
Prompt Engineering of ChatGPT to Improve Generated Code &
Runtime Performance Compared with the Top-Voted Human Solutions

Ashraf Elnashar, Max Moundas, Douglas C. Schimdt, Jesse Spencer-Smith, Jules White
{ashraf.elnashar, maximillian.r.moundas, d.schmidt, jesse.spencer-smith, jules.white}@vanderbilt.edu

Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA

Abstract

This paper presents the results of a study comparing the
runtime performance of the best performing coding solution
selected from 100 solutions generated with ChatGPT to the
top-voted human-produced code on Stack Overflow. These
results show that selecting from the best of 100 solutions
generated by ChatGPT is competitive or better than the top-
voted human solution on Stack Overflow for the range of
problems that we tested. Moreover, the results indicate that
prompting multiple times for code and selecting the best of
many generated solutions is a promising autonomous cod-
ing aid to help human software engineers find the best solu-
tions for performance-critical code sections.

1 Introduction

Emerging trends, challenges, and opportunities.
Large-language models (LLMs) [4], such as ChatGPT [3]
and Copilot [1], have the ability to generate complex code
to meet a set of natural language requirements [6]. Soft-
ware developers can generate human descriptions of desired
functionality or requirements and ask for code in a variety
of languages from Python to Java to Clojure. Already, these
tools are being integrated into popular Integrated Develop-
ment Environments (IDEs), such as IntelliJ [9] and Visual
Studio.

LLMs are now easily accessible through the Internet and
within IDEs, and developers are increasingly leveraging
them to obtain guidance on how to produce code samples.
In many cases, the questions and code samples that devel-
opers use these LLMs for are the same questions and code
samples they previously would have sought help on via dis-
cussion forums. For example, Stack Overflow is one of the
most popular forums where developers ask questions and
get guidance on code samples.

There has been significant discussion and research about
the ramifications of using LLMs to generate code with re-
spect to the quality of the code from a security and defect

perspective [1, 2, 12]. In particular, LLM-based tools can
produce poor quality code due to their ability to ”halluci-
nate” convincing text or code that is fundamentally flawed
although it appears correct. In addition, LLMs were trained
on human-produced code in open-source projects that may
have vulnerabilities or do not demonstrate best practices.
Much discussion on the code quality of these tools has
therefore focused on functional correctness and security.

Although there are certainly risks to using these tools
before their capabilities are fully understood, there are also
clear productivity benefits for developers in specific areas.
For example, LLMs can help to automate repetitive, te-
dious, or boring coding tasks and often perform these tasks
faster than a developer. This productivity boost is partic-
ularly apparent when coding tasks involve APIs or algo-
rithms that developers are unfamiliar with and thus require
study to get up to speed before performing the tasks. These
APIs and algorithms are often included in the LLM’s train-
ing set, allowing it to generate code for them swiftly and
accurately.

In addition, a key benefit related to code performance is
how LLMs can be used to prompt for many different po-
tential solutions that can be automatically benchmarked to
identify the fastest solution. This approach can also be per-
formed for other quality metrics (e.g., memory or disk uti-
lization), though we focus on performance for this paper. In
the near future, developers will likely use LLM-based tools
like Code Inspector and Auto-GPT to generate numerous
solutions for each query and provide detailed performance
analysis for each solution.

Determining when to leverage these tools or not involves
fully exploring and documenting the pros, cons, and risks of
their usage. Security and functional correctness are clearly
important points of consideration, but must also be supple-
mented with additional analyses. Likewise, other quality
attributes, such as memory consumption, long-term main-
tainability, and modularity, must also be analyzed.

Open Question: How does LLM-generated code with
varying prompts compare to human-produced code in
terms of runtime performance? One quality attribute that

1



has limited analysis in the context of LLMs is runtime per-
formance of generated code. In particular, will there be a re-
duction, improvement, or no net change in overall software
runtime performance as these tools are adopted? Human-
generated hand-optimized code may be faster than LLM-
generated code based on common approaches encountered
in training data. Conversely, however, LLM-generated code
may be consistently perform better than what the average
human developer produces. Exactly where we will end
up in this overall spectrum and where we are with current
LLM-based tools is not well understood.

