
Semantic Compression With Large Language Models

Henry Gilbert, Michael Sandborn, Douglas C. Schmidt, Jesse Spencer-Smith, and Jules White
Dept. of Computer Science

Vanderbilt University
Nashville, TN, USA

{henry.gilbert, michael.sandborn, douglas.schmidt, jesse.spencer-smith, jules.white}@vanderbilt.edu

Abstract—The rise of large language models (LLMs) is
revolutionizing information retrieval, question answering, sum-
marization, and code generation tasks. However, in addition to
confidently presenting factually inaccurate information at times
(known as “hallucinations”), LLMs are also inherently limited by
the number of input and output tokens that can be processed at
once, making them potentially less effective on tasks that require
processing a large set or continuous stream of information. A
common approach to reducing the size of data is through lossless
or lossy compression. Yet, in some cases it may not be strictly
necessary to perfectly recover every detail from the original data,
as long as a requisite level of semantic precision or intent is
conveyed.

This paper presents three contributions to research on LLMs.
First, we present the results from experiments exploring the
viability of “approximate compression” using LLMs, focusing
specifically on GPT-3.5 and GPT-4 via ChatGPT interfaces.
Second, we investigate and quantify the capability of LLMs
to compress text. Third, we present two novel metrics—Exact
Reconstructive Effectiveness (ERE) and Semantic Reconstruction
Effectiveness (SRE)—that quantify the level of preserved intent
between text compressed and decompressed by the LLMs we
studied. Our initial results indicate that GPT-4 can effectively
compress and reconstruct text while preserving the semantic
essence of the original text, providing a path to leverage more
tokens than current limits allow.

Index Terms—large language models, prompt engineering, data
compression, code generation

I. INTRODUCTION

Emerging trends and challenges. Large language models
(LLMs) have garnered significant attention with the recent
release of OpenAI’s ChatGPT [1], Google’s Bard [2], and
others [3]–[5]. These LLMs facilitate (potentially incorrect)
information retrieval, whether in the form of concept clar-
ification, question answering, text editing, code generation,
summarization, or task planning. LLMs typically provide users
with an interactive chat interface to engage in back and forth
conversation about a concept, task, or goal. These topics can
be referenced over time within a conversation that preserves
the discussion context over some time horizon (e.g., number
of prompts or total tokens input in the session).

A key to using LLMs effectively is the quality of the input
prompt, which is the text provided as input to the LLM. In
conventional LLMs, the prompt is used in an opaque manner
by the LLM to produce an output, called a response, which
is based on a non-linear function of the input prompt and the
model’s weights (the latter are opaque to users). Given some
target task or output structural characteristics, the process of

identifying high-quality prompts to feed an LLM is known as
prompt engineering [6].

LLMs can be prompted with questions or directives, such as
“who was the first president of the United States?” or “provide
a vegetarian dinner recipe that takes 20 minutes to prepare,”
and they often generate high-quality answers. A key limitation
of conventional LLMs, however, is that they are trained on
knowledge with a cut-off date.1 To reason or answer questions
about newer information that an LLM was not trained on, the
new information must be included in the prompt for the LLM.
For example, a prompt could start with the text from a recent
news article and then the LLM could be prompted with a
question related to the information contained earlier in the
prompt. The training cutoff increases the burden on the user
to provide a sufficient context to the LLM about the nature of
the desired output.

Challenge: LLMs have a maximum input size, which
restricts the amount of information that can be put into
a prompt. The maximum input size of an LLM is typically
measured in tokens [7], [8] and corresponds to how much
information can be input into the LLM at once. A token is
a particular grouping of letters within a word. Tokenization
refers to how a given text is divided from letters and spaces
into groups as a pre-processing step for an LLM, and several
tokenization methods exist. This input token cap determines
the maximum number of words or symbols that can be
included in a prompt provided by a user.

GPT-3.5, which was the model underlying an earlier release
of ChatGPT, has an input token limit of 4,096 tokens, or
∼3,000 words [7]. The more recently released GPT-4 model
has an increased input token limit of 32,768 tokens, or
∼24,000 words. It is likely, however, that LLMs will eventu-
ally operate on streams of data (e.g., daily customer activity or
meeting transcripts) with much higher token counts. Moreover,
while LLMs such as ChatGPT-4 can handle a conversation
history, the same underlying token limit is applied. As such,
the context the model is able to reason over is truncated by
the internal token limit, regardless of prompt segmentation.

In many cases, the maximum input size is a significant
limitation to the use of LLMs. For example, the source code
for a large software application can often exceed the maximum
input size to the LLM.

Various approaches exist to overcome input size limitations,
including using the LLM to summarize information that should

1ChatGPT’s cut-off was September, 2021.

be included in a prompt to shorten it. Other approaches range
from (1) using semantic search to (2) only select contextually
relevant information to include in a prompt to (3) structuring
software into isolated components with clear interfaces that are
easy to reason about using smaller segments of source code.
Until the input size of LLMs becomes large enough to avoid
becoming a concern in practice, however, determining how to
use the limited space available in a prompt most efficiently
remains an open research challenge.

Motivated by these limitations, we examine the viability of
prompting LLMs to produce compressed responses that still
preserve rich semantic information, so that the original infor-
mation can be recalled sufficiently and the original intent is
preserved. Potential benefits of LLM compression capabilities
include source code manipulation, text retrieval, information
distillation.

