
ADAPTIVE SCHEDULING FOR REAL-TIME, EMBEDDED
INFORMATION SYSTEMS

Bryan S. Doerr, The Boeing Company, St. Louis, MO

Thomas Venturella, The Boeing Company, St. Louis, MO

Rakesh Jha, Honeywell Technology Center, Minneapolis, MN

Christopher D. Gill, Washington University, St. Louis, MO

Douglas C. Schmidt, Washington University, St. Louis, MO

 Introduction
One way to increase software system

adaptability is to allocate resources dynamically
at run-time rather than statically at design time.
For example, fine-grained run-time allocation of
processor utilization and network bandwidth
creates an opportunity to execute multi-modal
operations. This allocation strategy enhances
adaptability by combining deterministic and
non-deterministic functionality. In general,
adaptability is essential to improve versatility
and decrease lifecycle maintenance costs for
embedded real-time systems.

Consider the following dynamic
resource allocation example: as the pilot of an
aircraft nears a weapon release point, he must
maneuver the aircraft based on information
computed by an embedded mission computer. It
is also important, however, to simultaneously
monitor for and react to possible air threats,
using the same mission computer. In legacy
mission computing systems, which were
designed according to static resource allocation
techniques, the pilot must allocate processing
resources manually by switching between
different mission computer operating modes to
perform both of these functions.

Underlying the design of these legacy
systems are resource allocation strategies that
optimize resource utilization for each mode.
These strategies suffer, however, from
embedding allocation decisions within

application components, which complicates
reuse. Likewise extensive system testing must
be conducted whenever these strategies change.

Dynamic resource allocation has the
potential to provide pilots more operational
capability with less manual intervention. In the
prior example, for instance, the use of dynamic
allocation could simultaneously provide the
pilot continuously varying qualities of air threat
data and release point information, as measured
by target count, accuracy, etc. While
implementing this capability within a specific
solution would be straightforward, it is more
challenging to support operator configured
generic adaptation, using information known
only at mission time. It is even more
challenging to perform generic run-time
adaptation while still ensuring correct overall
system operation. It is this type of adaptation,
however, that allows mission computing system
developers to produce application components
that are more stable in the presence of resource
variability.

The example above is just one instance
of the general evolution of embedded systems
from pre-configured “point-solutions” (with
strictly controlled inputs and outputs) to
operator-configurable systems capable of
operating in less deterministic situations. In
general, real-time information systems, such as
those within fighter aircraft, multimedia
applications, and manufacturing plants, are
becoming increasingly interconnected with

other real-time and non-real-time systems. Due
to the desire to react to information derived
from this increased data sharing, real-time
information systems are evolving to be more
supportive of functional customization later in
their deployment lifecycles. This evolution
motivates our research into adaptive software
systems.

In summary, adaptability can be defined
as an aggregate measure of key software
characteristics that support customization of
software functionality after initial development.
High adaptability occurs when the application
provides numerous, significant customization
options based on user or system input. While
many examples of solution-specific adaptability
exist in prior work, our goal is to make adaptive
characteristics an integral part of real-time,
embedded system software architectures.

Many software architectural precepts are
mechanized within a software framework that
supports application development. A software
framework is "a set of cooperating classes that
make up a reusable design for a family of
related software applications.1” Our resulting
framework will enable developers to produce
adaptive components, even for functionality that
does not have initial requirements for
adaptability. Our hypothesis is that the resulting
applications will be more extensible to future
requirements, thereby lowering costs for
maintenance and enhancement over the lifecycle
of the software.