One challenge in answering these question is the range
of different ways to approach and answer it. For example,
LLMs are stochastic and may generate different code sam-
ples for the same ”prompt”1 each time the LLM is invoked.
Although we and others have documented prompt pat-
terns [15], there is considerable variations in how prompts
are worded and the code generated in response.

Another open question, therefore, is should analysts look
at the most common structure that gets produced vs. the
best or worst code, etc.? Similarly, which of the many
human-produced solutions to a problem should be com-
pared against and which is most representative of the av-
erage developer? Likewise, what skill level of developer
should be considered? There are many different dimensions
to this question that must be explored.

The wording of a prompt influences the quality of an
LLM output [15]. We therefore need to understand how
prompt wording influences the quality of generated code.
In particular, we need to know if varying the wording yields
a higher probability of producing faster code.

Experiment: An initial comparison of human pro-
duced code example on Stack Overflow to a ChatGPT-
generated solutions using a variety of prompting strate-
gies. To start answers these questions, we analyzed them
from the perspective of ”what happens to code performance
when humans apply the fastest of 100 solutions generated
by ChatGPT instead of a human answer on Stack Overflow.”
This narrower exploration of the questions mimics the be-
havior of developers who want an answer and are willing to
generate 100 solutions from ChatGPT and benchmark them.
While our approach just provides an initial exploration, it
provides a meaningful starting point for exploration of this
topic.

In the past, developers would likely have selected
human-written solutions on Stack Overflow. In the future,
we envision coding tools supporting developers by generat-
ing a large number of potential solutions and quantitatively
evaluating them along a number of dimensions to aid the
developer in selection.

This paper presents initial data from experiments com-
paring the runtime performance of human-written Stack

1A ”prompt” is the natural language input to the LLM [10]

Overflow solutions to the fastest of 100 ChatGPT-generated
solution to coding questions asked on Stack Overflow. Each
solution was inserted into a test harness that exercised the
code with progressively larger input sizes. The overall run-
time of the code was benchmarked for each solution and
then compared. This paper’s preliminary findings indi-
cate that when prompted 100 times, an LLM can generate
Python code at least as efficient as that produced by humans
for a sample of 15 Stack Overflow questions.

Paper organization. The remainder of this paper is
organized as follows: Section 2 discusses our experiment
setup; Section 3 analyzes the results from our compari-
son of top Stack Overflow coding solutions and ChatGPT-
produced solutions; Section 4 describes threats to the valid-
ity of these results; Section 5 compares and contrasts this
work to related research in the area; and Section 6 presents
key lessons learned and future directions of this research.

2 Experiment Setup

All our analysis was done on code samples in Python
since (1) it is relatively easy to extract and experiment with
stand-alone code samples in Python compared to other lan-
guages, (2) ChatGPT appears to generate more correct code
in Python vs. less popular languages, such as Clojure, and
(3) Python is a popular language in domains, such as Data
Science, where developers may have more familiarity and
comfort with LLMs.

The problem set was manually curated from Stack Over-
flow by browsing questions related to Python. We searched
Stack Overflow for questions pertaining to categories like
array questions and linked list questions, since these ques-
tions are easy to test performance at increasing input sizes.
We then analyzed each question and its candidate solutions
to select question/solution pairs that could be isolated and
inserted into our test harness. We avoided questions that
relied heavily on third-party libraries (a potential threat to
validity) and instead focused on solutions built on core li-
braries and capabilities within Python.

Wherever possible, we selected the top-voted solution as
the comparison. In some cases, multiple languages were
present in the solutions and we selected the first Python so-
lution, mimicking a developer that is looking for the first
solution in their target language. These decisions are dis-
cussed in Section 4.