This paper compares the compression rates, semantic sim-
ilarity, and reconstruction and recall quality of GPT-3.5 and
GPT-4 for compressed and uncompressed text between dif-
ferent ChatGPT conversations. We restrict the compression
format to characters only (i.e., no emojis or Unicode charac-
ters). We evaluate the compression capabilities of these mod-
els against a standard compression algorithm, Zlib’s Deflate
algorithm [9] using the compression ratio, edit distance, and
our novel Exact and Semantic Reconstruction Effectiveness
metrics. We use the cosine similarity between embeddings2 of
compressed and decompressed text to quantify the quality of
LLM compression. This work offers the following contribu-
tions to research on prompt engineering:

• An initial exploration of LLM-based compression in
GPT-3.5 and GPT-4, evaluated with two novel metrics:
Semantic Reconstruction Effectiveness (SRE) and Exact
Reconstruction Effectiveness (ERE)

• Experiments examining LLM compression of fictional
short story excerpts

• Open source code of experiments, available at
https://github.com/henrygilbert22/phd chatgpt/tree/
main/compression analysis

The remainder of this paper is organized as follows: Sec-
tion II provides background material that motivates our focus
on LLM-based compression; Section III presents LLM com-
pression experiments on excerpts from literary short story text;
Section IV discusses prompt engineering approaches taken to
facilitate compression; Section V compares our approach with
related work on evaluating LLMs and data compression; and
Section VI presents concluding remarks.

II. BACKGROUND ON COMPRESSION VS. EMBEDDINGS

Large language models (LLMs) are revolutionizing the
field of natural language processing (NLP) by enabling more
efficient and effective information storage and retrieval. A key
research topic addressed by this paper is how well LLMs
can perform their own prompt compression and manipulate

2In this context, an embedding is a real-valued vector of reduced dimen-
sionality derived from the input text data.

compressed prompts, which enables the extraction and pro-
cessing of information from shorter, condensed inputs while
also maintaining semantic value and intent. In essence, an
LLM is trained to iteratively predict the next word in its
responses, which is intialized as a continuation of the input
prompt. With this in mind, a smaller prompt size that still
elicits desired behavior is valuable for tasks that require an
extensive context about input data. For example, editing a large
manuscript or reasoning about a large codebase may require
that the prompt (e.g., “refactor this code to be compatible
with this component”) accompany a context that exceeds the
allowed number of input tokens. This application scenario
motivates our investigation of LLM capabilities in reducing
the size of input text while also retaining semantic value.

We begin by highlighting the differences between embed-
dings and compression as they relate to the capabilites of
LLMs. Embeddings [10] provide a one-way mapping for
representing a high-dimensional, possibly sparse feature vector
into a relatively low-dimensional space that still captures the
semantics of the input. A common application of embeddings
is to represent words of text [11] or source code [12].

Embeddings are typically obtained by extracting the weights
of a trained neural network layer that is close to the output
layer, but before a classification layer (such as softmax [13])
is applied. Embeddings are inherently non-invertible3, owing
to the information lost when reducing the dimensionality of
the original input. In return, however, they offer the ability to
quantify similarity of inputs in the embedding space, typically
with a vector-based metric, such as cosine similarity.

In contrast, compression is concerned purely with mini-
mizing the size of the data while also preserving the in-
tegrity of the information that is compressed. Depending
on the algorithm used, compression may achieve perfect or
near-perfect reconstruction of the compressed data into its
original form. There are two main methods of compression:
lossless and lossy [14]. Lossless compression removes only
extraneous metadata, while lossy compression removes some
of the original data. For example, PNG images use lossless
compression, whereas JPEG images use lossy compression.
Lossy compression usually optimizes the information lost so
that the decrease in quality is perceptually minimal to humans
and is therefore tenable in most cases.

To summarize, embeddings focus on transforming input into
a different magnitude of dimensionality to facilitate compari-
son that is not easily achieved in the input space (e.g., semantic
similarity of words or sentences). Conversely, compression
focuses on minimizing the size of the input data so it can
be reconstructed with original or near original fidelity. In
other words, embeddings facilitate the quantitative comparison
of data with unwieldy dimensionality, whereas compression
minimizes the storage footprint of a piece of data while
preserving as much of the original information as possible.

We focus primarily on GPT-3.5 and GPT-4, which are

3Non-invertible means that the original text cannot be recovered from the
embedding of the text.

https://github.com/henrygilbert22/phd_chatgpt/tree/main/compression_analysis
https://github.com/henrygilbert22/phd_chatgpt/tree/main/compression_analysis

TABLE I
TEXT EXCERPT IDENTIFIERS FOR THE
FICTIONAL SHORT STORIES STUDIED

Text ID Text Name Author
a A Good Man is Hard to Find Flannery O’Connor
b Break It Down Lydia Davis
c Cat Person Kristen Roupenian
d Cathedral Raymond Carver
e Flowers for Algernon Daniel Keyes
f Sticks Karl Edward Wagner
g Symbols and Signs Vladimir Nabokov
h The Bogey Beast Annie Flora Steele
i The Lottery Shirley Jackson
j The Veldt Ray Bradbury

the two models provided by OpenAI in a browser-based
chat interface (i.e., “ChatGPT”) with a ChatGPT Plus sub-
scription. We leverage the API endpoints for GPT-3.5 and
GPT-4 where applicable, and otherwise produce prompts
and responses for GPT-4 directly in the chat interface.
The prompt text and results reside in our experiment
notebooks available at https://github.com/henrygilbert22/phd
chatgpt/tree/main/compression analysis.

III. ANALYZING LLM COMPRESSION PERFORMANCE ON
LITERARY TEXT

This section provides initial results of experiments con-
ducted to evaluate limitations of LLM compression. We use
entropy, compression ratio, and edit distance to compare LLM
compressed text to the baseline of Zlib’s Deflate compression
algorithm. Table I indicates the subject texts and their identi-
fiers used in figures.

