
Deployment Optimization for Embedded Flight Avionics Systems

1Brian Dougherty, 2Jules White, 1Douglas C. Schmidt, 3Russell Kegley and 3Jonathan Preston
1Vanderbilt University, {briand,schmidt}@dre.vanderbilt.edu

2Virginia Tech, julesw@vt.edu
3Lockheed Martin Aeronautics, {russell.b.kegley,jonathan.d.preston}@lmco.com

1 Abstract

Loosely-coupled publish/subscribe messaging systems
facilitate optimized deployment of software applications to
hardware processors. Intelligent algorithms can be used to
refine system deployments to reduce system cost and re-
source requirements, such as memory and processor utiliza-
tion. This article describes how we applied a computer-
assisted deployment optimization tool to reduce the re-
quired processors and network bandwidth consumption of
a legacy flight avionics system.

2 Software Defense Application

The deployment topology of a distributed system deter-
mines how software is mapped to hardware. Optimizing
the deployment topology of DoD distributed embedded sys-
tems has a significant impact on how efficiently the software
utilizes the hardware. Deployment optimization can also
help minimize hardware costs without requiring changes to
the software or hardware architecture. This hardware re-
duction, in turn, helps reduce fuel consumption, increase
operational ranges, and decrease cost.

3 Introduction

Current trends and challenges. Several trends are
shaping the development of embedded flight avionics sys-
tems. First, there is a migration away from older federated
computing architectures where each subsystem occupied a
physically separate hardware component to integrated com-
puting architectures where multiple software applications
implementing different capabilities share a common set of
computing platforms. Second, publish/subscribe (pub/sub)-
based messaging systems are increasingly replacing the use
of hard-coded cyclic executives.
These trends are yielding a number of benefits. For ex-

ample, integrated computing architectures create an oppor-
tunity for system-wide optimization of deployment topolo-
gies, which map software components and their associ-
ated tasks to hardware processors as shown in Figure 1.
Optimized deployment topologies can pack more software

Figure 1. Flight Avionics Deployment Topol-
ogy

components onto the hardware, thereby optimizing system
processor, memory, and I/O utilization [11, 13, 8]. Increas-
ing hardware utilization can decrease the total hardware
processors that are needed, lowering both implementation
costs and maintenance complexity. Moreover, reducing the
required hardware infrastructure has other positive side ef-
fects, such as reducing weight and power consumption.
Open problems. Developing computer-assisted meth-

ods and tools to deploy software to hardware in embedded
systems is hard [1, 4] due to the number and complexity of
constraints that must be addressed.
For example, developers must ensure that each soft-

ware component is provided with sufficient processing time
to meet any real-time scheduling constraints [12]. Like-
wise, resource constraints (such as total available mem-
ory on each processor) must also be respected when map-
ping software components to hardware components [12, 5].
Moreover, assigning real-time tasks in multiprocessor and/-
or single-processor machines is NP-Hard [3], which means
that such a large number of potential deployments exist that
it would take years to investigate all possible solutions.
Current algorithmic deployment techniques are largely

based on heuristic bin-packing [3, 7, 2], which represents

the software tasks as items that take up a set amount of space
and hardware processors as bins that provide limited space.
Bin-packing algorithms try to place all the items into as few
bins as possible without exceeding the space provided by
the bin in which they are placed. These algorithms use a
heuristic, such as sorting the items based on sized and plac-
ing them in the first bin they fit in, to reduce the number of
solutions that are considered and avoid exhaustive solution
space exploration.
Conventional bin-packing deployment techniques take a

one-dimensional view of deployment problems by just fo-
cusing on a single deployment concern at a time. Exam-
ple concerns include resource constraints, scheduling con-
straints, or fault-tolerance constraints. In production flight
avionics systems, however, deployments must meet combi-
nations of these concerns simultaneously.
Solution approach⇒ Computer-assisted deployment

optimization. This paper describes and validates a
method and tool called ScatterD that we developed to per-
form computer-assisted deployment optimization for flight
avionics systems. The ScatterD model-driven engineer-
ing [10] deployment tool implements the Scatter Deploy-
ment Algorithm , which combines heuristic bin-packing
with optimization algorithms, such as genetic algorithms [6]
or particle swarm optimization techniques [9] that use evo-
lutionary or bird flocking behavior to perform blackbox op-
timization. This paper shows how flight avionics system
developers have used ScatterD to automate the reduction of
processors and network bandwidth in complex embedded
system deployments.
The remainder of this article is organized as follows:

