
EVALUATING QUALITY OF SERVICE FOR ENTERPRISE DISTRIBUTED
REAL-TIME AND EMBEDDED SYSTEMS

James H. Hill
hillj@dre.vanderbilt.edu
Institute for Software Integrated Systems
2015 Terrace Place
Nashville, TN, 37203, USA
+1 615-343-8197

Douglas C. Schmidt
schmidt@dre.vanderbilt.edu
Institute for Software Integrated Systems
2015 Terrace Place
Nashville, TN, 37203, USA
+1 615-343-8197

John M. Slaby
john_m_slaby@raytheon.com
Raytheon Integrated Defense Systems
1847 West Main Road
Portsmouth, RI 02871
+1 401-842-2107

mailto:hillj@dre.vanderbilt.edu
mailto:schmidt@dre.vanderbilt.edu
mailto:john_m_slaby@raytheon.com

EVALUATING QUALITY OF SERVICE FOR ENTERPRISE DISTRIBUTED
REAL-TIME AND EMBEDDED SYSTEMS

This chapter introduces the next generation of system execution modeling tools designed
around model-driven engineering (MDE) coupled with domain-specific modeling languages
(DSMLs). The authors discuss key design issues involved with implementing a next genera-
tion SEM tool and show how they can be applied to developing service-oriented architecture
(SOA)-based applications. Finally, the authors use a real-life case study to illustrate how
next generation system execution modeling tools can help understand quality-of-service
(QoS) issues earlier in the development lifecycle (i.e., during design-time) instead of waiting
until complete system integration.

Keywords: CASE tools, Distributed Systems, Input/Output Models, Modeling Languages,
Process Model, Structural Modeling, Systems Evaluation

INTRODUCTION

Integration Challenges of SOA-based Enterprise DRE Systems
Enterprise distributed real-time and embedded (DRE) systems, such as supervisory control
and data acquisition (SCADA) systems, air traffic control systems, and shipboard computing
environments, are growing in complexity and importance as computing devices are net-
worked together to help automate tasks previously done by human operators. These types of
systems are required to provide quality of service (QoS) support to process the right data in
the right place at the right time over a networked grid of computers. QoS properties required
by enterprise DRE systems include the low latency and jitter expected in conventional real-
time and embedded systems, and the high throughput, scalability, and reliability expected in
conventional enterprise distributed systems. Achieving this combination of QoS capabilities
is hard because these systems work in constrained environments with a limited amount of
resources that can vary depending on the location of the system. Moreover, this level of QoS
requires in depth knowledge of low-level programming techniques, e.g., properly interfacing
with sockets to write efficient networking protocols, which the application developers of en-
terprise DRE system may not possess.

To address these challenges, enterprise DRE systems are increasingly being developed using
applications composed of components running on feature–rich service-oriented architecture
(SOA) middleware frameworks. These components are designed to provide reusable services
to a range of application domains that are composed into domain-specific assemblies for ap-
plication (re)use. SOA middleware is intended to alleviate problems of inflexibility and rein-
vention of core capabilities associated with prior monolithic, functionally-designed, and
“stove-piped” legacy applications developed using just the capabilities required for a specific
set of requirements and operating conditions. SOA-based systems, conversely, are designed
to have a more general range of capabilities that enable their reuse in other contexts. More-
over, these systems are developed in layers, e.g., layer(s) of infrastructure middleware ser-
vices (such as naming and discovery, event and notification, security and fault tolerance) and
layer(s) of application components that use these services in different compositions.

Figure 1. Characteristics and Complexities of Serialized Phasing in Enterprise DRE

Systems
Combining stringent QoS requirements in DRE systems with the transition to SOA compo-
nent frameworks has created a particularly vexing problem for researchers and developers of
large and layered enterprise DRE systems: the inadequacies of system architectures may not
be ascertained until years into development. At the heart of this problem is the serialized
phasing of layered system development, shown in Figure 1, which postpones the discovery
of design flaws that affect system QoS until late in the lifecycle, i.e., at integration time. A
hallmark of serialized phasing is that application components are not created until after their
underlying system infrastructure components, such as naming and discovery, event and noti-
fication, security and fault tolerance, and resource management.

As shown in Figure 1, SOA-based enterprise DRE systems built using serialized phasing of-
ten do not adequately test the implementations, configurations, and deployments of infra-
structure components under realistic workloads until the application components are done.
Moreover, both application and infrastructure components are hosted on the same target plat-
form. Each component must, therefore, be properly deployed and configured to achieve the
desire QoS. As a result, it hard to know how well the system will satisfy key QoS properties
due to disconnects in the phasing of infrastructure and application component development.
Moreover, handcrafted software designs used in many enterprise DRE systems to address
these concerns make it hard to conduct “what if” experiments on alternative system architec-
tures and implementations to determine which valid configurations can obtain performance
goals for a particular workload. Making any significant changes to these types of handcrafted
systems late in their lifecycle can be costly due to the impact on the design, implementation,
deployment, and (re)validation of many application and infrastructure software/hardware
components.

Solution Approach: System Execution Modeling Tools
To address the problems in SOA-based enterprise DRE systems, there is a need for a method-
ology and an associated suite of system execution modeling (SEM) tools that use model-

driven engineering (MDE) (Schmidt, 2006) technologies, such as GME (Karsai, 2003) or
GEMS (White, 2007), to simplify the:

1. Emulation of application component behavior in terms of computational workloads,

resource utilizations and requirements, and network communication. This step can be ac-
complished quickly and precisely using domain-specific modeling languages (DSMLs)
(Ledeczi, 1999) that capture the behavior and workload of system components (at a
higher-level of abstraction than third-generation languages like C++ or Java). DSML in-
terpreters then parse the constructed behavior and workload models to generate code that
executes emulated components.

2. Configuration, deployment, and execution of the emulated application components

atop actual infrastructure components to determine their impact on QoS empirically in ac-
tual runtime environments. These steps can also be accomplished using DSMLs that
specify realistic deployments and configurations and then generate the associated meta-
data describing these deployments and configurations. These metadata descriptions are
processed by the same deployment and configuration tools as the final system, with SEM
tools providing mechanisms to record, consolidate, and collect QoS metrics (such as exe-
cution times and resource usage) from the SOA runtime environment.

3. Process of feeding back the results to enhance system architectures and components to

improve QoS. This step can be accomplished by archiving the collected QoS metrics and
providing tools that view the overall results of a deployment. SEM tools also provide his-
tories of the collected metrics to enable engineers and architects to understand end-to-end
system performance and make well-informed decisions on how to improve QoS.

As actual application components mature over time, they can replace the emulated compo-
nents, thereby providing an ever more realistic evaluation environment. Figure 2 shows the
relationships between the steps described above.

SEM tools enable system engineers, software architects/developers, and quality assurance
(QA) engineers to address the inherent complexities that arise from properties of production
systems, including communication delay, temporal phasing, parallel execution, and synchro-
nization. There are typically only a few execution designs that actually can satisfy the func-
tional and performance requirements established in software and system architecture. SEM
tools enable architects and engineers to discover, measure, and rectify incipient integration
and performance problems early in a system's lifecycle (e.g., in the analysis and/or design
phases). These tools help shift the focus of the software integration resources to productive
activities that evaluate and validate system performance and end-user value, rather than serv-
ing as the de facto system design debugging activity, as is often the case today.

Figure 2. Evaluating the QoS of Enterprise DRE System via System Execution Model-

ing Tools
This chapter illustrates by example the following concepts for using MDE-based SEM tools
to evaluate SOA-based enterprise DRE systems:

• The purpose of next-generation SEM tools and the limitations they address with tradi-
tional SEM tools.

• The different elements needed to construct a next-generation SEM tool, including design-
ing the behavioral and workload DSMLs to capture emulated behavior, selecting the
method(s) for configuring, deploying, and executing emulated system behavior, and un-
derstanding different analytical techniques to feedback results to users.

• The application of next-generation SEM tools to SOA-based enterprise DRE systems to
evaluate system QoS to show by example how SEM tools can be used to evaluate enter-
prise DRE systems during the early stages of development, i.e., before complete system
integration.

BACKGROUND
Before we begin our discussion on MDE-based SEM tools, we first describe existing tech-
niques and tools used to evaluate the QoS of enterprise DRE systems. This section summa-
rizes conventional techniques and tools for evaluating enterprise DRE system performance in
different phases of development.