Project Objectives
The objectives of our research are to

develop, demonstrate, and assess adaptive
software technologies. Our current phase of this
work has focused on the following aspects of
adaptability:

• Achieving higher resolution of
existing computations and/or adding

1 Gamma, E., Helm, R., Johnson, R., and Vlissides, J.,
"Design Patterns: Elements of Reusable Object-
Oriented Software", Addison-Wesley, Reading, MA,
1995

functionality by exploiting varying
CPU availability that arises from
changes in the environment

• Increasing the ability to handle
functions with non-deterministic
execution time, such as those present
in non-real-time networks and
information management activities

• Increasing flexibility for functional
customization during system
deployment

• Using commercial standards and
products as building blocks so that the
resulting solution can be widely used
 To achieve these goals, our research has

focused on the development of overall
application architecture concepts, prototypes of
adaptive algorithms within a supporting
CORBA-based run-time framework, and the
investigation of patterns for developing
application functionality that can operate within
the framework we have developed.
Specifically, we have prototyped an architecture
for avionics mission computing that possesses
the following adaptive attributes:

• A component model that minimizes
dependencies of application
components on variable timing and
logical characteristics

• Frame-to-frame real-time guarantees
for high criticality functions

• Flexible and adaptive dynamic
scheduling for low criticality
functions

• Mission customization for both high
and low criticality functions.

The remainder of this paper is structured
as follows. The Design Forces section
examines the key design forces originating from
legacy mission computing system behavior.
This section also outlines design goals and non-
functional requirements that must be resolved
by any solution. The Adaptive Architecture
section describes our adaptive architecture in
detail. Within this section, we outline the
overall adaptive framework and highlight
several features of this framework. We then
focus on four of these features specifically,

Quality of Service Expression, Dynamic
Processor Scheduling, Adaptive Resource
Management, and Application Adaptation
Control. Finally, the Concluding Remarks
section presents a summary of the work and
describes our plans for future development and
measurement.

Design Forces

Legacy Evolution
Hard real-time applications have

traditionally been designed with very a high
degree of determinism. This has often meant
embedding all decisions related to the order of
execution and the layout of the functional call
tree within the design, i.e., using a cyclic
executive. The resulting system provided a very
reliable, but relatively rigid, set of system
capabilities. Any adaptability that is present
within these systems must be implemented
within the application components.
Unfortunately, this design couples application
logic and resource allocation - a poor
encapsulation of independent design forces that
are subject to change.

To make legacy real-time systems more
adaptable, it is necessary to decouple the
functional and non-functional aspects of the
design so that functionality can be changed
without affecting the timing constraints of the
system adversely. For example, moving the
scheduling decisions from a cyclic executive
into a static scheduling algorithm, such as Rate
Monotonic Scheduling2 (RMS), relaxes the
strict ordering dependencies between operations
while still maintaining a priori deadline
guarantees.

2 Liu, C.L., and Layland, J. W., "Scheduling
Algorithms for Multiprogramming in a Hard-Real-
Time Environment", JACM, Vol. 20 No. 1, January
1973, pp. 46-61.

Managing Non-Functional Requirements
Within the constraints of legacy design

paradigms, adaptability and determinism are
opposing forces with limited options for
reconciliation. In part, this tension is created by
the perception that all functionality within the
application requires the same degree of
determinism. However, a central premise of our
research is that this constraint is overly
restrictive for many real-time systems. Within
the mission computing domain for example,
certain functionality, e.g., update of a navigation
solution, is indeed required to be activated and
completed while satisfying hard real-time
constraints. However other functions, e.g., built-
in testing, can be run according to more lenient
criteria.

Just as relaxing the strict ordering
constraint enabled the evolution from cyclic
executives to RMS scheduling, relaxing the
determinism constraints for individual
operations enables the evolution to adaptively
scheduled systems. This evolution allows real-
time systems greater flexibility for adaptation in
both functional and non-functional aspects,
while still resolving key design forces in various
real-time domains. In addition, static scheduling
strategies such as RMS may under-utilize the
CPU, especially when resource requirements
vary significantly at run-time. Using a hybrid
static/dynamic scheduling strategy allows
greater overall CPU utilization while preserving
hard real-time requirements for tasks that
require them.

The principal design forces that must be
resolved by adaptive architectures for real-time
systems include 1) continuing to provide
deterministic guarantees for all tasks that
require these guarantees, while 2) relaxing
guarantees for operations with less stringent
requirements, in order to permit flexible and
adaptive responses to changing situational
factors, and 3) increasing utilization of
resources such as the CPU.