A. Experiment: Compression of Fictional Literary Text

We first compare the compression rate and reconstruction
loss of GPT-4 with a standard compression method (Zlib’s
Deflate compression algorithm) to evaluate how well GPT-4
performs with respect to compressing textual information ef-
fectively while simultaneously retaining semantic information.
The evaluation set is a collection of 10 excerpts from short
story texts comprising a variety of genres and writing styles.

To initiate the compression process, we asked GPT-4 to
generate a prompt that would facilitate text compression. By
requesting that GPT-4 create its own prompt to facilitate
compression and recall, we aim to mitigate human bias and
provided a standard prompt for our experiments. In response
to this request, GPT-4 generated the following prompt for
compression:

Compress the following text into the smallest possible
character representation. The resulting compressed text
does not need to be human readable and only needs to be
able to be reconstructed with a different GPT-4 model.

In a similar manner, we prompted GPT-4 to generate a
prompt for text decompression. This prompt ensured that a
new, independent GPT-4 model instance would decompress the
compressed input text effectively. In response to this prompt,

TABLE II
GPT-4 COMPRESSED TEXT VS. ZLIB DEFLATE BY ENTROPY AND

COMPRESSION RATIO (CR)

Method Avg Entropy Avg CR
GPT-4 0.933 0.825

Zlib Most 0.837 0.469
Zlib Least 0.838 0.453

GPT-4 generated the following prompt for decompression
tasks:

Please decompress the following compressed text into
its original form, as it was provided by a user and
compressed by another GPT-4 model.

A separate instance of GPT-4 independent from the original
model (i.e., in a separate chat conversation), was used to
decompress the compressed text. Prompt engineering tactics
on compression quality are discussed further in Section IV.

To establish a baseline for comparison, Python’s internal
Zlib library [15] using the Deflate and Inflate algorithms
was used for both compression and decompression to assess
existing lossless compression methods. We compressed each
short story excerpt twice, first with minimal compression
(fastest) and second with maximal compression (slowest) by
passing the level=1 and level=9, respectively. These
results provide a basis to compare the effectiveness of GPT-4’s
compression capabilities.

B. Analysis: Entropy

To better understand the measure of randomness in the
distribution of characters compressed by the LLM, we cal-
culate the frequency of each character in the compressed
text and then the entropy of the distribution of compressed
characters. Each compressed text was first converted to a byte
stream representation before computing the distribution of its
characters. The character distribution for a given text is given
by:

P (x) =
nx

N
, (1)

where P (x) is the probability of character x, nx is the
number of occurrences of character x, and N is the total
number of characters in the byte stream representation. The
entropy was then computed for each byte character distribution
using the entropy equation [16]:

H(X) = −
∑
x∈X

P (x) log2 P (x), (2)

where H(X) is the entropy of the character distribution of
a compressed text excerpt.

As anticipated, ChatGPT-4 consistently results in the high-
est entropy of its compressed text. In contrast, Zlib’s most
compression method generates slightly higher entropy than the
least compression method. Given the small sample size of text
excerpts and the small differences between these values, we

https://github.com/henrygilbert22/phd_chatgpt/tree/main/compression_analysis
https://github.com/henrygilbert22/phd_chatgpt/tree/main/compression_analysis

cannot conclude that this trend holds with statistical signif-
icance. Table II displays the averaged compression entropy
and compression ratio for GPT-4 and the Zlib baselines for
the texts studied.

C. Analysis: Compression Ratio

To better understand the degree to which an input text was
reduced in size, we compute the Compression Ratio (CR)
between the original and compressed texts using the following
equation:

CR = 1− # compressed bytes
original bytes

(3)

where CR is the compression ratio. For example, a com-
pression ratio of 0.8 means that the original text size was
reduced by 80% in its compressed form, or is 20% of the
original text’s size. Figure 1 shows the relative compression
ratio for each method across all texts. Clearly, GPT-4

Fig. 1. Compression Ratio By Text

provides higher compression ratios for the all of the text
excerpts studied compared to the baseline methods. Zlib’s
most (level=9) aggressive and slowest compression method
narrowly outperforms Zlib’s least (level=1) aggressive and
fastest compression method.

As with Figure 1, Zlib’s maximal compression remains
marginally better than Zlib’s minimal compression. GPT-4
continues to outperform both baseline methods with a near
60% increase in compression performance. While this result
may appear noteworthy, our subsequent analyses in Section IV
reveal that GPT-4 achieved this high degree of compression
rate by discarding key information in the original text.

D. Analysis: Edit Distance

To better understand the exact closeness of the reconstructed
text in relation to the originally compressed text, we use the
Levenshtein edit distance metric [17]:

D(i, j) =

0 if i = 0 and j = 0,

i if j = 0,

j if i = 0,

else

min

D(i− 1, j) + 1

D(i, j − 1) + 1

D(i− 1, j − 1) + (1− δ(si, tj))

(4)

where D(i, j) is the edit distance (number of characters
that must be changed) between the original text of length
i and the reconstructed text of length j, si and tj are the
characters at position i and j, respectively, and δ(x, y) is the
Kronecker delta function which returns whether the characters
at 2 possibly different indices are identical. All edit distances
are normalized between 0 and 1, as the exact quantitative result
is arbitrary in our case, and we only care about the relational
analysis between methods.

Figure 2 shows the edit distances for each compression
method over all texts. The Zlib baselines are lossless com-

Fig. 2. Edit Distance By Text

pression algorithms, so their edit distances are 0, as expected,
and consequently not shown on the graph. From this figure
we observe that GPT-4 compression is rather lossy.

Figure 2 also showcases the variance of exact reconstruction
performance. In particular, GPT-4’s performance varies greatly
on different text excerpts. This edit distance variance in GPT-
4’s compression quality raises questions for future studies,
such as what character distributions and captured features
of input text influence a higher or lower edit distance in
the compressed text. The reasons behind this variance could
be due to inherent characteristics of the input text, such as
language structure, semantic complexity, or specific dialect and
choice of language. This variance requires further investigation
into the factors influencing GPT-4’s performance on text
compression and decompression tasks.