Distributed System Emulation Testbeds
During the past several years a number of testbeds have been developed for emulating and
evaluating the behavior of distributed systems in networked environments. One such testbed
is Emulab (Ricci, 2003), which originated at the University of Utah to provide freely avail-
able resources and tools to configure the topology of experiments, e.g., modeling the under-
lying communication links. The virtual topology is then mapped to ~250 physical nodes that
can be accessed and managed via the Internet. Faux and/or real applications can be executed
in this environment to evaluate the performance of both the topology and applications. As a
result of Emulab’s success, other institutions and organizations, such as Cornell University,

Georgia Institute of Technology, and Vanderbilt University, are hosting their own Emulab
for private and/or public use.

Another common testbed is PlanetLab (2006), which is managed by Princeton University, the
University of California Berkeley, and the University of Washington. PlanetLab provides a
similar user experience as Emulab, though it focuses on large-scale (Northrop, 2006) distrib-
uted systems. PlanetLab currently consists of 726 machines, hosted by 354 sites, spanning
over 25 countries. Most machines are hosted by research institutions, but regardless of where
the machine is hosted, it is accessible via the Internet. Researcher can request slices of
PlanetLab to experiment with a variety of planetary-scale services, such as content distribu-
tion networks, QoS overlays, scalable event propagation, anomaly detection mechanisms,
and network measurement tools, to run experiments. The goal for PlanetLab is to grow to
over 1,000 widely distributed nodes that peer with a majority of the Internet's regional and
long-haul backbones.

ModelNet (Vahdat, 2002) is another testbed for emulating and evaluating large-scaled dis-
tributed systems. With ModelNet, developers can emulate multiple clients and hosts using a
single physical host. ModelNet provides similar functionality as Emulab, though it focuses
on resource constrained environments, i.e., environments that do not have access to enough
resources to scale to the deployment environment. For example, 100 Gnutella clients each
with a 1 Mbps bottleneck bandwidth can be emulated on one dual processor-1 GHz machine.
In addition to providing a scalable emulation environment, ModelNet facilitates the emula-
tion of faux and real applications.

Existing distributed system emulation testbeds are useful in the early stages of development
when testing functionality under various conditions/configurations, especially when the tar-
get platform is not known a priori. With enterprise DRE systems, however, the target plat-
form(s) are usually known (and available) at the start of development. What is needed, there-
fore, are next-generation SEM tools that will help developers and testers leverage the same
benefits provided by existing (public) testbeds to run as many experiments as possible on the
target platform, which is usually a private-based testbed built to the specifications of the tar-
get project.

System Execution Modeling (SEM) Tools
Performance evaluation of systems has always been a research topic that has received much
attention. For example, Smith (1990, 2001) has shown how variations of queuing theory
(Denning, 1978) can be applied to evaluate the performance of enterprise systems. The result
of her work lead the creation of a SEM tool designed specifically for software performance
evaluation (SPE) called SPE·ED (www.perfeng.com/sped.htm). SPE·ED allows developers
to model the “business-logic” of their system and parameterize the model with performance
metrics, e.g., arrival rate and throughput of events, service rates of devices, and resource
availability. Testers can then run simulations of their modeled system and analyze its “ex-
pected” performance. Analysis results can include determining the maximum throughput for
each device, locating the bottleneck device in the system, or evaluating performance under
expected, or hypothetical, system upgrades.

http://www.perfeng.com/sped.htm

UPPAAL (Bengtsson, 1995) is an integrated tool environment for modeling, simulating, and
verifying real-time systems developed jointly by Basic Research in Computer Science at
Aalborg University in Denmark and the Department of Information Technology at Uppsala
University in Sweden. It is based on the formal language of timed automata (Subramonian,
2006), but does not require in-depth knowledge for basic usage. Similar to most SEM tools,
UPPAAL provides a graphical interface to simplify the creation of timed automata models
for the system under development. More importantly, the graphical interface also allows de-
velopers to visualize the simulations of the system under development. Lastly, the con-
structed models can be run through a model checker to check invariant and reachability prop-
erties by exploring the state-space of a system.

CPN Tools (2006) is another SEM tool that allows developers to capture the behavior of a
component, or system under development, using color Petri nets (Kristensen, 1998). Similar
to UPPAAL, CPN Tools provides a graphical user interface to simplify the creation of color
Petri net models. CPN Tools, however, requires some level of expertise and understanding of
color Petri nets. Once models are constructed using CPN Tools, they can be simulated to ver-
ify different properties of DRE system, such as correctness and state reachability, which is
similar to UPPAAL. Performance metrics, e.g., service time, arrival rate, or resource utiliza-
tion, can also be associated with the states and transitions in the models to run SPE simula-
tions, which is similar to SPE·ED.

Other modeling languages, such as KLAPER (Grassi, 2005) and RT-UML (Bertolino, 2004),
can be used to model system execution. KLAPER is a modeling language that facilitates
workload specifications, such as resource utilization, which is then emulated in its own pro-
prietary tool. RT-UML models and evaluates the performance of component-based systems
by defining services and QoS policies for components; however, modeling system behavior
is future work. RT-UML is also designed to be supported by external simulation tools.

Many of the tools discussed above can also be applied in the area of soft and hard real-time
systems. In these types of systems, however, more focus is placed on completing tasks in a
given time constraint, as opposed to verifying the state of the system, e.g., the current values
of attributes or utilizations of resources. In hard real-time systems, developers are concerned
with achieving worst case execution time within a specified time constraint, whereas in soft
real-time systems developers are concerned with achieving average execution time within a
specified time constraint at a given probability (Florescu, 2006).

Tavares et al. (Tavares, 2005) demonstrates how time Petri nets (Merlin, 1974) can be ap-
plied to verify the scheduling of hard real-time tasks when considering multiple system con-
straints, such as execution time and power consumption. Likewise, Bucci et al. (Bucci, 2003)
illustrates how preemptive time Petri nets, which extend time Petri nets, can be used to verify
the scheduling of hard real-time tasks set with flexible computations, such as periodic, spo-
radic, and non-deterministic execution times. In the domain of soft real-time systems, Flo-
rescu et al. (Florescu, 06) introduces an approached called probabilistic modeling and
evaluation for soft real-time systems. This approach uses a language called Parallel Object-
Oriented Specification Language (POOSL) (www.es.ele.tue.nl/poosl) and involves modeling
the distribution of a task’s measured execution times over a given period of time. The con-

http://www.es.ele.tue.nl/poosl

structed model is then analyzed to understand the probability of the task achieving a specific
execution time in the future given its measured distribution curve of execution times.

It is clear that existing SEM tools are useful for understanding the state space of a system by
providing high-level abstractions (i.e., conceptual models of system) that shield developers
from low-level implementation details. Existing SEM tools, however, do not provide support
for enterprise DRE systems developed using SOA technologies, which are developed primar-
ily using DSML tools and not generalized tools. What is needed, therefore, are next-
generation SEM tools that can provided the same functionality as existing SEM tools, but are
tailored for SOA-based enterprise DRE systems, i.e., provide the metadata generation capa-
bility of MDE tools and the evaluation capabilities of existing SEM tools.

Evaluation Techniques for Component Architectures
There are several techniques for evaluating the performance of component architectures, in-
cluding event tracing and system profiling. Event tracing techniques are typically based on
observing the performance of a single event (e.g., execution path and time) as it travels
through the system (i.e., transmitted end-to-end from component to component). System pro-
filing techniques often use external tools to monitor the performance of software and hard-
ware while the system is executing and transcribe collected metrics to files for analysis once
the system is offline.

Mania (2002) discusses a technique called trace-based analysis for Enterprise Java Bean
(EJB) components. In trace-based analysis, different execution traces, i.e., function calls, are
monitored and outputted to a trace file contained on the host. After the emulation, trace files
are parsed and combined with the deployment descriptors to determine the different paths of
execution in the system.

Hauswirth (2005) discusses vertical profiling evaluation techniques in the context of EJB. In
vertical profiling, performance metrics based on the types of operations and actions, e.g.,
cache misses and CPU cycles, are collected in trace files. Trace files are then fused through a
process called trace-alignment using a common metric that occurs in the source traces. After
the traces are aligned, correlation analysis is applied to the traces to help determine what
other metrics collected in the trace may influence its behavior.

Existing techniques for evaluating the performance of component architectures are relatively
complex and low-level, i.e., at the middleware infrastructure level. What is needed, therefore,
are next-generation SEM tools that provide the same analysis techniques, but shield the de-
veloper from the complexity of existing tools. Moreover, these tools should allow developers
to leverage existing MDE tools for component architectures, but provide feedback to pin-
point how the low-level analysis correlates to the high-level component architecture’s imple-
mentation.