Adaptive Architecture

Resolving Key Design Forces
Our approach requires that many scheduling

decisions be delayed and determined based on
adaptive control information provided at run-
time. To accomplish this, our research has the
following architectural goals:

• Allow run-time determination of
contents and ordering of the CPU
schedule

• Increase stability in the presence of
dependency and timing variability

• Maximize utilization of available
CPU for performing application
functions

These goals are discussed in the following
paragraphs.

Execution Order: The CPU schedule is
an ordered list of functions performed each
period or at harmonic periods from a base rate.
To satisfy the adaptive objectives described
above, real-time system design must support the
definition and re-prioritization of application
functions by operators and defer concrete
scheduling of these functions until later parts in
the deployment lifecycle, i.e., until run-time.

Stability: Dependency and timing
stability are non-functional aspects of the
architecture. Software possessing the quality of
dependency stability isolates the implementation
of the functional algorithm from the effects of
changes in the context under which it is
executed. High stability is present when an
algorithm implementation is only dependent
upon information directly expressed in its public
interface. Software possessing the quality of
time stability isolates the consequences of
timing changes on the correctness of the
application. High stability is present when
changes occur in relative execution order, rate,
or timing of components, without affecting
correct system operation adversely.

Maximization of value: The “value” of
an application is a measure of how closely it
approximates performing precisely those

functions desired by the user. Increased value
can be accomplished in two ways: 1) using
otherwise idle resources to perform any
mission functions and 2) allocating resources to
favor higher value computations, where value
is determined by a specific set of mission
conditions, e.g., proximity to target, presence or
absence of airborne threats, etc.

Adaptation Architecture
In current research3, the term Quality of

Service (QoS) describes the concept of using
selected attributes of software entities as a
means of arbitrating access to system resources.
Our research has explored several architectural
enhancements necessary for the development of
a real-time QoS framework. The architectural
features discussed below outline these
enhancements:

• An interface that allows
applications to express the QoS
attributes for their operations
• A dynamic scheduling mechanism
to utilize frame-to-frame processing
availability, based on the operation
QoS specified by applications
• A resource management function
to perform run-time allocations based
on defined execution contexts
• Execution contexts, capable of
independent scheduling, to provide
adaptation control information to the
resource management function
Three additional features are needed

to fully support developers in implementing
our adaptive architecture:

• Additional classifications for
various types of application functions
for the purposes of distinguishing
between critical and non-critical
functions
• A catalog of patterns for
implementing adaptable application
functions

3 John A. Zinky and David E. Bakken and Richard
Schantz, "Architectural Support for Quality of Service
for CORBA Objects", Theory and Practice of Object
Systems, John Wiley and Sons, 1997, Vol. 3, No. 1,

• Initialization-time services that
allow selected component
dependencies to be delayed until run-
time

The remainder of this section focuses on the
first four features of this list. The last three features
are work in progress associated with developing
QoS-aware applications and are beyond the scope of
this discussion.

QoS Expression
In many real-time applications,

operations are scheduled at specific rates that
are determined during system analysis. Rate
selection depends on a number of factors,
including required accuracy of the solution, the
minimum resources required to achieve this
accuracy, and the effects on other operations.
An application typically employs an executive
that “hard codes” the sequence of all operations
in the application and enforces the rate decisions
made during system analysis.

After the design activity outlined above
is completed, the viability of a specific
application to meet its deadlines is determined
empirically. Historically, this validation has
occurred in a lab after the application coding
was virtually complete. Thus, at runtime, the
application essentially has no information useful
for adaptation.

Due to the testing-intensive nature of
this system design process, there have been
attempts to migrate to static analysis techniques
using Rate Monotonic Scheduling (RMS)
algorithms. This migration requires that the
application provide QoS information for each
executable operation. The required QoS
information includes the rate at which the
operation will execute and its worst case
execution time. The RMS algorithm provides a
pessimistic, but predictable, decision about the
schedulability of the system tasks. An online
dispatcher uses the operation rates to determine
the priority at which the different operations
should be dispatched at runtime.

