appropriate data structure, e.g., adds to a
linked list of bisector structures, or draws the
new bisectors on a bitmap image. The new
browser display component, which is an
observer of the data structure, updates its
display by drawing the new line segment, or
displaying the updated bitmap.

Visualizing Distinct Streams: Multi-sensor
systems often produce distinct streams of data.
These streams may be filtered or correlated
prior to further processing in the application.
The original DOVE framework allows

visualization of the functional behavior of
distinct or correlated event streams using the
Real-time Event Service as the DOVE agent.
For example, a DOVE-enabled browser can
subscribe with the Real-time Event Service to
receive the event types associated with the
streams, so they can be visualized individually.
In addition a DOVE-enabled browser can
register to receive conjunctions and disjunctions
of events in the streams, e.g., to visualize
dependencies between the streams.

While the original DOVE architecture
allowed us to visualize the functional aspects of
distinct event streams, several aspects of real-
time behavior are not supported directly. In
particular, priority inheritance policies for
correlation of events may be needed. For
example, if two streams are at different
priorities, then correlating the events in order to
visualize them may need to be performed at a
lower priority than the streams themselves.

The real-time behavior of distinct event
streams depends on operation QoS
characteristics, specifically those specified in
the real-time information descriptors12

(RT_Info) used by TAO’s Real-time Scheduling
Service. The primary fields in the RT_Info
descriptor are shown in Figure 4.

12 D. Schmidt, D. Levine, and S. Mungee, "The
Design and Performance of Real-Time Object Request
Brokers", Computer Communications, Elsevier, Vol.
21, No. 4, April 1998, pp. 294—324.

Figure 4. Application QoS Data

Based on the values in the RT_Info
descriptors, and the dependencies between
them, TAO’s real-time scheduler assigns static
priority and sub-priority values, and configures
the dynamic run-time operation-dispatching
behavior. Some of these field values are
determined automatically through configuration
runs. Application developers supply others. By
specifying the characteristics of visualization
operations as well as application operations, and
explicitly defining the dependencies between
them, the impact of visualization on distinct
application event streams, even at different
priorities, can be reduced.

Concluding Remarks
In this work, we have identified key design

forces for visualizing sensor-driven systems.
The forces can be resolved by extending the
DOVE framework to avoid imposing
constraints on the application programming
model or real-time system behavior in order to
visualize the system.

We have described two classes of operations
that are resilient to non-determinism in
operation scheduling. The first are resilient to
missing data; the second to timing delays. For
the time insensitive class, we have shown how a
simulated sensor-driven application, i.e., the
“Persian” Recursion algorithm, can be used to
model the real-time behavior of a class of
successive refinement algorithms in the face of
non-deterministic scheduling of operations.

We have also described techniques for
specifying QoS characteristics for visualization
and application operations. This preserves the
real-time behavior of distinct event streams at
different priority levels, while correlating events
for visualization.

The extensions to the DOVE framework
described in this paper provide a basis for
implementing monitoring and visualization
capabilities in distributed real-time systems,

using standards-based COTS OO middleware,
such as a real-time implementation of. CORBA.
This framework and the sample application are
distributed with The ACE ORB (TAO), which
is freely available via the open source software
model. For more information about TAO and
DOVE, please see the following URL:
http://www.cs.wustl.edu/~schmidt/TAO.html.