MOTIVATING EXAMPLE AND CASE STUDY
To motivate the structure and functionality of next-generation SEM tools, this section pre-
sents a case study from the domain of enterprise DRE systems. This case study focuses on a
SOA-based multi-layer resource management (MLRM) infrastructure (Lardieri, 2007) for

naval shipboard computing systems and the challenges encountered while developing and
evaluating it. The MLRM service architecture shown in Figure 3 forms the basis for future
naval programs, which run on a coordinated grid of computers that manage many aspects of a
ship's power, navigation, command and control, and tactical operations. Our motivating ex-
ample is from the domain of naval shipboard computing, and more specifically a closed sys-
tem. We believe, however, that the structure and functionality of next-generation SEM tools
can also be applied to open systems, such as peer-to-peer applications and service providers
systems (e.g., online stock applications) (Hill, 2007).

Figure 3. SOA-based Multi-Layer Resource Manager (MLRM) Infrastructure for

Shipboard Computing
The MLRM, shown in Figure 3, consists of the three layers. The command and policy inputs
flow in a top-down manner and correspondingly the resource status information moves in a
bottom-up fashion. At the top is the domain layer, which contains infrastructure components
that interact with the mission manager of shipboard environment by receiving command and
policy inputs and passing them to the resource pool layer. The resource pool layer is an ab-
straction for a set of computer nodes managed by a pool manager. The pool manager is an
infrastructure component that interacts with the resource allocator in the resource pool layer
to run algorithms that deploy application components to various nodes within a resource
pool. The actual computing resources reside in the third layer called the resource layer,
which has infrastructure components called node provisioners that receive commands to
spawn applications in every node from a pool manager.

The SOA-based MLRM services described above are designed to support the highly hetero-
geneous environment in which long-lived enterprise DRE systems operate. For example, the
Naval program that provides the operational context for the MLRM services is designed to
support different versions of (1) component middleware, such as CIAO and OpenCCM, (2)
general-purpose operating systems, such as Linux and Solaris, (3) real-time operating sys-
tems, such as VxWorks and LynxOS, (4) hardware chipsets, such as x86, PowerPC, and
SPARC processors, (5) a wide range of high-speed wired interconnects, such as Gigabit
Ethernet and Infiniband, and (6) different transport protocols, such as TCP/IP and SCTP.

Figure 4. Model of SLICE Showing the MLRM Components and Their Interconnec-

tions
Figure 4 shows one of the challenge problems of the MLRM case study called the SLICE
scenario, which consists of 2 sensors, 2 planners, 1 configuration, 1 error recovery, and 2 ef-
fector components. This scenario requires the transmission of information detected by the
sensors to each planner in sequence, then to the configuration component, and lastly to both
effectors to perform actions that control devices in the physical world. Components in the
SLICE scenario are deployed across 3 computing nodes because the workload generated by
the components collectively is more than a single node can handle. The main sensor and ef-
fector (represented as sensor-1 and effector-1 in Figure 4 and in following discussions) are
deployed on separate nodes to reflect the placement of physical equipment in the production
shipboard system. A model of the end-to-end layout of SLICE components is shown in Fig-
ure 4, with the critical path (i.e., sequence of components that must meet a predetermined
end-to-end deadline) specified by the dashed arrows.

Based on the MLRM development schedule, the integration of components that implement
the SLICE scenario atop the multi-layer resource management infrastructure was not pro-
jected to occur until 12 months into the program to provide sufficient time to finish develop-
ing, testing, and optimizing it. Since these components were currently under development,
however, we understood each component’s behavior and resource usage expectations in
SLICE. What we did not know was how the overall performance of the SLICE scenario
would be affected when deployed with the MLRM infrastructure.

In a conventional project developed with serialized phasing, we would have waited until final
system integration to benchmark the entire system. If integration testing revealed problems
with the MLRM infrastructure, the process of reconfiguring and redeploying application and
infrastructure components to meet QoS requirements would have required significant effort.
Moreover, developers and testers would have to use existing evaluation techniques to locate
problematic areas and manually pinpoint their correlation in MLRM’s implementation. De-
velopers would also have to continuously revise completed infrastructure code without know-
ing how the changes will affect application-level performance. To prevent reimplementation
late in the development cycle (e.g., at integration time) we could use the tools like UPPAAL
and CPN at early stages of development to predict the expect performance of the system.
Although an analytic understanding of performance based on simulation is usually better than
no understanding at all, these tools have the following limitations that make them inadequate
for accurately evaluating the QoS of enterprise DRE systems, such as the SLICE scenario:

• They do not execute in the actual target environment, which precludes system testers

from producing “realistic” performance results based the real hardware and software con-

figuration. Moreover, existing SEM tools do not take into account non-deterministic be-
havior that can be introduced by component architectures, such as reliable communica-
tion and security. Subramonian (2006) has done work to extend existing SEMS tools to
handle enterprise DRE systems, but these techniques require a high degree of user ex-
pertise.

• They are not designed to integrate seamlessly with contemporary SOA platforms, e.g.,

they require developers to learn “low-level” techniques (such as observing cache misses,
disk access time, or disk utilization) when they are developing at a “high-level” of ab-
straction (such as the application logic). Moreover, users must understand how to corre-
late the “low-level” performance metrics to “high-level” implementation.

The remainder of this chapter focuses on building and applying next-generation MDE-based
SEM tools to help address the challenges of evaluating SLICE scenario performance at early
stages of development. The goals of this case study are to (1) simplify the process of deter-
mining which deployment and configuration strategies will meet critical path QoS deadlines,
(2) create a catalog of selectable deployment strategies that meet end-to-end performance re-
quirements, and (3) spend less time integrating and testing the actual SLICE components af-
ter they are completed, i.e., to reduce time spent in system integration, which still ensuring
that QoS requirements are met.

APPLYING NEXT-GENERATION SEM TOOLS TO SOA-BASED DRE SYSTEMS
In the introduction, we described the need for next-generation MDE-based SEM tools to sim-
plify the development of SOA-based enterprise DRE systems. To address the complexities of
existing tools and techniques discussed in System Execution Modeling (SEM) Tools Section
requires developing the necessary MDE infrastructure for next-generation SEM tools. Figure
5 illustrates the elements and workflow of one such architecture called CUTS (Slaby, 2006).

Figure 5. Architecture and Workflow for Next-generation SEM Tools

At the heart of the architecture in Figure 5 is the Component Workload Emulator (Co-
WorkEr) Utilization Test Suite (CUTS), which is based on the CoSMIC (Gokhale, 2006)
MDE tool chain. This figure shows the following steps:

1. In this step users (e.g., software architects, developers, and systems engineers) specify the
structure of an enterprise DRE system (e.g., the component and their interconnections us-
ing CUTS DSMLs).

2. In this step users can associate the necessary QoS characteristics with individual compo-
nents (e.g., CPU utilization) or the system as a whole (e.g., deadline of a critical path
through the system).

3. In this step the information captured by the tools can be synthesized into executable code
and configuration metadata, which the middleware then uses to deploy the emu-
lated/actual application/system components onto the target platform.

4. In this step system developers and engineers analyze the collected metrics and explore
design alternatives from multiple computational and valuation perspectives to quantify
the costs of certain design choiceson end-to-end system performance.

This process can be applied iteratively throughout the phases of development process.

In the context of SOA-based enterprise DRE systems, the CUTS SEM tools helps developers
conduct “what if” experiments to discover, measure, and rectify performance problems early
in the lifecycle (e.g., in the architecture and design phases), as opposed to the integration
phase, when mistakes are much harder and more costly to fix. The remainder of the section
discusses the elements (i.e., the modeling languages, emulation methods, and analysis meth-
ods) needed to create a SEM tool chain using MDE technologies. For each element we de-
scribe the problems faced and solutions applied in the context of CUTS and the SLICE sce-
nario.

Emulating Application Behavior using Modeling Languages
Context. When using an MDE tool to develop a SOA-based enterprise DRE system it is nec-
essary to capture the structure of the system, i.e., the components’ interfaces and attributes,
the interconnections between components, and the behavior. Many MDE tools, such as Ca-
dena (Hatcliff, 2003), PICML (Balasubramanian, 2005), and J2EEML (White, 2005), capture
structural aspects of SOA-based systems rather than the behavioral aspects. The emphasis on
structure aspects stems from the fact that enterprise DRE systems built using SOA technolo-
gies like J2EE, CCM, or Microsoft .NET depend heavily on XML-based descriptor files. A
straightforward use of an MDE tool, therefore, is to auto-generate XML files that are tedious
and error-prone to handcraft manually.