While RMS permits static analysis, it
does not provide a mechanism for fine-grained
adaptation at runtime. The migration to static
analysis does provide a framework, however,
using the QoS information to specify the
adaptation control data critical for fine-grained
adaptation. For our current work, we started
with this framework to represent operation QoS
characteristics, specifically the real-time
information descriptor4 (RT_INFO). We then
extended it to support multiple rates of
execution.

The primary fields in the RT_Info
descriptor are shown in Figure 1. Worst case
execution time is a bound on the time consumed
by a single execution of the operation. Period
indicates the interval between successive
invocation requests for the operation. Criticality
indicates an operation’s significance, i.e.,
whether violating an operation’s timing
constraints will compromise the application’s
essential integrity. Importance is a lesser
indicator of significance, which is used as a
tiebreaker when other scheduling factors are
equal. Finally, dependencies indicate which
other operations must execute prior to a
particular operation, e.g., to produce an input
that is needed by the operation. These
parameters are used by the scheduler to assign
static priority and sub-priority values, and to
configure the dynamic run-time operation
dispatching behavior. Some of these fields are
determined automatically through configuration
runs. Others are supplied by application
developers.

Dynamic Processor Scheduling
The first step toward developing an

adaptive architecture is to incorporate a
mechanism to order application functions
flexibly. This mechanism enables the adaptive
software architecture to determine a CPU

4 Schmidt, D.C., Levine, D. L., and Mungee, S., "The
Design and Performance of Real-Time Object Request
Brokers", Computer Communications, Elsevier", Vol.
21, No. 4, April 1998, pp. 294—324.

schedule late in the deployment lifecycle, i.e, at
runtime. In conjunction with the development
of application components capable of adjusting
their behavior according to changing CPU
allocation, this mechanism must provide
analysis and specification of varying CPU
allocation parameters to maintain application
wide guarantees.

The next step toward a fully adaptive
scheduling mechanism is the introduction of
dynamic scheduling capabilities. In spite of the
increased adaptation, real-time system must still
provide static guarantees for critical operations
with strict determinism constraints. Therefore, it
is desirable to integrate both static and dynamic
scheduling capabilities. Hybrid static/dynamic
scheduling algorithms, such as Maximum
Urgency First5, offer the ability to increase CPU
utilization while isolating the effects of non-
critical operations on critical ones. By statically
assigning higher preemptive priorities to more
critical operations, and then dynamically
ordering operations within certain static priority
levels, it is possible to preserve strict
determinism constraints for critical operations
while increasing overall CPU utilization.

Figure 1. Application QoS Data

5 Stewart, D. B. and Khosla, P. K., "Real-Time
Scheduling of Sensor-Based Control Systems”, Real-
Time Programming, Halang W. and Ramamritham, K.
eds, Pergamon Press, Tarrytown, NY, 1992.

The second evolutionary step is the
encapsulation of these static and dynamic
scheduling policies within a consistent interface,
according to the Strategy6 design pattern. This
allows different applications, with distinct
patterns of criticality and determinism
constraints for operations, to instantiate
customized scheduling policies within our
adaptive CORBA middleware framework. As
described above, the application specifies the
characteristics of its operations in the RT_INFO
descriptor, and the scheduling strategy uses
these characteristics to assign static priority
information to the operations. The scheduling
strategy also assigns configuration information
for the dispatching mechanism, which identifies
the static or dynamic ordering policy for each
static priority level.

The third step toward a fully adaptive
scheduling mechanism is performance
optimization in the scheduler itself. For off-line
scheduling, the computational overhead
activities, such as assigning priorities and
looking up real-time information descriptors, do
not impact the timing behavior of the system
itself. However, the scheduler must support on-
line schedulability analysis to an on-line
adaptive resource manager (ARM) to evaluate
adaptation options. The scheduler
implementation achieves this functionality by
storing internal flags to isolate which portions
of the scheduling information must be
recomputed, and using O(1) data structures for
operation lookup.