E. Analysis: Semantic Retention Quantified by Cosine Simi-
larity

Based on previous results, GPT-4 cannot currently be used
as a reliable compression technique since it does not rival ex-
isting lossless methods based on the edit distance metric. This
finding indicates that information is lost between compression
and decompression when input text is passed to the LLM to
reduce its size. However, we nevertheless want to explore the
ability of an LLM to capture the underlying semantic intent of
the original text in an approximately reconstructable manner.

We are not concerned whether the decompressed text ex-
actly matches the original, as long as it retains the essence of
what is originally intended to be communicated. For example,
if the original message is: “Please send me an email on
Monday”, and the reconstructed message is: “On Monday,
send me an email”, then the resulting semantic similarity
score should be relatively high as the underlying meaning of
“send an email Monday” is represented in both messages, even
though the character occurrence and alignment do not closely
match.

To quantify similarity of compressed and decompressed
texts, we use OpenAI’s Embeddings API [18], and then apply
the cosine similarity vector metric to pairs of embedded texts.
Section I explained how embeddings are vectors that represent
(1) the semantic information in the text learned by an LLM
during its training and (2) a high-dimensional, possibly sparse
vector in a low-dimensional representation. A text embedding
captures a notion of distance in the embedding space, en-
abling similarity comparisons using vector-based metrics. The
commonly used metric for embedding comparison is cosine
similarity [19], which is calculated as follows:

Cosine Similarity(A,B) = cos(θ) =
A ·B
|A||B|

(5)

Where A and B are n-dimensional vectors, A · B is
the dot product between them, and |A||B| represents the
product of their magnitudes. The result of this operation is
the angle between these vectors in the embedding space,
with values ranging from -1 (indicating opposite vectors) to
+1 (indicating proportional vectors). Zero indicates that the
vectors are orthogonal. The angle between these vectors in
the embedding space can be obtained with θ = arccos(x)
where x is the output of Equation 5 above.

Figure 3 shows the computed cosine similarity between
embedding vectors across all texts for each compression
method. Again, since Zlib’s method is lossless it always
captures the semantic meaning since the original input is
reconstructed perfectly. GPT-4 does not perfectly preserve the
semantic meaning of decompressed texts from the original,
but performs relatively well across all texts, with an average
angle between embedding vectors of arccos(0.923) ≈ 22.6◦.

Interestingly, GPT-4’s semantic reconstruction performance
is consistent across texts, which is a stark contrast to GPT-4’s
high volatility in the edit distance metric. From these results,
we conclude that GPT-4 may not be suitable for near lossless

Fig. 3. Cosine Similarity Between Embeddings of Decompressed Text

compression. However, it remains a compelling method to
preserve semantic similarity in compressed and decompressed
representations, based on the embedding methods we use.

Although we can’t quantify directly how this angular dis-
tance relates to the preservation of underlying semantical
meaning in the texts, we can compare the relative performance
to the relative performance in edit distance. By taking the rel-
ative difference between each model’s cosine similarity score,
ChatGPT-4 performed, on average, approximately 23% worse
than Zlib’s lossless methods for maintaining text semantics.
However, when taking the relative difference between edit
distances, ChatGPT-4 performed, on average, approximately
33% worse than Zlib’s lossless methods for maintaining text
character positions. This shows that ChatGPT-4 is relatively
better at capturing semantical meaning when compared to
maintaining exact text reconstruction.

To summarize, while GPT-4 is not a suitable replacement
for traditional lossless compression, it demonstrates potential
in preserving the semantic meaning of text. The next section
explores the results of experiments we conducted to evaluate
the influence of prompt structuring on compression quality.

IV. PROMPT ENGINEERING TO FACILITATE COMPRESSION
BEHAVIOUR

This section present the results of our investigation into
the role prompt engineering plays in terms of prompt content
and wording in facilitating the compression performance of
LLMs, specifically for GPT-4 and GPT-3.5. We examine the
impact of three different meta-prompts for compression: Base
Compression (simply direct to compress the input), Guided
Lossless Compression (by specifying lossless compression of
the input), and Semantic Compression (prioritizing semantic
recovery).

We found that the choice of meta-prompt influenced the
compression behavior of the LLMs studied. To evaluate the
effectiveness of compression in relation to edit distance and
semantic similarity, we introduced two novel metrics, Exact
Reconstruction Effectiveness (ERE) and Semantic Reconstruc-

tion Effectiveness (SRE), respectively. The Exact Reconstruc-
tion Effectiveness metric revealed that while the Zlib De-
flate lossless compression baselines outperformed GPT-4 and
GPT-3.5, our meta-prompts for Guided Lossless Compression
method outperformed both Base Compression and Semantic
Compression in terms of compression ratio and edit distance
minimization.

The Semantic Reconstruction Effectiveness metric, in con-
trast, demonstrated that the Semantic Compression meta-
prompting approach outperformed the baseline lossless com-
pression. Although the baseline lossless methods achieved
slightly higher semantic similarity scores, the GPT-4 Semantic
Compression model provided an improved compression ratio
while preserving functionally equivalent semantic information
in the input. This finding suggests that LLM-based Semantic
Compression could offer considerable performance and cost
gains over traditional compression methods in use cases where
the exact reconstruction of the input is not crucial, as long as
the underlying meaning remains intact.

A. Experiment Setup

The aim of this experiment was to distinguish LLM com-
pression behavior and performance when optimized for loss-
less compression versus semantic compression. We applied
the results from Section III to represent the baseline GPT-4
model performance when given no additional specification on
compression requirements. The same analysis was therefore
performed as outlined in Section III, but with two separate
compression models distinguished by the meta-prompting per-
formed to guide compression behavior.