Problem → Capturing system behavior using modeling languages. Capturing the behavior
of a component to perform early design-time analysis before the integration phase requires
developers to rely on external tools and languages since existing MDE technologies often do
not provide the same capabilities as existing behavior analysis tools and languages. For ex-
ample, external tools, such as Petri nets, UPPAAL, and CPN Tools allow developers to
model the behavior of the system under development and run simulations to analyze its ex-
pected performance. Likewise, languages such as SIMULA and Z allow developers to write

simulations of systems for verification purposes. External dependencies on these tools and
languages, however, make it hard to map the results from design-analysis tools to the respec-
tive areas in structure models provided by the MDE tool.

Existing behavior analysis tools and languages are also geared largely to software developers
with deep knowledge of formal methods and advanced mathematical formalisms. In particu-
lar, it requires these developers to learn and manage multiple languages and tools, which can
be hard if the knowledge base in not available. These tools and languages are generally not
usable by key participants throughout the software lifecycle of enterprise DRE systems, in-
cluding subject matter experts, systems engineers, and quality engineers

Solution → Integrate behavior models into existing MDE tools. Ideally, the DSML in a
SEM tool for behavioral modeling should capture both actions and workload. The DSML
interpreter should also generate the necessary files (e.g., source code and configuration files)
that use proprietary methods or third-party tools to perform early design-time analysis. The
advantage of this approach versus using separate tools for capturing structure and behavior is
that it reduces the number of tools the developers and experimenters have to explicitly man-
age. Moreover, an integrated approach can help correlate performance results with the appro-
priate parts of the target model. Lastly, this approach removes the complexity of manually
handcrafting the source and configuration files to use existing analysis tools and languages
since they can be auto-generated directly from the integrated model.

Applying the solution to CUTS and SLICE. When developing CUTS we created two
DSMLs—the Component Behavior Modeling Language (CBML) and the Workload Model-
ing Language (WML) (Hill, 2007)—and integrated them into the Platform Independent
Component Modeling Language (PICML) in CoSMIC. CBML is a modeling language based
on I/O automata (Lynch, 1989) (see Sidebar 1) that allows developers to capture a compo-
nent’s internal actions. Although CBML is based on a mathematical formalism, its users need
not have expertise in the low-level details of I/O automata programming since it provides an
MDE-based interface, as opposed to a traditional text-based interface. As a result CBML
simplifies the use of I/O automata, such as auto-generating the model elements for modelers
or generating text-based configuration files for I/O automata tools, such as the TIOA Lan-
guage and Toolset (Garland, 2005).

WML is an extensible modeling language that captures the workload of different “business-
logic” actions, e.g., memory allocations and database operations. WML compliments CBML
because the actions (operations) in CBML can be parameterized using the workloads speci-
fied in WML. When both modeling languages are used together to model the behavior of a
component, developers can specify both the actions of the component and the type of work-
load created by these actions.

Below we discuss a method for defining a behavior and workload modeling language similar
to CBML and WML in CUTS for an MDE tool. We then discuss how to integrate the stand-
alone behavior and workload modeling languages into existing DSMLs that currently only
capture structure. The goal is to create an integrated DSML that allows users to capture both
structure and behavior of a system and its components, as opposed to using of using separate
tools or languages. To help illustrate this method, we use an example behavioral specification
of the Planner-1 component from the SLICE scenario. Table 1 highlights the behavioral
specification of the Planner-1 component.

Planner-1
Workload performed every sec-
ond

Publish command of size 24 bytes

Workload performed after receipt
of a track event

Allocate 30 KB; 55 dbase ops; 45 CPU ops; publish as-
sessment of size 132 bytes; dealloc 30 KB

Sidebar 1: Input/Output Automata

Input/Output (I/O), developed by Lynch and Tuttle, is a labeled transition system model for components in
asynchronous concurrent systems. The actions of I/O automata are classified as input, output and internal
actions, where input actions are required to be always enabled. I/O automata also have “tasks”. In a fair exe-
cution of an I/O automata model, all tasks are required to get turns infinitely often. The behavior of an I/O
automata model is describable in terms of traces, or alternatively in terms of fair traces. Both types of be-
havior notions are compositional.

Table 1. Behavioral Specification for the Planner-1 Component in the SLICE Scenario
As shown in Table 1, Planner-1 has two primary behavioral specifications. The first behavior
is “operations performed every second,” which sends a command event to both the sensor
components. The second behavioral specification is workload performed after a track event is
received from a sensor component. Upon receipt of a track event, the Planner-1 component
will complete a series of operations, and then transmit an assessment event to the Planner-2
component. For more information on the behavior of this and other components in the SLICE
scenario see (Slaby, 2005). The remainder of the section focuses on defining a behavior and
workload modeling language, and integrating it with existing structural DSML while using
the Planner-1 component as a running example.

• Defining the behavioral modeling language. One goal of a behavioral DSML like CBML
is to provide users with the necessary elements to capture the behavior of a component that is
well-defined, but does not require any expertise in understanding mathematical formalisms.
The DSML should, therefore, contain elements that are familiar to modelers, yet hide the
complexity of the underlying formalism used to define the language. For example, I/O auto-
mata use action-to-state sequences to define behavior where the connection between an ac-
tion and state must be an effect and the connection between a state and action must be a tran-
sition. Likewise, preconditions are associated with transitions and postconditions are associ-
ated with effects. DSMLs can help to shield modelers from low-level details of I/O auto-
mata.

Users of behavioral DSMLs are often less interested in the underlying semantics of a formal
language than they are with using it effectively. DSML developers, therefore, must provide
the necessary elements that represent the underlying formalism for behavior at a higher-level
of abstraction, which usually entails capturing the minimal number of elements that allow the
formalism to retain its semantics. For example, Figure 6 illustrates the elements in CBML
that express the formal semantics of I/O automata.

Figure 6. Main Modeling Elements of CBML

In CBML, each element shown in Figure 6 corresponds to an I/O automata element. The In-
put Action element corresponds to input, which signifies the start of a behavioral specifica-
tion. The State element represents a state in I/O automata, which must occur between two
consecutive actions. The Action element corresponds to internal actions in I/O automata.
Output Action element corresponds to output actions in I/O automata, which signify sending
an event to trigger the start of another behavioral specification. The Variable element corre-
sponds to variables in I/O automata, which can be used in guarded transitions between ac-
tions and states. Each element also allows developers to define the behavior (minus its work-
load) of a component without having prior knowledge of I/O automata semantics. Figure 7
shows a model using the elements shown in Figure 6 to define the behavior of the Planner-1
component from the SLICE scenario in the case study. This behavior includes the input ac-
tions that start the behavior, action to state sequences, output actions, and pre-/post-
conditions (not pictured).

Figure 7. Example Behavioral Model using CBML

As shown in Figure 7, each behavioral specification begins with the input action model ele-
ment. Figure 7, therefore, contains three separate, and independent, behaviors in this one
model:

• The track_event signifies the actions to perform once a track event is received on the in-
put port of the component as specified in Table 1.

• The periodic_event corresponds to the actions executed on a periodic basis while the
component is active as specified in Table 1.

• The activate behavioral specification dictates the actions to perform when the component
is being activated, such as establishing a persistent connection to the target database.

In some cases, the behavioral language may contain semantics that the average user may not
understand, or can be simplified. For example, in I/O automata an action element must al-
ways be followed by a state element. Likewise in Petri nets (Peterson, 1977), a state element
must always be connected to a transition element. In either case, DSML developers should
provide modelers with the necessary tools to address this complexity. Most domain-specific
metamodeling tools allow developers to create add-ons that can simply the modeling process.
For example, CBML contains a plug-in that will auto-connect a new action added to the
model to the previous state using the correct connection type, auto-generate a new state, con-
nect the new state to the previously added action, and set the new state as the previous state.
This plug-in helps simplify the modeling effort because users need not worry about the un-
derlying semantics of I/O automata represented in CBML.

• Defining the workload modeling language. When designing DSMLs for capturing compo-
nent behavior, we decoupled the workload specification from the behavioral specification for
several reasons. First, this decoupling allowed both languages to evolve independently of
each other as long as there is a common element that bridges between the two languages.
Second, this decoupling allows the behavioral modeling language to interoperate with other
workload modeling languages, such as framework-specific modeling languages (Antkiewicz,
2006a, 2006b), as long as they use the same bridging element defined in the behavioral mod-
eling language.