Finally, as discussed in the next section,
the dynamic scheduler provides real-time
feedback about operation progress to ARM.

The scheduling framework described in
this section is implemented in the context of
The ACE ORB (TAO)7. TAO is open source
CORBA-compliant real-time ORB middleware

6 Gamma, E., Helm, R., Johnson, R., and Vlissides, J.,
"Design Patterns: Elements of Reusable Object-
Oriented Software", Addison-Wesley, Reading, MA,
1995.

7 http://www.cs.wustl.edu/~schmidt/TAO.html

developed at Washington University in St.
Louis, Missouri, in the Center of Distributed
Object Computing headed by Dr. Douglas C.
Schmidt. The Reconfiguration Scheduler
implementation distributed with TAO provides
the strategized dynamic scheduling and
performance optimized portions of this
framework.

By itself, dynamic scheduling improves
upon static scheduling by improving utilization
in the presence of behaviorally dynamic
application components. Our experience
suggests that dynamic scheduling likely
increases complexity in the testing process,
though our research has not systematically
analyzed this issue yet. Therefore, if dynamic
scheduling is simply used as part of an
otherwise point-solution-based architecture, the
additional complexity involved in its use could
be of questionable benefit.

The real advantage of an underlying
dynamic scheduling capability becomes
apparent when we consider that it enables us to
build a family of solutions, formerly emulated
by modal behaviors, but now possible with
more flexibility and finer granularity. This
capability is discussed further in the next
section.

Adaptive Resource Management
In contrast to dynamic scheduling, which

adapts to cycle-to-cycle variations in CPU
consumption by various operations, adaptive
resource management (ARM) adapts to longer-
term variations in resource demands and
availability. ARM provides two types of
adaptation – 1) contraction and expansion of
feasible QoS regions, and 2) changing the
operational point within a QoS region based on
real-time feedback of actual QoS. For example,
in a system of rate-adaptive periodic operations,
QoS contraction decreases maximum operation
rates, whereas feedback adaptation varies
operation rates within the currently active min-
max range.

Applications are increasingly built on
top of services that in turn may be built on top
of lower-level services. Therefore, ARM is a
hierarchical architecture. Each level provides
QoS-based adaptive resource management as
described in the preceding paragraph. The ARM
implementation allows very flexible
construction of adaptive applications. Adaptive
applications can be built on top of services that
may or may not be adaptive. In addition,
different algorithms can be plugged in for
resource allocation, detection of adaptation
triggers, and processing of real-time feedback.

In the subject implementation, ARM
uses several interfaces provided by the dynamic
scheduler to access information about operation
progress and scheduling feedback. An Upcall
Monitor provides real-time feedback about
which operations meet or do not meet their
deadlines. The ARM can query the Upcall
Monitor for deadline success and failure
information for each operation.

In addition to the real-time feedback
provided by the Upcall Monitor, the ARM
gathers adaptive control information about
schedulability analysis from the scheduler in
order to guide its adaptation. The scheduler
provides two types of adaptive control
information: 1) feasibility of the set of
operations presented to it by ARM and 2)
sensitivity analysis of schedule feasibility to
changes in the operations’ parameters.

The adaptive scenario explored in our
research consists of operations with either fixed
or variable periods of execution. Operations
with variable execution times will be considered
in our future research. Because CPU utilization
by an operation is a function of its execution
time and period, the utilization of operations
with fixed periods is also fixed. The ARM can
adjust utilization by operations with variable
periods, however, and the scheduler must
provide adaptive control information to guide
the ARM in making such adjustments. The
scheduler recognizes three primary utilization
regions, as shown in Figure 2.

The first utilization region in Figure 2
captures overload situations in which the fixed
period operations require more than the
schedulable utilization bound. This reflects a
system failure, and should be corrected prior to
deployment. It is useful for the adaptive
scheduler to detect and report such situations to
the ARM, particularly during pre-deployment
testing.