Section 4 outlines a flight avionics deployment case study
we use to motivate the challenges and solutions throughout
the paper; Section 5 describes the challenges faced by de-
velopers when attempting to optimize a representative flight
avionics deployment topology; Section 6 discusses the Scat-
terD tool for deployment optimization; Section 7 provides
empirical results demonstrating the reductions in hardware
footprint and network bandwidth consumption that Scat-
terD can produce; and Section 8 presents concluding re-
marks.

4 Modern Embedded Flight Avionics Sys-
tems: A Case Study

Over the past 20 years, flight avionics systems have be-
come increasingly sophisticated. Modern aircraft now de-
pend heavily on software executing atop a complex em-
bedded network for higher-level capabilities, such as more
sophisticated flight control and advanced mission comput-
ing functions. To accommodate the increased amount of
software required, avionics systems have moved from older
federated computing architectures to integrated computing

architectures that combine multiple software applications
together on a single computing platform containing many
software components.
The class of flight avionics system targeted by our work

is a networked parallel message-passing architecture con-
taining many computing nodes, as shown in Figure 2. At
the individual node level, ARINC 653-compliant time and
space partitioning separates the software applications into
sets with compatible safety and security requirements. In-
side a given time partition, the applications run within a
hard real-time deadline scheduler that executes the appli-
cations at a variety of harmonic periods.
The integrated computing architecture shown in Figure 2

has benefits and challenges. Key benefits include better op-
timization of hardware resources and increased flexibility,
which result in a smaller hardware footprint, lower energy
use, decreasedweight, and enhanced ability to add new soft-
ware to the aircraft without updating the hardware. The key
challenge, however, is increased system integration com-
plexity. In particular, while the homogeneity of processors
gives system designers a great deal of freedom allocating
software applications to computing nodes, optimizing this
allocation involves simultaneously balancing multiple com-
peting resource demands.
For example, even if the processor demands of a pair of

applications would allow them to share a platform, their re-
spective I/O loads may be such that worst-case arrival rates
would saturate the network bandwidth flowing into a sin-
gle node. This problem is complicated for single-core pro-
cessors used in current integrated computing architectures.
Moreover, this problem is being exacerbated with the adop-
tion and fielding of multi-core processors, where competi-
tion for shared resources expands to include internal buses,
cache memory contents, and memory access bandwidth.

5 Deployment Optimization Challenges

This section describes the challenges facing develop-
ers when attempting to create a deployment topology for
a flight avionics system. The discussion below assumes a
networked parallel message-passing architecture (such as
the one described in Section 4). The goal is to minimize
the number of required processors and the total network
bandwidth resulting from communication between software
tasks.

5.1 Challenge 1: Satisfying Rate-
monotonic Scheduling Constraints
Efficiently

In real-time systems, such as the embedded flight avion-
ics case study from Section 4, either fixed priority schedul-
ing algorithms, such as rate-monotonic (RM) scheduling,

c©2010 by Vanderbilt University and Lockheed Martin Corporation

Figure 2. An Integrated Computing Architecture for Embedded Flight Avionics

or dynamic priority scheduling algorithms, such as earliest-
deadline-first (EDF), control the execution ordering of in-
dividual tasks on the processors. The deployment topology
must ensure that the set of software components allocated to
each processor are schedulable and will not miss real-time
deadlines. Finding a deployment topology for a series of
software components that ensures schedulability of all tasks
is called “multiprocessor scheduling” and is NP-Hard [3].
A variety of algorithms, such as bin-packing algorithm

variations, have been created to solve the multiprocessor
scheduling problem. A key limitation of applying these al-
gorithms to optimize deployments is that bin-packing does
not allow developers to specify which deployment charac-
teristics to optimize. For example, bin-packing does not
allow developers to specify an objective function based on
the overall network bandwidth consumed by a deployment.
We describe how ScatterD ensures schedulability in Sec-
tion 6.1 and allows for complex objective functions, such as
network bandwidth reduction.