When we defined WML, we extended the action and variable elements in CBML to create an
object-oriented workload modeling language. Since our focus is SOA-based systems, we
wanted to model the same development paradigm (i.e., object-oriented programming) used
by SOA-based systems. Figure 8 shows the high-level overview of WML.

Figure 8. High-level Overview of WML Metamodel Structure

The modeling semantics in WML represent programming semantics similar to creating a
shared library, i.e., .so files on UNIX and .dll files on Windows. The top-most element of the
model is the worker library. The worker library is a shared library assembled from a collec-
tion of files (e.g., .cpp and .h files). Each file can contain one or more worker elements,
which represent workload generators that can be used in an emulated environment. Each
worker contains one or more action elements that represent the type of operations it can per-
form. Action elements can contain multiple property elements that represent parameters for
that particular action. In CBML, we defined workers and actions to have the same modeling
semantics as variables and actions in CBML, respectively. Since the workers and actions use
the CBML bridging elements, modelers can then use WML in their existing behavioral mod-
els to give realistic workload parameters to the arbitrary actions. Figure 9 shows the CBML
model in Figure 7 integrated with WML elements from Figure 8.

Figure 9. Integration of WML with CBML

As illustrated in Figure 9, the persons in the image represent worker elements illustrated in
Figure 8. Each of the circular arrows is the actions of a respective worker (as illustrated in
Figure 8). Unlike the actions in Figure 7, these actions are model instances of a preexisting
action contained in a WML worker element. Since the actions in a WML and the actions in
CBML have the same modeling semantics (i.e., act as bridging elements), it is possible it use
variants of WML actions in CBML models, as illustrated in Figure 9. The remaining ele-
ments in Figure 9 are the same as the elements in Figure 7.

Regardless of whether WML is used to model the workload of a component, the point of de-
coupling the workload specification from the behavioral specification is to provide greater
flexibility and extensibility. As illustrated in Figure 9, it is possible to retain the original be-
havioral model for a component, but interchange its “actions” as needed. If we chose to move
to a different workload language or support multiple workload languages, therefore, the de-
coupled design of CBML and WML make it easy to integrate with other modeling languages.

• Integrating behavioral languages with existing structural languages. Earlier we focused
on capturing component behavior using stand-alone DSMLs, namely CBML and WML. To
leverage the power of the behavioral and workload DSMLs, however, they need to be inte-
grated with existing structural modeling languages, such as PICML or J2EEML. These
DSMLs provide developers with the necessary tools to generate metadata based on structural
aspects, but provide no support for modeling behavioral aspects.

The structural DSMLs for SOA-based systems usually capture a component’s interfaces and
attributes, which can be viewed as the beginning of a behavioral specification. Likewise, a
behavioral DSML usually has an element for specifying the initial action of its specification.
It is, therefore, possible to extend existing structural languages with new behavioral lan-
guages by defining a connection (or bridge) between the stating actions of both the structural
and behavioral aspects, as shown in Figure 10.

Figure 10. Conceptual Model of Integrating Behavioral Models with Structural Models

As shown in Figure 10, the upper portion shows the input and output elements of a typical
structural DSML and the lower portion shows the typical input and output (I/O) elements of a
behavioral DSML. The behavioral DSML contains I/O action elements that can be mapped to
I/O ports, respectively, in the structural DSML. When we realize this mapping of elements
from the behavioral DSML to elements in the structural DSML when integrating CBML and
WML with PICML, we can create models similar to the one illustrated in Figure 11.

Figure 11. Integrated Model of CBML and WML with PICML

As shown in Figure 11, the elements inside the CBML & WML box highlight the same
CBML and WML model for the Planner-1 component in Figure 9. Likewise, the elements
outside the box are PICML elements that define the structure of the Planner-1 component.
The entire image is the result of integrating CBML and WML into PICML, and capturing
behavior and structure for the Planner-1 component using a single DSML. Now that we are
able to model a component’s structure and behavior, we can now define model interpreters
that will parse the models and generate the necessary output so that we can emulate the com-
ponents’ behavior, as discussed next.

Capturing Application Behavior for Emulation
Context. Next-generation SEM tools support emulation, i.e., running a variant of the system
under development on the target platform. The target platform can either be a testbed that
contains replicas of the real infrastructure’s software and hardware or it can be the real infra-
structure itself. In either case, next-generation SEM tools allow developers and testers to run
emulations that leverage their target platform.

Problem → Determining how to emulate application behavior. When developing a SEM
tool, an important design decision is determining how to emulate the system being developed
on the target platform. For example, should the emulated system consist of (1) XML-based
configuration files that can be interpreted and executed or (2) implementation code written in
third-generation languages that is generated and compiled? Should the results of performance
metrics be (1) written to a file or (2) gathered and transmitted to a central location, e.g., a da-
tabase? The answers to these questions are important because they affect the design and us-
ability of SEM tools.

Solution → Choose methods of emulation that offers flexibility, but meet application
needs. When choosing a method of emulation, it is important to evaluate its impact on the
usability and flexibility of a SEM tool. For example, using a XML-based implementation of-
fers high configurability, but has run-time performance trade-offs. Likewise, collecting and
transmitting data to a central location during the experiment adds more network traffic.

Applying the solution to CUTS and SLICE. When we designed CUTS and applied it to the
SLICE scenario we evaluated the following features of a SEM tools design.

• Component instrumentation methods. There are two design choices to select from when
trying to emulate a system. The first design choice is to use non-replaceable components that
mimic the behavior and workload of its realistic counterpart, but do not have the expected
interface as the actual components. The motivation for using non-replaceable components is
they are straightforward to implement and generate from a model since they need not con-
form to any specification (i.e., use the correct interfaces or calling conventions), unlike real
components.

Non-replaceable components typically use text-based configuration files (Slaby, 2006). For
example, an XML metadata file can contain the behavior and workload characteristics of a
particular component. When the system is deployed, a generic component (or object) will
read the appropriate XML metadata file and configure itself accordingly. Although this de-
sign choice offers great flexibility, it incurs the overhead of interpreting the contents of the
configuration file. As the real components are developed, moreover, they cannot be inte-
grated into the emulation environment due to the disconnect between the emulated compo-
nent and the real component.

The other design choice is replaceable components, which have the same interfaces and at-
tributes like their real components and can be swapped out for real components once their
development is complete. This design allows continuous system integration from design-time
to production-time (Hill, 2006). It is common for replaceable components to consist of im-
plementations generated directly from model, similar to an IDL compiler generating stubs
and skeletons from an IDL file. Another advantage of this approach is that implementations
can be generated on a per-component/model basis to achieve the most accurate emulation
results possible. The downside of approach, however, is that it requires developers to recom-
pile components when their behavioral model changes causing regeneration of the emulation
code.

CUTS uses replaceable components that provide the same interfaces and attributes as their
real counterparts. It processes the models specified by users and generates implementation
code and project files needed to compile the complete system. In addition, CUTS implements
a hybrid between purely replaceable and non-replaceable emulation components, which gen-
erates replaceable components that use text-based configuration files to determine their be-
havior. The advantage of this hybrid approach is that developers and testers only regenerate
and recompile implementation code if the structure of the system changes. If the behavior of
the system changes then only the text-based configuration file is regenerated.

• Benchmark methods. When emulating a system with replaceable or non-replaceable com-
ponents, it is necessary to benchmark its performance by collecting performance metrics.
There are two general methods for benchmarking a component: intrusive (Menascé, 2004)
and non-intrusive (Mania, 2002; Parsons, 2006). Intrusive benchmarking requires developers
to annotate their existing source code with new code that collects the necessary metrics. The
advantage of this approach is that developers and testers can dictate which application-level
metrics to collect. The disadvantage of this approach is that testers and developers must man-
age the metrics collection themselves, which may involve creating a benchmarking frame-
work and/or learning how to interface with an existing one.

Non-intrusive benchmarking does not require any modifications to the existing source code.
Non-intrusive benchmarking, in contrast, uses external or infrastructure-level tools to moni-
tor different aspects of the system, such as disk and memory usage or arrival of an event. It is
also common to use proxies (Parsons, 2006) that host the real component to capture perform-
ance metrics non-intrusively. The proxies resemble the real components and record perform-
ance metrics as events enter and leave the component to which it delegates to and from. If
application-level metrics, such as invoking an operation that is internal to a component, are
need, however, intrusive monitoring is necessary since non-intrusive techniques have no
knowledge of application-level implementation.