For each selected question, the title of the question
posted on Stack Overflow was extracted as a prompt for
ChatGPT-3.5 Turbo through the API.2 it is important to
note that this decision meant that ChatGPT was not pro-
vided the full information in the question, which may have

2This decision was made based on ChatGPT-3.5’s availability during
the study, as ChatGPT-4 was not accessible for this study, though it may
produce even better results.

2



handicapped it in providing better performing solutions. All
the original Stack Overflow posts, human code solutions,
and ChatGPT-produced code solutions, along with our en-
tire set of questions and genereated answer, can be accessed
in our Github repository: github.com/elnashara/
CodePerformanceComparison. We encourage read-
ers to replicate our results and submit issues and pull re-
quests for possible improvements.

For each code sample, we measured the runtime perfor-
mance using Python’s timeit package. Code samples were
provided with small, medium, and large inputs. The in-
puts were progressively increased in size to show the ef-
fects of scaling on the generated code. What constituted
small, medium, and large was problem-specific. For each
input size, we generated 100 random inputs of the given
size to test with. In addition, for each input, we tested the
given code 100 times on the input using the Python timeit
package.

2.1 Overview of the Coding Problems

A total of 15 problems from Stack Overflow were se-
lected, grouped into two classes: one related to arrays and
the other related to linked lists. The problems were as fol-
lows: P1: identify missing number(s) in an unsorted array,
P2: detect a duplicate number in an array that is not sorted,
P3: given an unsorted array, find the indices of the k small-
est numbers, P4: count pairs of elements in an array with
a given sum, P5: find duplicates in a list, P6: remove list
duplicates, P7: implement the Quicksort algorithm, P8: re-
verse a list or iterate over it in reverse, P9: count the fre-
quency of elements in an unordered list, P10: find the max-
imum product subarray, P11: identify the middle element
of a linked list in one traversal, P12: detect if a linked list
has a loop or cycle, P13: reverse a linked list in Python,
P14: find the length of a linked list in Python, P15: create
Pascal’s triangle in Python with given number of rows.

2.2 Prompts strategies

Throughout this experiment, we apply various prompt-
ing strategies to generate Python code with ChatGPT, in-
cluding (1) Naive approach, which uses the title from
Stack Overflow as the prompt, e.g., ”How to count the fre-
quency of the elements in an unordered list”, (2) Ask for
speed approach, which adds a requirement for speed at the
end of the prompt, e.g., ”How to count the frequency of
the elements in an unordered list, where the implementa-
tion should be fast”, (3) Ask for speed at scale approach,
which provided more detailed information about how the
code should be optimized for speed as the size of the list
grows, e.g., ”How to count the frequency of the elements in
an unordered list, where the implementation should be fast

as the size of the list grows”, (4) Ask for the most opti-
mal time complexity, which should prioritize achieving the
most optimal time complexity possible, e.g., ”How to count
the frequency of the elements in an unordered list, where
implementation should have the most optimal time com-
plexity possible”, and (5) Ask for the chain-of-thought,
which generates coherent text by providing a series of re-
lated prompts, e.g., ”Please explain your chain of thought
to create a solution to the problem: How to count the fre-
quency of the elements in an unordered list First, explain
your chain of thought. Next, provide a step by step descrip-
tion of the algorithm with the best possible time complexity
to solve the task. Finally, describe how to implement the
algorithm step-by-step in the fastest possible way.”

ChatGPT was prompted 100 times with each prompt per
coding problem, which yielded up to 100 different coding
solutions to the problem per prompt. In practice, fewer than
100 unique coding solutions were produced since Chat-
GPT generated logically equivalent programs. However,
we tested the performance of all generated code. For the re-
sults, we did not remove duplicate solutions. If two different
prompts had identical solutions, we benchmarked each and
left the results with the expectation that 100 timing runs on
100 different inputs would average out any negligible dif-
ferences in timing.

3 Analysis of Experiment Results

The results from our experiments evaluating the perfor-
mance of code provided by Stack Overflow and prompting
ChatGPT 100 times for fifteen coding problems with three
different input sizes (1,000, 10,000, and 100,000) are shown
in Figures 1, 2 and 3. Figure 4 illustrates the minimum
average performance across all input sizes.