5.2 Challenge 2: Reducing the Complex-
ity of Memory, Cost, and Other Re-
source Constraints

Processor execution time is not the only type of resource
that must be managed while searching for a deployment
topology. Hardware nodes often have other limited but crit-
ical resources, such as main memory or core cache, nec-
essary for the set of software components it supports to
function. Developers must ensure that the components de-

ployed to a processor do not consume more resources than
are present.
If each processor does not provide a sufficient amount of

resources to support all tasks on the processor, a task will
not execute properly, resulting in a failure. Moreover, since
each processor used by a deployment has a financial cost
associated with it, developersmay need to adhere to a global
budget, as well as scheduling constraints. We describe how
ScatterD ensures that resources constraints are satisfied in
Section 6.2.

5.3 Challenge 3: Satisfying Complex Dy-
namic Network Resource and Topol-
ogy Constraints

Embedded flight avionics systems must often ensure
that not only processor resource limitations are adhered to,
but network resources (such as bandwidth) are not over-
consumed. The consumption of network resources is de-
termined by the number of interconnected components that
are not colocated on the same processor. For example, if
two components are colocated on the same processor, they
do not consume any network bandwidth.
Adding the consideration of network resources to de-

ployment substantially increases the complexity of finding
a software-to-hardware deployment topology mapping that
meets requirements. The impact of the component’s de-
ployment on the network, however, cannot be calculated
in isolation of the other components. The impact is deter-
mined by finding all other components that it communicates

c©2010 by Vanderbilt University and Lockheed Martin Corporation

with, determining if they are colocated, and then calculating
the bandwidth consumed by the interactions with those that
are not colocated. We describe how ScatterD helps min-
imize the bandwidth required by a system deployment in
Section 6.3.

6 ScatterD: A Deployment Optimization
Tool to Minimize Bandwidth and Processor
Resources

Heuristic bin-packing algorithms work well for multi-
processor scheduling and resource allocation. As discussed
in Section 5, however, heuristic bin-packing is not effec-
tive for optimizing designs for certain system-wide prop-
erties, such as network bandwidth consumption, and hard-
ware/software cost. Metaheuristic algorithms [6, 9] are a
promising approach to optimize system-wide properties that
are not easily optimized with conventional bin-packing al-
gorithms. These types of algorithms evolve a set of poten-
tial designs over a series of iterations using techniques, such
as simulated evolution or bird flocking. At the end of the it-
erations, the best solution(s) that evolved out from the group
is output as the result.
Although metaheuristic algorithms are powerful, they

have historically been hard to apply to large-scale produc-
tion embedded systems since they typically perform poorly
on problems that are highly constrained and have few cor-
rect solutions. Applying simulated evolution and bird flock-
ing behaviors for these types of problems tend to randomly
mutate designs in ways that violate constraints. For exam-
ple, using an evolutionary process to splice together two de-
ployment topologies is likely to yield a new topology that is
not real-time schedulable.
Below we explain how ScatterD integrates the ability of

heuristic bin-packing algorithms to generate correct solu-
tions to scheduling and resource constraints with the ability
of metaheuristic algorithms to flexibly minimize network
bandwidth and processor utilization and address the chal-
lenges in Section 5.

6.1 Satisfying Real-time Scheduling Con-
straints with ScatterD

ScatterD ensures that the numerous deployment con-
straints (such as the real-time schedulability constraints de-
scribed in Challenge 1 from Section 5.1) are satisfied by us-
ing heuristic bin-packing to allocate software tasks to pro-
cessors. Conventional bin-packing algorithms for multipro-
cessor scheduling are designed to take as input a series of
items (e.g., tasks or software components), the set of re-
sources consumed by each item (e.g., processor and mem-
ory), and the set of bins (e.g., processors) and their capaci-

ties. The algorithm outputs an assignment of items to bins
(e.g., a mapping of software components to processors).
ScatterD ensures schedulability of the flight avionics

system discussed in Section 4 by using response-time anal-
ysis. The response time resulting from allocating a soft-
ware task of the avionics system to a processor is analyzed
to determine if a software component can be scheduled on
a given processor before allocating its associated item to a
bin. If the response time is fast enough to meet the real-
time deadlines of the software task, the software task can be
allocated to the processor.