CUTS provides both non-intrusive and intrusive monitoring. Non-intrusive monitoring is
achieved using proxies that have the same interfaces and attributes as their hosted compo-
nents. The proxy monitors all events that enter and leave the component to which it delegates
to and from. If application-level metrics are needed, CUTS allows developers to log the met-
rics to a thread-specific logging record associated with the source event using simplified in-
trusive monitoring techniques.

• Data collection methods. Another design choice that influences system emulation is choos-
ing the data collection method, which can either be offline or online. In offline collection,
metrics are written to a file while the system is being emulated. After an experiment is com-
plete the metric file is analyzed using an analysis tool. The advantage of this method is that
experimenters can determine the format of the output file and what metrics are written to the
file. The disadvantage is the metrics usually cannot be processed until the experiment is com-
plete, which can pose a problem during long running experiments or when trying to monitor
the progress of an experiment.

In online analysis, metrics are collected and transmitted via network to a host outside the ex-
periment environment. The advantage of this approach is that it allows analysis of metrics in
an environment that does not use the experiments resources, so the experiments will not skew
the results while it is running. The disadvantage is the difficulty of devising a strategy for
efficiently collecting metrics in a distributed environment and submitting them to a central
location without negatively impacting the running experiment, especially in an experiment
with lots of network traffic.

CUTS uses an online distributed data collection technique that collects metrics in three
stages. In stage 1, each port of a component records its performance metrics, e.g., number of
events received, the max/min transmission and processing time, and any application-level
metrics. In stage 2, an agent within the proxy collects the data from each port at a user-
specified interval and resets the each port’s records. In stage 3, the agent transmits the gath-
ered data to a central location called the BenchmarkDataCollector, which writes the collected
data to a file or database. The BenchmarkDataCollector also allow external services to query
it directly to evaluate online performance. For example, a component could query the
BenchmarkDataCollector for the latest execution times of each component to determine how
to adjust their priority level.

Analysis of Performance Metrics for Informative Feedback of Emulation Results
Context. Analysis of performance metrics is a key part of SEM tools. Whether metrics are
collected online or offline, it is necessary to understand what the collected metrics mean so
that design flaws can be located and rectified. If metrics are collected online the analysis tool
needs to provide testers with the ability to view partial results of the collected metrics until
the experiment is complete. Once the experiment is complete, the tool will then provide an
overall analysis of the experiment. If metrics are collected offline, then the tool needs to sup-
port joining multiple data collection files to provide a synopsis of the experiment.

Problem → Providing meaningful analysis of performance metrics. The power of an analy-
sis tool depends on how the metrics are presented testers. Visual analysis generally works
best when viewing large amounts of data since visualization helps partition (or cluster) the
data so that it is intuitive to readers. Visualization also includes using charts (e.g., pie charts,
bar charts, and timelines) that allow developers and testers to highlight points of interest, ob-
tain a general or detailed view of metrics (Herman, 2000), or save and correlate metrics with
multiple experiments (Hauswirth, 2005). Achieving this goal, however, is hard because not
only must performance metrics be analyzed, but visual aids must be created to present the
analyzed data.

Solution → Leverage existing visualization packages. Many packages—both open-source
and commercial—can be used to help analyze collected metrics. With the advent of service-
oriented architectures, many analysis tools, such as WebCharts
(www.carlosag.net/Tools/WebChart), WebCharts3D (www.gpoint.com), and Dundas Charts
(www.dundas.com), provide testers with the ability to create powerful visual aids that can
integrate with web applications and viewed online for any place that is accessible to the
internet. Therefore, it is possible to provide analytical support with little effort from develop-
ers of data analyzers.

http://www.carlosag.net/Tools/WebChart/Default.aspx
http://www.gpoint.com/
http://www.dundas.com/

Applying the solution to CUTS and SLICE. In CUTS, analysis is done using at tool called
the Benchmark Manager Web (BMW) Utility. The BMW is a Microsoft .NET web applica-
tion that uses a third-party web charting tool to present metrics collected during an experi-
ment. For each experiment, the BMW provides testers with an overall synopsis of the current
tests, as well as detailed information (e.g., deployment information) for each component or
timeline of application-level performance metrics, as shown in two example tables from the
SLICE scenario in Figure 12.

Figure 12. General (left) and Detailed (right) View of Performance Metrics Using the

BMW

More specifically, the general view in the left-hand portion of Figure 12 shows each of the
deployed components, where each component is deployed, the number of events transmit-
ted/received by a component, and the best-, average-, and worst-case service time of an
event for each component. The detailed view in the right-hand portion of Figure 12 gives a
chronological timeline of the best-, average-, and worst-case execution times for a particular
event in a component.

Figure 12 shows that the timing of the total workload exhibits semi-periodic behavior and
much jitter. These results occur because the component from Figure 12 is deployed on the
same host as other components and thus competes for resources. Likewise, as events travel
from component to component in the system, the location of each component (i.e., which
host contains the component) affects timing synchronization between nodes and resources.
The semi-periodic behavior in Figure 12 is, therefore, illustrative of how the placement of a
system component affects other component’s performance in relation to the structure of the
overall system. Although we do not provide this form of analysis, it is possible to use corre-
lation analysis (see Evaluation Techniques for Component Architectures section) or main
effects screening (Yilmaz, 2005) techniques to analysis collected performance metrics for
these properties.

In addition to providing a detailed view of an event in a component, the BMW provides a
detailed view of transmitting an event through a serious of component, which we call a criti-
cal path. Figure 13 shows a detailed view of analyzing a critical path using the BMW for the
SLICE scenario. The upper graph in this figure depicts the average case time it took to
transmit an event from main sensor to the main effect of the SLICE scenario as explained in
the case study. The lower graph in Figure 13 depicts the worst-case time for the same critical
path. In either graph, there are two separate bar graphs. The upper bar graph is the actual
time measurements collected by the non-intrusive benchmarking methods for a single event
as it passes through the each component in the critical path, as show by each block. The
lower bar graph illustrates the deadline for the critical path.

If the deadline for a critical path is achieved, i.e., the event passes through all the respective
component before missing its deadline, the lower bar graph will have a green strip to indicate
successful completion of the critical path within its deadline, which is illustrated as “head-
room” in the average-case graph. If the deadline is missed, the lower bar graph will have a
red strip to indicate failure to complete deadline within specified time, which is shown as
“overrun” in the worst-case graph. There graphs created by the BMW allows users to closely
monitor the performance of events in the target system. Moreover, it also helps users pinpoint
bottleneck components in the system and improve deployments for subsequent experiments.

Figure 13. Detailed View of Analyzing a Critical Path Using the BMW

The BMW is also a web service, which means it can process SOAP requests. Support for
SOAP allows CUTS to query the state of a remote experiment using any programming lan-
guage that can send and receive SOAP messages. More importantly, the BMW web service
can also control the state of an experiment, including starting, stopping and pausing an ex-

periment. The BMW, therefore, allows experimenters to manage experiments remotely for
any location accessible via the Internet.

EXPERIMENTAL RESULTS
To illustrate the benefits of next-generation SEM tools, i.e., those integrated with MDE tech-
nologies, we present the results of an experiment that applies CUTS to the SLICE scenario
introduced in the case study. Our experiment explores the following two hypotheses:
1. The components in the SLICE scenario produce too much workload to all be deployed on

the same host and still meet the 350ms deadline using the expected software and hard-
ware configuration of the target environment.

2. It is possible to use CUTS to locate a collection of deployments (i.e., more than one) that
will allow the critical path of the SLICE scenario to achieve its 350 ms deadline while
meeting the deployment requirements specified in the case study.

This section discusses our process of using CUTS to evaluate the two hypotheses stated
above. It discusses using CBML and WML in CUTS to capture the behavior and workload of
the components in the SLICE scenario. The CBML and WML models are then used to gen-
erate source code for replaceable emulation components. Lastly, we present the results of
eleven different tests conducted in the target environments using the emulated components to
analyze system performance based on the stated hypotheses. We conducted eleven tests be-
cause, after eleven different tests, we were able to answer the two hypotheses. The eleven
tests, however, are not completely exhaustive of all possible deployment and configurations
models of the SLICE scenario.

Specifying the Behavior of the SLICE Components
The first step in applying CUTS, or any other SEM tool, is to specify the behavior of each
component.1 Developers are typically given a high-level specification, which is usually a
text-based document, of each component’s expected behavior, or role in the system. This in-
formation must then be interpreted into a behavioral model that represents, as best as possi-
ble, the expected behavior of the system and its components. For example, Table 1 contains
the behavioral specification for the Planner-1component of the SLICE scenario.