Figure 1. Number of Solutions within X% of
the Best Runtime (Input Size 1,000)

These figures show the number of problems for each
prompt where the best of the 100 solutions generated by
each prompt was within 1%, 5%, etc. of the best solution

3



found across all prompts and the human. For each prob-
lem, a total of up to 701 solutions were benchmarked (7
prompts * 100 solutions per prompt + 1 human solution).
The best performing solution across all solutions was used
as the ”Best Runtime” solution in the figures against which
other solutions were compared. Figures 1, 2, 3 and 4 show

Figure 2. Number of Solutions within X% of
the Best Runtime (Input Size 10,000)

Figure 3. Number of Solutions within X% of
the Best Runtime (Input Size 100,000)

how ChatGPT selects the best performing solution from 100
prompts with different input sizes that is competitive to the
human Stack Overflow solution in nearly all cases.

The human solution was the fastest solution on only one
of the problems. We used the title of the question as the in-
put to ChatGPT. All the code samples produced code with
respect to the title of the Stack Overflow post. Since we di-
rectly translated the titles into prompts for ChatGPT, how-
ever, there may have been additional contextual information
in the question that could have been used by ChatGPT to
further improve its solution.

Figure 4. Number of Solutions within X% of
the Best Runtime (All Input Sizes)

4 Threats to Validity

Although our results are promising, they are based on a
relative small overall sample size. Clearly, more work on a
larger sample size is needed. In particular, the software en-
gineering and LLM communities will benefit from a large-
scale set of benchmarks that associate (1) code needs (ex-
pressed as natural language requirements), questions, spec-
ifications, and rules with (2) highly optimized human code,
as well as associated benchmarks and interfaces. These
communities can then apply such benchmarks to measure
and validate LLM coding performance over time to ensure
the communities are headed in the right direction regarding
the development and use of these tools.

Prompt construction was a significant threat to validity.
We chose to only use the title of questions in Stack Over-
flow and did not provide additional information from the
full body of the question. We made this decision to elimi-
nate the possibility that ChatGPT used any provided code as
the basis for its answer. We did not want ChatGPT complet-
ing/improving fundamentally flawed code. This choice in
prompt design risked that ChatGPT was deprived of infor-
mation that it could have used to produce better solutions.

Another area of risk is in the variety of coding problems
that we analyzed. The problems were relatively narrow
in scope and data structure type. A much wider range of
problem types is needed to ensure that hidden risks regard-
ing specific problem structures don’t exist. There may be
classes of problems that trigger poor performing hallucina-
tions or code structures that we are not aware of yet. This
risk is particularly problematic when attempting to general-
ize the overall meaning of our results.

A further threat to the validity of our results is the in-
herent question and code sample selection bias in the study.
Since the questions and answers were manually selected,
partially to focus on problems and code samples that could
easily be tested and benchmarked, we may have inappro-

4



priately influenced the problem types selected and not cho-
sen samples representative of what developers would ask in
practice. We also recognize that there are other additional
threats to validity beyond those discussed above.

5 Related Work

An area that may significantly effect the performance of
code produced by LLMs is prompt engineering, which is the
study of designing natural language inputs to LLMs to solve
different problems, such as using outside tools [17] or tap-
ping into LLM capabilities [14]. Naive prompting cannot
solve problems in a variety of domains, such as mathemat-
ics [7], and proper prompt structure is essential to achieve
good results.

We expect a similar result for performance. Well-
designed prompts will likely produce better code. Our
prompts, sourced directly from Stack Overflow questions,
have potential for future enhancements to generate more
efficient code. For this study, we did not apply our prior
prompt engineering research and instead looked solely at
direct input of Stack Overflow questions as prompts.