GPT-3.5 was also given the same set of prompts over the
same text excerpts to compare the compression quality be-
tween the different model versions. When requesting lossless
compression, each model was fed the following prompt:

Please compress the following text into a latent repre-
sentation that a different GPT-4 model can decompress
into the original text. The compression model should be
lossless, meaning that a different GPT-4 model should
be able to perfectly reconstruct the original text from
the compressed representation, without any additional
context or information.

The aim of this prompt was to instruct the model to prioritize
lossless compression, thereby ensuring that the decompressed
text was as close as possible if not identical to the original
input. Similar approaches were used to formulate the decom-
pression and semantic compression prompts, but these are
omitted for brevity and can be found in our code.

GPT-4 was not available programmatically via an API
endpoint at the time of this experiment. All prompts and results
were therefore obtained manually using the chat interface
feature on the ChatGPT website (chat.openai.com). For
results from the GPT-3.5 model, the Chat Completion function
of the openai Python library was used. This library requires
providing the model with a “system” prompt to prime the
model with expected behavior, as well as the actual chat

prompt. For GPT-3.5, the following prompt is used when
optimizing for lossless compression and similarly for decom-
pression:
System Prompt:

You are a ChatGPT LLM trained by OpenAI to com-
press text. The compressed text should be able to be
decompressed by a different ChatGPT LLM model into
the original text. The compression must be lossless,
meaning that a different ChatGPT LLM model should
be able to perfectly reconstruct the original text from
the compressed representation, without any additional
context or information. The compressed text does not
need to be human-readable, only decompressible by a
different ChatGPT LLM model.

Action prompt:

Compress the following text. Return only the compressed
text with no additional text. Text to compress: ...

The lossless compression prompts instructed the model to
focus on preserving the original text in its entirety, allowing
for perfect reconstruction. The lossless compression prompts
attempted to accomplish a high-fidelity preservation of the
original text, ensuring that no information was lost during
the compression and decompression process. The semantic
compression prompts instruct the model to prioritize semantic
preservation while minimizing the character count. The seman-
tic compression prompts attempted to accomplish a balance
between reducing the text size and maintaining semantic
integrity.

B. Compressed Text Entropy Analysis

Using Equation 1 and Equation 2, the entropy of the
compressed text was computed for each method across all
texts. To calculate entropy, the text was first converted into
a byte stream representation and the relative probability of
characters was then computed.

The resulting entropy metrics are fairly similar across all
models and texts, with a notable exception being the lossless
compression through GPT-3.5. The second column of Table III
gives the averaged compressed text entropy by model.

TABLE III
AVERAGE EFFICACY METRICS OF COMPRESSED TEXT

Method Entropy CR ED
Base (GPT-4) 0.791 0.825 0.510

Lossless (GPT-4) 0.758 0.423 0.194
Lossless (GPT-3.5) 0.755 0.383 0.573
Semantic (GPT-4) 0.741 0.772 0.556

Semantic (GPT-3.5) 0.737 0.768 0.556
Zlib Deflate Least 0.711 0.453 0
Zlib Deflate Most 0.710 0.469 0

Interestingly, the base compression method, where GPT-
4 was not explicitly prompted on expected compression be-
havior, demonstrates the highest entropy. This result was
surprising given that ChatGPT-3.5 (which is not specifically

designed for this task) performs comparably well. The lossless
compression maintains the lowest compressed text entropy,
suggesting the efficacy of meta-prompting different models to
achieve the desired outcome.

C. Compression Ratio

Similar to Section III, the compression ratio for each of
the candidate compression methods was computed across all
texts. Figure 4 plots the derived compression ratio of each
method over each text. The graph shows high volatility in
model performance across texts and between the models
themselves. Interestingly, Lossless GPT-3.5 actually produces
a compressed text that is approximately 71% larger than
the original text for text c. Confoundingly, this text’s edit
distance from the original input text is the worst, which is
another indicator that GPT-3.5 struggles to compress input
text, highlighting the limitations of this particular model for
compression tasks.

Fig. 4. Compression Ratio By Text

The third column of Table III includes the averaged com-
pression ratio (CR) of each model across all texts. GPT-4
semantic compression maintains the best compression ability,
closely followed by the base compression and GPT-3.5’s
semantic compression. This result was expected since semantic
compression is not constrained by reconstructing the exact
text and presumably the underlying semantic meaning can
be captured in much less text when it can be arbitrarily
decompressed. GPT-3.5’s competitive semantic compression
performance is surprising given its lossless compression per-
formance.

The traditional lossless methods sit in the middle of the
pack in performance, followed by both GPT lossless methods.
The worse compression rates coming from the LLM lossless
compression methods is expected and validates the impact of
the meta-prompt. Clearly, the models must maintain a greater
information density if the intended goal is exact reconstruction.

From these results, we conclude that LLMs like GPT-4 can
achieve competitive compression rates when given appropriate
meta-prompts, particularly in the case of semantic compres-
sion. However, further research is required to corroborate these
results on a larger set of data.

D. Edit Distance

As discussed in Section III the edit distance for each
compression method over each text was computed. This metric
shows the model’s ability to exactly reconstruct the original
text from the compressed representation, based on the number
of characters that must be inserted or deleted to achieve the
original input text from the compressed representation of the
text output by the LLM.

The fourth column of Table III shows the corresponding edit
distance for each model over each evaluation text. While the
magnitude of edit distance varies greatly between texts, the
relative model performance is mostly stable, which suggests
that the LLM models studied struggle on similar kinds of
text. Future research should explore the semantic and syntactic
classifications of texts that are “easier” versus “harder” for
LLM models to compress effectively. Understanding these
relationships enables targeted improvements in model perfor-
mance and better adaptation to specific use cases.