When we convert the behavioral specification in Table 1 into a model using CBML and
WML, we get the model shown in Figure 11. Using same method for constructing Planner-
1’s behavioral model, we constructed models for all the remaining components in the SLICE
scenario. Afterwards, we generated components for emulation from the models. The gener-
ated components had the same interface and attributes as their real components, so that as the
real components were developed, they could replace the faux components. Finally, we used
other structural tools in CoSMIC to generate the configuration and deployment metadata de-
scriptor using the faux components and deployed the emulated system via the same deploy-
ment tools used in the target environment.

Emulating Application Behavior to Evaluate End-to-End QoS
One of our goals in the case study was to evaluate the end-to-end QoS of the SLICE scenario
during early stages of development, as opposed to system integration time, thereby making it
easier to locate and rectify performance problems as early as possible. Moreover, we wanted

1 We assumption the structure of the system and its components have already been modeled using MDE tools.

to locate a set of deployments, i.e., placement of components onto hosts, that will allow the
critical path of the SLICE scenario to run in <= 350 ms (hypothesis 2). To avoid a single
point of failure, the SLICE scenario also required the deployment of components in the criti-
cal path across multiple hosts, and the main sensor and effector had to be deployed on sepa-
rate hosts. We, however, wanted to determine if it was possible to meet the 350 ms critical
path deadline when all the components were deployed on a single node (hypothesis 1). We,
therefore, ran a series of experiments using CUTS to locate a set of deployments that satis-
fied the design and performance requirements.

Each host in the experiment was an IBM Blade Type L20, dual-CPU 2.8 GHz processor with
1 GB RAM with the characteristics listed in Table 2. The middleware was version 0.4.7 of
CIAO/DAnCE (Wang, 2002; Deng, 2005) and the MDE tools were version 0.4.6 of CoSMIC
(Gokhale, 2006), which is the target middleware and MDE tool for the SLICE scenario.

Host Operating System Database
1 Fedora Core3 YES
2, 3, BDC Fedora Core3 NO
BMW Windows XP YES

Table 2. System Characteristics for Each Host in the SLICE Experiment

Table 3 presents the results of eleven different experiments of the SLICE scenario using
CUTS. Each experiment was run for 10 minutes to allow the collected performance metrics
to stabilize. We were able to verify performance metric stabilization by using the online met-
rics analysis capabilities of the BMW. We ran eleven tests because after the final test we had
enough data to answer two hypotheses about the SLICE scenario. Moreover, we were able to
show that CUTS could be used to analyze performance during the early stages of devel-
opment to address questions about end-to-end system performance earlier in the design
phase. Such questions included locating a collection of deployments that met the 350 ms
critical path deadline or determining if the SLICE scenario produced too much workload for
a single host based on the current software/hardware configuration of the target environment.

SLICE CoWorkEr Legend for Test Table
Symbol CoWorkEr Symbol CoWorkEr
A Sensor-1 * E Config-Op *
B Sensor-2 F Error-Recovery
C Planner-2 * G Effector-1 *
D Planner-1 * H Effector-2
* represents CoWorkEr in the critical path

Deployment Strategy Test Host 1 Host 2 Host 3
Critical Path Execution

(avg./worse) (ms)
1 C,D,E,F A,B G,H 411 / 1,028
2 A,B,C,D F E,G,H 420 / 1,094
3 A,B,C,D,E F G,H 416,/ 1,085
4 A,B,C,D,E,F,G,H 463 / 1,247
5 A,B,C,D,E,G,H F 467 / 1,219

6 A,C,D,E,G F B,H 323 / 844
7 A,G C,D,E B,F,H 363 / 887
8 D A,B,C,

F,G,H
E 405 / 975

9 A,D C,E,G B,F,H 235 / 387
10 A,D E,G B,C,F,H 251 / 395
11 A,D,E C,G B,F,H 221 / 343

Table 3: Results of SLICE Scenario for Different Deployment s

Analyzing the Performance Results of the SLICE Scenario
Table 2 presents the results of eleven different tests we conducted for the SLICE scenario
using CUTS. Only three of the eleven tests (Tests 9, 10, and 11) had a deployment model
where the critical path components deployed across multiple nodes and, when emulated by
CUTS, completed their end-to-end execution in 350 ms. From Test 9, 10 and 11, we were
able to start a collection of deployments for the SLICE scenario, which addressed hypothesis
2. Of those three tests, only two tests (Test 9 and 11) had a deployment model where the
critical path was deployed on two separate nodes, and completed their end-to-end deadline in
350 ms. One experiment (test 6) completed the critical path in 350 ms, however, the critical
path components were all deployed on a single host, e.g., host 1. Only one of the tests (test
11) completed the critical path within the worst-case execution time of 350 ms. Although we
did not exhaust all possible deployment strategies with these tests, we learned that only 27%
(3 out of 11) of the current test passed on their planned infrastructure while meeting the de-
ployment requirements and Test 11 yielded the best performance.

• Measuring the limitations of single host deployment. The deployment constraints of the
SLICE scenario described in the case study requires all the components in the critical path to
be deployed across multiple nodes. In addition, the main sensor (Sensor-1) and the main ef-
fector (Effector-1) must be deployed on separate nodes to avoid a single point of failure. If
the components are deployed across multiple hosts it is possible to simplify system recovery
though redeployment (Shankaran, 2005). Although the requirements specify that the critical
path components must be deployed across multiple nodes, we wanted to determine if it was
possible to deploy all the components (in the entire application and only in the critical path)
on a single node and still meet the 350 ms deadline to verify hypothesis 1.

After running Test 4 and 5, we realized that it would be impossible to meet the 350 ms dead-
line when all the components are deployed on the same host (i.e., the SLICE scenario pro-
duced more workload than a single host could handle as conjectured in hypothesis 1) for our
current hardware and software configuration. When we deployed the components in the criti-
cal path on one host and the remaining components to a separate host (Test 6), we met the
350 ms critical path deadline for our current hardware and software configuration. We were,
therefore, able to determine the possibility of achieving the 350 ms deadline when all com-
ponents are deployed on a single host, and when only the components in the critical path are
deployed on a same host.

• In-depth analysis and understanding of results for hypothesis 2. After running Test 1
through 8, only one test (Test 6) met the 350 ms end-to-end deadline. Moreover, seven of the

tests had faults in their deployment specification, e.g., the combination of particular compo-
nents on a host generated more workload than the host could handle to meet 350 ms critical
path deadline. To pinpoint the bottlenecks, we used CUTS graphical analysis features to in-
vestigate why these deployment strategies did not meet their QoS requirements.

Figure 14. Snapshot of Timing Data for Sensor-1 in Test 8 obtained from the BMW

Test Results Page

Figure 14 and 15 illustrate the results provided via the BMW for Test 8, which measures the
behavior when two components in the critical path handling the most workload are deployed
on their own node. Figure 14 shows the time to transmit a message to the Sensor-1 (EnvDec-
tector-1) and how long it took to complete each type of workload (e.g., CPU, database, or
memory) for the Sensor-1. Likewise, Figure 15 shows the average execution time of an event
through each component in the critical path of the SLICE scenario. We observed that Sensor-
1 took 169.6 ms to process its workload after receiving a command event from Planner-1,
Planner-1 took 54.0 ms to perform its workload after receiving a track event from Sensor-1
or Sensor-2; and Planner-2 took 110.6 ms to perform its workload after receiving a command
event from Planner-1.

Figure 15. Snapshot of the Critical Path Timing Data for Test 8 from the BMW Analy-

sis Page
For Test 8, Sensor-1 and Planner-2 have the longest completion times. Based on the quanti-
tative analysis provided by CUTS, we realized that the Sensor-1 and Planner-2 CoWorkEr
components had a heavier workload than expected, and must be deployed on separate nodes.
We, therefore, created a new deployment model that placed Sensor-1 and Planner-2 Co-
WorkErs on different hosts, which lead to the deployment models used in Test 9, 10 and 11,
all of which met the 350 ms end-to-end deadline. Of these three tests, Test 11 (shown in Fig-
ure 16) was the only test to have a worst-case execution time that met the 350 ms deadline.
These deployment strategies also met the deployment requirements of placing Sensor-1 and
Effector-1 on different nodes. We were, therefore, able to answer our second hypothesis,

which was using CUTS to locate a collection of deployments that meet the 350 ms critical
path deadline

Figure 16. Snapshot of the Critical Path Timing Data for Test 11 from the BMW Analy-

sis Page

Summary of the Experimental Results
Our experience applying CUTS to the SLICE scenario showed how next-generation SEM
tools can help decrease time spent resolving integration problems early in the development
lifecycle. Instead of waiting until full system integration, CUTS allowed us to test multiple
deployments of the SLICE scenario in the target environment using emulated application
components. The results of our eleven tests for the SLICE scenario, which was not exhaus-
tive of all possible tests, allowed us to create a collection of deployments that meet the 350
ms critical path deadline during the early stages of development. Moreover, we verified that
the SLICE scenario produced more workload than a single host in our target environment
could handle.