A body of initial research has looked at bugs and secu-
rity issues in LLM-generated code [5, 7, 8, 11]. Some work
has looked specifically at the security of human vs. LLM-
produced code [2]. Some prompt engineering work [13,16]
has also looked at how to interact with an LLM to fix bugs
and can likely inform future work on interacting with an
LLM to improve performance.

6 Concluding Remarks

The results from our experiments show that prompting
and automatically benchmarking generated code solutions
to select the best is an effective strategy for leveraging
LLMs to produce fast code. When prompted 100 times, all
our prompts were competitive to the top-voted human so-
lutions on Stack Overflow. The highest performing prompt
employed chain-of-thought prompting.

A key question for future work is if/how other code qual-
ity metrics can be integrated to allow considering multiple
dimensions of code quality beyond performance. Future
LLM-based tools may allow developers to define a range of
metrics and automatically prompt for solutions until a qual-
ity threshold is met, a prompt limit is hit, or too much time
has passed. The ability to search many more coding solu-
tions is a key attribute of ChatGPT-based code generation
as shown in the results.

7 Acknowledgements

ChatGPT Code Interpreter was used to generate the code
for the data visualizations and filter the data sets.

References

[1] Github copilot · https://github.com/features/copilot.
[2] O. Asare, M. Nagappan, and N. Asokan. Is github’s copi-

lot as bad as humans at introducing vulnerabilities in code?
arXiv preprint arXiv:2204.04741, 2022.

[3] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie,
H. Lovenia, Z. Ji, T. Yu, W. Chung, et al. A mul-
titask, multilingual, multimodal evaluation of chatgpt on
reasoning, hallucination, and interactivity. arXiv preprint
arXiv:2302.04023, 2023.

[4] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman,
S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosse-
lut, E. Brunskill, et al. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258, 2021.

[5] A. Borji. A categorical archive of chatgpt failures. arXiv
preprint arXiv:2302.03494, 2023.

[6] A. Carleton, M. H. Klein, J. E. Robert, E. Harper, R. K.
Cunningham, D. de Niz, J. T. Foreman, J. B. Goodenough,
J. D. Herbsleb, I. Ozkaya, and D. C. Schmidt. Architecting
the future of software engineering. Computer, 55(9):89–93,
2022.

[7] S. Frieder, L. Pinchetti, R.-R. Griffiths, T. Salvatori,
T. Lukasiewicz, P. C. Petersen, A. Chevalier, and J. Berner.
Mathematical capabilities of chatgpt. arXiv preprint
arXiv:2301.13867, 2023.

[8] S. Jalil, S. Rafi, T. D. LaToza, K. Moran, and W. Lam. Chat-
gpt and software testing education: Promises & perils. arXiv
preprint arXiv:2302.03287, 2023.

[9] J. Krochmalski. IntelliJ IDEA Essentials. Packt Publishing
Ltd, 2014.

[10] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neu-
big. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM
Computing Surveys, 55(9):1–35, 2023.

[11] M. Nair, R. Sadhukhan, and D. Mukhopadhyay. Generating
secure hardware using chatgpt resistant to cwes. Cryptology
ePrint Archive, 2023.

[12] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri.
Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 754–768. IEEE, 2022.

[13] D. Sobania, M. Briesch, C. Hanna, and J. Petke. An analysis
of the automatic bug fixing performance of chatgpt. arXiv
preprint arXiv:2301.08653, 2023.

[14] E. A. van Dis, J. Bollen, W. Zuidema, R. van Rooij, and
C. L. Bockting. Chatgpt: five priorities for research. Nature,
614(7947):224–226, 2023.

[15] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert,
A. Elnashar, J. Spencer-Smith, and D. C. Schmidt. A prompt
pattern catalog to enhance prompt engineering with chatgpt.
arXiv preprint arXiv:2302.11382, 2023.

[16] C. S. Xia and L. Zhang. Conversational automated program
repair. arXiv preprint arXiv:2301.13246, 2023.

[17] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan,
and Y. Cao. React: Synergizing reasoning and acting in lan-
guage models. arXiv preprint arXiv:2210.03629, 2022.

5