Fixed

Fixed

Fixed

Variable

Variable

Variable

Overload

Over-Utilization

Under-Utilization

Schedule
Bound

Figure 2.: Operating Regions

The second utilization region shown in
Figure 2 captures over-utilization situations in
which the fixed period operations require less
than the schedulable bound, but the variable
period operations require more than the
remaining available utilization. In these cases
the ARM must increase the periods of certain
operations, and the scheduler can provide the
ARM either a lower bound on the periods of a
set of variable operations, or a scaling factor by
which to multiply them.

The third and final utilization region
shown in Figure 2 captures under-utilization
situations in which the fixed and variable period
operations together require less than the
schedulable bound. In these cases, the ARM
can decrease the period of certain operations,
and the scheduler can provide the ARM either
an upper bound on the periods of a set of
variable operations, or a scaling factor by which
to multiply them

Application Adaptation Control
Figure 3 shows the ARM and dynamic

scheduling components discussed earlier as part
of the complete application architecture. The
final aspect of our QoS framework is related to
how the application expresses adaptive control

data to framework components dependent upon
this information to perform the desired
adaptation. We have already discussed how
application operation characteristics are
expressed to the framework in the QoS
Expression Section. What remains is a
description of the data provided to the ARM at
run-time for it to maximize utilization and
provide the greatest processing value to the
operator.

To accomplish the goals described
above, the application be capable of identifying
discrete transitions when operations change their
relative priorities, at any time before of during
runtime. The application provides this
adaptation data to a Resource Manager, which
works in conjunction with a runtime Scheduler
to analyze the state of the application
dynamically in order to make more optimal
adaptation decisions.

Application
Operations

Dynamic
Scheduling

Dispatch

Sensitivity Measure

Mission
States

ARM

Admit Monitor

Adaptation
Executable
Operations
HRT

SRT

t

t

t

Operation
DispatchesProgress

and
Sensitivity
Feedback

Figure 3. Adaptation Architecture

The mechanism used by an application
to express these transition points is called an
operating region. An operating region is
defined as a set of operations the application
wishes to execute during a particular phase of
execution. The application state can be made up
of a variety of domain specific parameters,
which for a mission processing example, may
include information such as aircraft position or
velocity. In addition to the set of operations, the
operating region also specifies to the resource
manager whether the operations are critical or
non-critical and the set of allowable rates at
which these operations can be executed.

At runtime, the resource manager
determines the operating region in which the

application should be executing. It then queries
the dynamic scheduler, using the sensitivity
interface, to determine an acceptable set of rates
at which to execute the operating region’s
operations. As previously described, the ARM
can seek to optimize operation rates according
to a number of different algorithms. Through
this mechanism, the resource manager more
effectively utilizes the resources of the system
by performing functions most valuable to a
specific situation.

As part of our work, we also investigated
mechanisms for the specification of operating
regions. In an avionics mission-processing
environment for example, operating regions
could be downloaded from a mission planner at
the beginning of a flight, or entered by a pilot
through an upfront control. In a non-real-time
environment, the data could be read from a hard
disk or entered through a keyboard. The ability
of the architecture to support the specification of
the operating region late in the application
deployment lifecycle, as opposed to application
design time, decouples design of the application
from its adaptation, and also provides for an
application that can be customized on a situation
to situation basis. This was the overall objective
of the project.

Finally, the resource manager has been
enhanced with an operation progress monitor.
The purpose of this monitor is to determine how
frequently an operation is being executed. The
resource manager can use this additional
adaptation data to make a decision to adjust the
rate of the operation.

Concluding Remarks
In this work, we have developed a QoS

framework that satisfies the goals of
maximizing resource allocation according to
deployment specific needs and more effectively
integrating deterministic and non-deterministic
functions. Our approach was to blend macro-
level adaptive resource management techniques
with micro-level run-time scheduling algorithms
within the context of an application that can

supply data to guide the adaptation late in the
deployment lifecycle, i.e., during system
configuration or even at run-time. The
algorithms supporting this framework have been
developed to be suitable for embedded real-time
operation according to the constraints present
within the target application domain - avionics
mission computing. Future work will focus on
measuring qualitative and quantitative
improvements resulting from the use of this
framework.