6.2 Satisfying Resource Constraints with
ScatterD

To ensure that other resource constraints (such as mem-
ory requirements described in Challenge 2 from Sec-
tion 5.2) of each software task are met, we specify a ca-
pacity for each bin that is defined by the amount of each
computational resource provided by the corresponding pro-
cessor in the avionics hardware platform. Similarly, the re-
source demands of each avionics software task define the
resource consumption of each item. Before an item can be
placed in a bin, ScatterD verifies that the total consumption
of each resource utilized by the corresponding avionics soft-
ware component and software components already placed
on the processor does not exceed the resources provided.

6.3 Minimizing Network Bandwidth and
Processor Utilization with ScatterD

To address deployment optimization issues (such as
those raised in Challenge 3 from Section 5.3), ScatterD uses
heuristic bin-packing to ensure that schedulability and re-
source constraints are met. If the heuristics are not altered,
bin-packing will always yield the same solution for a given
set of software tasks and processors. The number of proces-
sors utilized and the network bandwidth requirements will
therefore not change from one execution of the bin-packing
algorithm to another. In a vast deployment solution space
associated with a large-scale flight avionics system, how-
ever, there may be many other deployments that substan-
tially reduce the number of processors and network band-
width required, while also satisfying all design constraints.
To search for avionics deployment topologies with mini-

mal processor and bandwidth requirements—while still en-
suring that other design constraints are met—ScatterD uses
metaheuristic algorithms to seed the bin-packing algorithm.
In particular, metaheuristic algorithms are used to search
the deployment space and select a subset of the avionics
software tasks that must be packed prior to the rest of the
software tasks. By forcing an altered bin-packing order,
new deployments with different bandwidth and processor

c©2010 by Vanderbilt University and Lockheed Martin Corporation

Figure 3. ScatterD Deployment Optimization Process

requirements are generated. Since bin-packing is still the
driving force behind allocating software tasks, design con-
straints have a higher probability of being satisfied. By us-
ing metaheuristic algorithms to search the design space—
and then using bin-packing to allocate software tasks to
processors—ScatterD can generate deployments that meet
all design constraints while also minimizing network band-
width consumption and reducing the number of required
processors in the avionics platform, as shown in Figure 3.

7 Empirical Results

This section presents the results of configuring the Scat-
terD tool to combine two metaheuristic algorithms (parti-
cle swarm optimization and a genetic algorithm) with bin-
packing to optimize the deployment of the embedded flight
avionics system described in Section 4. We applied these
techniques to determine if (1) a deployment exists that in-
creases processor utilization to the extent that legacy pro-
cessors could be removed and (2) the overall network band-
width requirements of the deployment were reduced due
to colocating communicating software tasks on a common
processor.
The first experiment examined applying ScatterD to min-

imize the number of processors in the legacy flight avionics
system deployment, which originally consisted of software
tasks deployed to 14 processors. Applying ScatterD with
particle swarm optimization techniques and genetic algo-
rithms resulted in increased utilization of the processors, re-
ducing the number of processors needed to deploy the soft-
ware to eight in both cases. The remaining six processors
could then be removed from the deployment without affect-
ing system performance, resulting in the 42.8% reduction
shown in Figure 4.
The ScatterD tool was also applied to minimize the band-

width consumed due to communication by software tasks

Figure 4. Network Bandwidth and Processor
Reduction in Optimized Deployment

allocated to different processors in the legacy avionics sys-
tem described in Section 4. Reducing the bandwidth re-
quirements of the system leads to more efficient, faster com-
munication while also reducing power consumption. The
legacy deployment consumed 1.83 · 1008 bytes of band-
width. Both versions of the ScatterD tool yielded a de-
ployment that reduced bandwidth by 4.39 · 1007 or 24%,
as shown in Figure 4.