The most notable model performance deviations are found
in the GPT-4 lossless compression. It routinely performs the
best of any LLM model, and on texts b, d, e, and a, the model
performs exceptionally well with a normalized edit distance
near 0. This result demonstrates that GPT-4 lossless com-
pression can effectively reconstruct text with high accuracy
in some cases. We therefore conclude that this model shows
promising potential for text compression tasks.

Figure 5 averages the model edit distance over all texts. As

Fig. 5. Normalized Decompression Edit Distance by Text

expected, the traditional Zlib lossless compression methods
maintain a distance of 0 as they losslessly reconstruct the text.
GPT-4 performs better than all remaining models, with over
≈50% more accurate on average than the next closest LLM,
GPT-3.5 Semantic Compression.

Interestingly, GPT-3.5 Semantic Compression and GPT-4
Semantic Compression are roughly split across the texts. Given
the other performance differences between the models, this
result is unexpected, but is likely justified by the limited
evaluation data set.

GPT-3.5 Lossless compression clearly underperforms on
this evaluation metric. This result aligns with expectations
given its subpar performance in both the compression ratio

TABLE IV
AVERAGE QUALITY METRICS OF DECOMPRESSED TEXT

Method CS ERE SRE
Base (GPT-4) 0.923 0.61 1

Lossless (GPT-4) 0.976 0.945 0.542
Lossless (GPT-3.5) 0.743 0.786 0.374
Semantic (GPT-4) 0.936 0.622 0.949

Semantic (GPT-3.5) 0.93 0.623 0.937
Zlib Deflate Least 1 1 0.594
Zlib Deflate Most 1 0.981 0.615

and entropy metrics. Evidently, GPT-3.5 struggles to achieve
lossless compression and execute it effectively given the meta-
prompt.

Figure 5 further validates that the lossless versus semantic
meta-prompts in part induce the improved compression be-
havior in GPT-4. The lossless version performs ≈286% better
than Semantic and Base compression for the same model. We
therefore conclude from our assessment that meta-prompting
for compression has a measurable effect on the quality of text
compression tasks.

E. Semantic Retention

As discussed in Section III, the ability of a compression
model to retain the underlying semantic meaning was evalu-
ated using the cosine similarity metric between the embedding
vectors from the original and decompressed text. Cosine
similarity measures the angle between two embedding vectors,
effectively capturing the degree of similarity between the
original and decompressed text in the embedding space.

Both the overall magnitude and relative performance dif-
ference between models remain fairly stable across texts,
which demonstrates the innate ability of LLMs to capture
the underlying semantic context at a much higher level than
exact text reconstruction. This behavior occurs because LLMs
are designed to understand and generate meaningful text,
so their internal representations inherently encode semantic
information.

Again, the Zlib baseline methods using the Deflate al-
gorithm exhibit perfect semantic retention since they are
lossless. We also observe that the GPT-4 Lossless compres-
sion approach achieves perfect semantic retention in several
cases. GPT-4 Semantic compression performs nearly as well,
indicating that it can effectively retain the semantic content
of the text even when the exact reconstruction is not required.
This result highlights the potential of using LLMs for semantic
compression tasks in cases where the exact reconstruction of
the input data is not strictly necessary.

The second column of Table IV-D gives the average cosine
similarity (CS) of the models across all texts. GPT-4 Lossless
is the strongest performing LLM model. GPT-4 Semantic
Compression follows closely behind, with a 4% drop in
performance.

Surprisingly, GPT-3.5 Semantic Compression nearly per-
fectly matches the GPT-4 Semantic Compression performance,
to the point where the exact ordering is likely dependent on

internal model randomness. GPT-4 Base Compression and
GPT-3.5 Lossless Compression perform considerably worse.
These results reinforce that meta-prompting contributes at least
in part to the overall performance in semantic retention of
compressed text.

F. Exact Reconstruction Effectiveness

Exact Reconstruction Effectiveness is a novel metric pro-
posed in this paper to capture compression performance with
respect to both the compressed size and the ability to perfectly
reconstruct the original text. This metric provides a means
to compare LLM compression performance with traditional
lossless algorithms. While traditional lossless algorithms can
perfectly reconstruct the text, their resulting compression rate
is often much lower than LLM compression.

In contrast, LLM compression derives a more efficient com-
pressed representation, though it struggles to perfectly repli-
cate the original input text. Exact Reconstruction Effectiveness
reconciles these differences to provide a balanced evaluation
metric. Exact Reconstruction Effectiveness is computed by
taking the inverse of the log-normalized compression ratio
multiplied by the inverse of the edit distance, as shown in
the following equation:

Exact Reconstruction Effectiveness

= 1− (log(Compression Ratio)× (1− Edit Distance))
(6)

This equation maximizes the compression ratio and minimizes
the edit distance (or in this case, maximizes the inverse of the
edit distance as this accounts for numerical instability caused
by 0 values in the edit distance). Taking the logarithm of
the compressed ratio scales the relative importance of more
effective methods. This metric is concerned with the ability
to reconstruct the exact input, so we do not want to allow
methods that have a disproportionately high compression rate,
but terrible edit distance, to score highly.

For example, if a method discards 99% of the text, its
compression rate alone could be enough to compensate for a
very high edit distance. Taking the logarithm of the compres-
sion ratio mitigates the impact of such situations and balances
between both the compression ratio and the edit distance. We
take the inverse of the entire equation as the compression
rates are strictly less than 1, resulting in negative values when
log-normalized. Inverting this value is not mathematically
necessary, but maximizes a more intuitive positive number,
rather than minimizing a negative number.