8 Concluding Remarks

Optimizing deployment topologies on legacy embedded
flight avionics system can yield substantial benefits, such
as reducing hardware costs and power consumption. The
following are a summary of the lessons we learned applying
our ScatterD tool for deployment optimization to a legacy
flight avionics system:

• Multiple constraints make deployment planning

c©2010 by Vanderbilt University and Lockheed Martin Corporation

hard. Avionics deployments must adhere to a wide
range of strict constraints, such as resource, colocation,
scheduling, and network bandwidth. Deployment op-
timization tools must account for all these constraints
when determining a new deployment.

• A Huge deployment space requires intelligent
search techniques. The vast majority of potential de-
ployments that could be created violate one or more
design constraints. Intelligent and automated tech-
niques, such as hybrid-heuristic bin-packing, should
therefore be applied to discover valid “near-optimal”
deployments.

• Substantial processor and network bandwidth re-
ductions are possible. Applying hybrid-heuristic
bin-packing to the flight avionics system resulted in
42.8% processor reduction and 24% bandwidth reduc-
tion. Our future work is applying hybrid-heuristic bin-
packing to other embedded system deployment do-
mains, such as automobiles, multi-core processors, and
tactical smartphone applications.
The ScatterD tool is available in open-
source form in the Ascent Design Stu-
dio(ascent-design-studio.googlecode.
com). A document describing the flight avion-
ics system case study outlined in Section 4,
as well as additional information on Scat-
terD, can be found at the SPRUCE web portal
(www.sprucecommunity.org), which pairs
open industry challenge problems with cutting-edge
methods and tools from the research community.

References

[1] H. Beitollahi and G. Deconinck. Fault-Tolerant Partitioning
Scheduling Algorithms in Real-Time Multiprocessor
Systems. Pacific Rim International Symposium on
Dependable Computing, IEEE, 0:296–304, 2006.

[2] A. Bertossi, L. Mancini, and F. Rossini. Fault-Tolerant
Rate-Monotonic First-Fit Scheduling in Hard-Real-Time
Systems. IEEE Transactions On Parallel and Distributed
Systems, pages 934–945, 1999.

[3] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New
Strategies for Assigning Real-time Tasks to Multiprocessor
Systems. IEEE Transactions on Computers,
44(12):1429–1442, 1995.

[4] A. Carzaniga, A. Fuggetta, S. Richard, D. Heimbigner,
A. van der Hoek, A. Wolf, and COLORADO STATE UNIV
FORT COLLINS DEPT OF COMPUTER SCIENCE. A
Characterization Framework for Software Deployment
Technologies. Defense Technical Information Center, 1998.

[5] W. Damm, A. Votintseva, A. Metzner, B. Josko,
T. Peikenkamp, and E. Böde. Boosting Re-use of
Embedded Automotive Applications Through Rich

Components. Proceedings of Foundations of Interface
Technologies, 2005, 2005.

[6] C. Fonseca, P. Fleming, et al. Genetic algorithms for
multiobjective optimization: Formulation, discussion and
generalization. In Proceedings of the fifth international
conference on genetic algorithms, pages 416–423. Citeseer,
1993.

[7] S. Lauzac, R. Melhem, and D. Mosse. Comparison of
Global and Partitioning Schemes for Scheduling Rate
Monotonic Tasks on a Multiprocessor. In 10th Euromicro
Workshop on Real Time Systems, pages 188–195, 1998.

[8] L. Lehoczky, J.P. snf Sha and J. Strosnider. Enhancing
Aperiodic Responsiveness in a Hard Real-Time
Environment. In Proc. of the IEEE Real-Time Systems
Symposium, pages 416–423, 1987.

[9] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm
optimization. Swarm Intelligence, 1(1):33–57, 2007.

[10] D. C. Schmidt. Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006.

[11] L. Sha and J. Goodenough. Real-time scheduling theory
and Ada. Computer, 23(4):53–62, 1990.

[12] J. Stankovic. Strategic Directions in Real-time and
Embedded Systems. ACM Computing Surveys (CSUR),
28(4):751–763, 1996.

[13] J. Strosnider and T. Marchok. Responsive, deterministic
IEEE 802.5 token ring scheduling. Real-Time Systems,
1(2):133–158, 1989.

c©2010 by Vanderbilt University and Lockheed Martin Corporation