The third column of Table IV-D shows the Normalized
Exact Reconstruction Effectiveness for each model. Zlib’s
least compression method scores marginally higher than the
most method due to the inherent trade-off in compression
ratio. GPT-4 lossless compression scores second highest and
validates both the metric formulation and the meta-prompting
technique. GPT-4 semantic compression scores the worst as it
is optimized for the opposite use case and thus its added benefit
of best-in-class compression rate is mitigated and its average
performance in exact reconstruction is unable to compensate.

The potential applications of our findings include efficient
data storage and retrieval, particularly in situations where exact
text reproduction is not strictly necessary, and maintaining the
semantic information is of greater importance than preserving
the exact structure of the text. Moreover, this research opens
up new avenues for exploring LLMs and their potential in
other domains where compression is essential, such as mul-
timedia and sensor data. Future work could investigate the
development of domain-specific prompts and techniques to
further optimize LLM-based compression for a wider range
of applications.

G. Semantic Reconstruction Effectiveness

Semantic Reconstruction Effectiveness is the other novel
metric proposed in this paper. We use this metric to evaluate
the performance of compression algorithms with respect to the
captured underlying semantic context. This comparison is par-
ticularly useful for scenarios where exact text reconstruction is
not a strict requirement, and the focus is instead on preserving
the overall meaning of the original text.

Semantic Reconstruction Effectiveness

= Compression Rate × Cosine Similarity
(7)

The fourth column of Table IV-D displays the computed
Semantic Reconstruction Effectiveness for each model. The
results validate our metric approach and the effectiveness
of the meta-prompting technique, as GPT-4 Semantic Com-
pression emerges as the highest-performing model under this
metric by a considerable margin. In contrast, the two lossless
compression models exhibit the worst performance since they
are optimized for the exact opposite use case, which minimizes
the data size at the expense of discarding semantically rich
information from the input text.

These findings again highlight the potential of LLMs such
as GPT-4 in semantic compression applications where exact
text representation is not a priority. For example, in a scenario
where an LLM generates a tailored sales pitch using a context
document, maintaining the precise wording or structure of the
context document is not crucial, as long as the core semantic
selling points are retained.

To summarize, we demonstrate the value of our novel
metric, Semantic Reconstruction Effectiveness, in assessing
the performance of compression algorithms with respect to
captured semantic context between input and output text.
The superior performance of GPT-4 Semantic Compression in
this regard, as well as the potential applications of semantic
compression in various use cases, underscores the versatility
and adaptability of LLMs for tasks where preserving meaning
is more important than exact text reconstruction.

V. RELATED WORK

This section compares our approach with related work on
evaluating LLMs and data compression.

A. Neural Data Compression

Data compression aims to reduce the size of data in a
way that maximally preserves the original raw data before
compression. This problem has recently been addressed via
neural models [20], [21] which can achieve more nuanced
compression policies than rigidly defined algorithms or en-
coding schemes. These approaches may offer promise for
complex compression tasks, such as for high-entropy data or
intricately structured data formats, at the expense of increased
performance overhead or limited generalization power over
legacy approaches.

Our work leverages LLMs, which are treated as a black
box with minimal interpretability from input prompt to output
response. Our approach is based on the view that the model
weights of an LLM represent a compressed representation of
its training data and can thus serve as a compression mech-
anism for input data via strategic prompting. Motivated by
fundamental constraints on input token counts [8] and request
counts to an LLM, we explore the compression capabilities of
LLMs in both lossless and lossy paradigms on both text-to-text
and text-to-code tasks.

B. Large Language Model Evaluation

Empirical evaluation of LLMs is still a nascent discipline.
In particular, there is both interest and urgency in improving
our collective understanding of the ways an LLM produces
an output response given an input prompt to (1) enhance
transparency and confidence around LLM applications and (2)
mitigate systematic bias [22]–[27]. Efforts in this area center
on the global statistical trends in natural language usage as it
applies to prompting and downstream use of output in LLMs.

There are a number of open questions with respect to fair
evaluation of LLMs and mitigation of bias in these models,
as well as the most productive techniques for ensuring high
quality responses from an input prompt [6], [28]. Our work
assesses the affects of prompt engineering on the measurable
effects of compression quality for text compression. Evaluation
methods of LLMs stand to further enhance and contextualize
the findings in this work, but much additional research is
required in this area.

VI. CONCLUDING REMARKS

This paper presents an initial evaluation of compression
techniques in Large Language Models (LLMs), specifically
ChatGPT-3.5 and ChatGPT-4. We propose two novel metrics
in addition to compressed entropy, compression ratio, and edit
distance for evaluating performance: Semantic Reconstruction
Effectiveness (SRE) and Exact Reconstruction Effectiveness
(ERE).

The following is a summary of key lessons learned from
the research presented in this paper:

• Evaluation metrics provide a sound basis for comparisons
Our SRE and ERE metrics provide a sound and stan-
dardized means of assessing the effectiveness of LLM
compression techniques, considering both the semantic

aspects and the precise textual content of LLM outputs
on compression directives.

• Evaluations are limitation by resource constraints The
results presented in this paper are inherently limited by
a small number of data samples, as well as limited
resources.

• Reproducibility challenges across releases The LLM
models are updated and modified on an unknown basis,
which may affect the reproducibility of our results over
time. In a similar vein, different users may observe differ-
ent model outputs for identical input prompts, for reasons
that are not entirely clear, which may limit reproducibility
in some cases.

REFERENCES

[1] OpenAI, “Introducing chatgpt,” 2023. [Online]. Available: https:
//openai.com/blog/chatgpt

[2] Google, “Bard,” 2023. [Online]. Available: https://bard.google.com/
[3] Anthropic, “Introducing claude,” 2023. [Online]. Available: https:

//www.anthropic.com/index/introducing-claude
[4] A. AWS, “Amazon titan,” 2023. [Online]. Available: https://aws.

amazon.com/bedrock/titan/
[5] AI21, “Announcing ai21 studio and jurassic-1 language

models,” 2023. [Online]. Available: https://www.ai21.com/blog/
announcing-ai21-studio-and-jurassic-1

[6] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar,
J. Spencer-Smith, and D. C. Schmidt, “A prompt pattern catalog to
enhance prompt engineering with chatgpt,” 2023.

[7] OpenAI, “What are tokens and how to count them?”
2023. [Online]. Available: https://help.openai.com/en/articles/
4936856-what-are-tokens-and-how-to-count-them

[8] ——, “Models overview,” 2023. [Online]. Available: https://platform.
openai.com/docs/models/gpt-3-5

[9] “Zlib technical details,” Zlib.net, 2022.
[10] Google, “Embeddings,” 2022. [Online]. Available: https://developers.

google.com/machine-learning/crash-course/embeddings/video-lecture
[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of

word representations in vector space,” 2013.
[12] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning

distributed representations of code,” 2018.
[13] R. S, A. S. Bharadwaj, D. S K, M. S. Khadabadi, and A. Jayaprakash,

“Digital implementation of the softmax activation function and the
inverse softmax function,” in 2022 4th International Conference on
Circuits, Control, Communication and Computing (I4C), 2022, pp. 64–
67.

[14] Adobe, “Lossy vs lossless compression differences and when to use.”
2023. [Online]. Available: https://www.adobe.com/uk/creativecloud/
photography/discover/lossy-vs-lossless.html

[15] P. S. Foundation, “zlib — compression compatible with gzip,” 2023.
[Online]. Available: https://docs.python.org/3/library/zlib.html

[16] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[17] Wikipedia, “Levenshtein distance,” 2023. [Online]. Available: https:
//en.wikipedia.org/wiki/Levenshtein distance

[18] OpenAI, “Embeddings,” 2023. [Online]. Available: https://platform.
openai.com/docs/guides/embeddings

[19] Wikipedia, “Cosine similarity,” 2023. [Online]. Available: https:
//en.wikipedia.org/wiki/Cosine similarity

[20] Y. Yang, S. Mandt, and L. Theis, “An introduction to neural data
compression,” 2022.

[21] M. Alwani, Y. Wang, and V. Madhavan, “Decore: Deep compression
with reinforcement learning,” 2022.

[22] P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga,
Y. Zhang, D. Narayanan, Y. Wu, A. Kumar, B. Newman, B. Yuan,
B. Yan, C. Zhang, C. Cosgrove, C. D. Manning, C. Ré, D. Acosta-Navas,
D. A. Hudson, E. Zelikman, E. Durmus, F. Ladhak, F. Rong, H. Ren,
H. Yao, J. Wang, K. Santhanam, L. Orr, L. Zheng, M. Yuksekgonul,
M. Suzgun, N. Kim, N. Guha, N. Chatterji, O. Khattab, P. Henderson,
Q. Huang, R. Chi, S. M. Xie, S. Santurkar, S. Ganguli, T. Hashimoto,

T. Icard, T. Zhang, V. Chaudhary, W. Wang, X. Li, Y. Mai, Y. Zhang,
and Y. Koreeda, “Holistic evaluation of language models,” 2022.

[23] C. Meister and R. Cotterell, “Language model evaluation beyond per-
plexity,” 2021.

[24] S. Takahashi and K. Tanaka-Ishii, “Evaluating Computational Language
Models with Scaling Properties of Natural Language,” Computational
Linguistics, vol. 45, no. 3, pp. 481–513, 09 2019. [Online]. Available:
https://doi.org/10.1162/coli a 00355

[25] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Ka-
mar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T.
Ribeiro, and Y. Zhang, “Sparks of artificial general intelligence: Early
experiments with gpt-4,” 2023.

[26] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al.,
“On the opportunities and risks of foundation models,” arXiv preprint
arXiv:2108.07258, 2021.

[27] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia,
Z. Ji, T. Yu, W. Chung et al., “A multitask, multilingual, multimodal
evaluation of chatgpt on reasoning, hallucination, and interactivity,”
arXiv preprint arXiv:2302.04023, 2023.

[28] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” ACM Computing Surveys, vol. 55, no. 9,
pp. 1–35, 2023.

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://bard.google.com/
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude
https://aws.amazon.com/bedrock/titan/
https://aws.amazon.com/bedrock/titan/
https://www.ai21.com/blog/announcing-ai21-studio-and-jurassic-1
https://www.ai21.com/blog/announcing-ai21-studio-and-jurassic-1
https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
https://www.adobe.com/uk/creativecloud/photography/discover/lossy-vs-lossless.html
https://www.adobe.com/uk/creativecloud/photography/discover/lossy-vs-lossless.html
https://docs.python.org/3/library/zlib.html
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity
https://doi.org/10.1162/coli_a_00355

	Introduction
	Background on Compression vs. Embeddings
	Analyzing LLM Compression Performance on Literary Text
	Experiment: Compression of Fictional Literary Text
	Analysis: Entropy
	Analysis: Compression Ratio
	Analysis: Edit Distance
	Analysis: Semantic Retention Quantified by Cosine Similarity

	Prompt Engineering to Facilitate Compression Behaviour
	Experiment Setup
	Compressed Text Entropy Analysis
	Compression Ratio
	Edit Distance
	Semantic Retention
	Exact Reconstruction Effectiveness
	Semantic Reconstruction Effectiveness

	Related Work
	Neural Data Compression
	Large Language Model Evaluation

	Concluding Remarks
	References