As the real components for the SLICE scenario are completed, we can integrate them into the
emulation environment to achieve more realistic results since CUTS implements replaceable
emulation components. This incremental replacement process allows developers to perform
continuous system integration from design-time (i.e., early stages of development) to integra-
tion-time (i.e., final stages of development). As a result, the collection of deployments that
meet the 350 ms deadline from the continuous system integration using CUTS will be the
same deployments system engineers use when the system is in production.

FUTURE TRENDS
This section discusses emerging and future technological trends associated with developing
enterprise DRE systems using SEM tools, with an emphasis on J2EE and Microsoft .NET
technologies since many enterprise business applications are developed using J2EE and Mi-
crosoft .NET, so this section balances out the earlier focus on the CORBA Component
Model.

Increased use of MDE technologies for code generation. MDE technologies are increas-
ingly being applied to address many of the challenges and complexities of developing enter-
prise DRE system (AndroMDA, 2007; Margaria, 2004; Smith, 2006; Task, 2006). As a re-

sult, there is a shift from the traditional development paradigm—where developers handcraft
most artifacts, such as source code and configuration files—to an MDE approach where de-
velopers use domain-specific modeling languages to develop enterprise DRE systems. A key
advantage of an MDE approach is that it shields application developers from many error-
prone and tedious tasks, such as manually scripting dense and complex XML files or writing
redundant source code that can instead be generated from models.

For example, framework-specific modeling languages (FSMLs) (Antkiewicz, 2006a, 2006b),
which capture the API of a framework and ensure proper usage of its building blocks, are
increasingly being integrated into existing MDE tools, such as the Workbench Part Interac-
tion (WPI) FSML prototype (Antkiewicz, 2006c) or Pattern-Oriented Software Architecture
Modeling Language (POSAML) (Kaul, 2007). An FSML can be used to generate valid
source code directly from the models. Likewise, as the underlying framework changes be-
tween versions, the FSML can capture these revisions, such as deprecated methods, new
methods of an object, or modified parameters of an pre-existing method. Moreover, the
FSML will enforce the changes, e.g., make modelers aware of revisions in the target frame-
work so they can correct their models accordingly via round-trip engineering.

Increased use of continuous integration servers to improve software quality. Continuous
integration (Fowler, 2006) environments are a form of extreme programming (XP) (Beck,
2000) where integration is accomplished by server daemons using serialized build processes.
Continuous integration environments such as Build Forge (www.buildforge.com),
CruiseControl (cruisecontrol.sourceforge.net), and DART (public.kitware.com/Dart) con-
tinuously exercise the complete build cycle of a product to ensure that software is of the
highest quality by:
1. Performing automated builds of the system upon source code check in or successful exe-

cution and evaluation of prior events;
2. Executing suites of unit tests to verify basic system functionality;
3. Evaluating source code to ensure it meets coding standards and best practices; and
4. Executing code coverage analysis.
By utilizing continuous integration servers, developers can improve software quality because
much of the manual labor required to stay abreast with large-scale software development will
be handled autonomously. Moreover, instead of manually managing the software develop-
ment process, more time and effort can be spent responding to development concerns (and
problems) identified by continuous integration servers.

Continuous integration servers can alleviate many manually tasks introduced during the
software development process, such as monitoring source code repositories to ensure the lat-
est version of software builds successfully, or running unit tests to ensure proper functional-
ity. Likewise, system execution modeling (SEM) tool suites provide developers with tools for
testing applications in realistic environments (i.e., on the target architecture) using realistic
workloads. Because system execution modeling tools offer features that continuous integra-
tion servers lack, such as realistic testing environments, and continuous integration servers
offer services that SEM tool suites lack, such as management of large numbers of tests, mar-
rying SEM tools suites with continuous integration servers will also help improve software

quality. By capitalizing from the integration of both SEM tool suites and continuous integra-
tion servers, developers will also be able to improve assurance of QoS.

J2EE and Microsoft .NET business applications. SOA technologies such as J2EE and Mi-
crosoft .NET are commonly used by enterprises to build business applications (IDC, 2005).
As a result, SEM tools are emerging to support such applications through the concept of
process modeling (Curtis, 1992), which is similar to behavioral modeling in SEM tools, but
can operate at a higher level of abstraction. In process modeling, developers use next-
generation SEM tools to capture the workflow (or “business-logic”) of their target applica-
tion. These models can then be used to run simulations/emulations to verify the application’s
correctness, generate a prototype of the application, or generate a production application that
is integrated with the target SOA technology.

Windows Workflow Foundation (WinFX Workflow) (Box, 2006), which is part of the Mi-
crosoft .NET 3.0 framework, allows developers to model the business processes of their en-
terprise business applications. WinFX Workflow contains the following parts related to
process modeling and generation of business applications:

• Activity model that allows developers to capture the different actions, or work working
units, of the business applications, e.g., its operations and workloads.

• Workflow designer that allows developers to sequence activity models to define the be-
havior of the application’s business logic.

• Workflow runtime that allows developers to execute the workflows of the business ap-
plication created in the workflow designer in an emulated environment or target envi-
ronment.

The Java Workflow Tooling (JWT) (Dutto, 2007) is another MDE technology for process
modeling. JWT targets J2EE business applications, and is still under development. Similar to
WinFX Workflow, JWT offers developers of J2EE applications the ability to capture the
workflow of their business applications, and execute the workflows in the target environ-
ment. The JWT is comprised of the following parts:

• Workflow Editor (WE) that is a visual tool for creating, managing, and reviewing proc-
ess definitions, i.e., their business logic.

• Workflow engine Administration and Monitoring tool (WAM) that is used to execute,
monitor, and analyze workflows of business applications created using the workflow edi-
tor.

The Business Process Modeling Notation (BPMN) (BPMN, 2005) is a standard developed by
Business Process Management Initiative (BPMI) that allows developers draw business proc-
esses in the form of workflows. BPMN is comprised of the following parts for graphing
workflows:

• Flow objects (e.g., event, activity, and gateway) that determine how the business process

behaves, or flows.

• Connecting objects (e.g., sequence flow, messaging flow, and association) that are used
to connect one or more flow objects. This allows developers to sequence the flow objects
to create workflows, or process models.

• Swimlanes (e.g., pool and lane) that are used to organize workflows into categories and
groups within the categories, respectively.

• Artifacts (e.g., data objects, group, annotation) that allow developers to add information
to the model that does not affect workflow, and makes it more comprehendible.

Similar to WinFX and JWT, BPMN can be transformed into an execution language called
Business Process Execution Language (BPEL) (White, March 2005).

The major difference between BPMN, JWT, and WinFX Workflow is their target SOA tech-
nology. WinFX is designed for Microsoft .NET applications, where as the JWT is designed
for J2EE application. Likewise, BPMN is a technology independent graphical language for
graphing business processes as workflows. Although each technology has their differences, it
is clear that using MDE technologies to model business processes, i.e., model their behavior,
perform analysis checks, and generate the target application from the model for emulation, or
production, is an important trend in future MDE technologies.

FUTURE RESEARCH DIRECTIONS
Many existing enterprise applications have been developed using traditional development
techniques, i.e., applications were build directly on top of operating systems and networking
protocols. Consequently, many enterprises developed their own (distributed) middleware,
which has become deeply embedded into—and the foundation of—many subsequent applica-
tions. Enterprises applications are now evaluating the benefits of service-oriented architec-
tures (SOAs), such as CORBA Component Model, Microsoft .NET, and J2EE, and are in-
creasingly migrating to this programming paradigm.

Although SOAs provide many benefits, such as encapsulation of business-logic in compo-
nents for reuse, existing performance analysis techniques still rely on low-level traditional
profiling techniques (Waddington, 2007) because of the reliability and maturity of existing
tools and techniques. For example, DTrace (Cantrill, 2004) is a powerful profiling tool dis-
tributed with the Solaris operating system that uses low-level tracing techniques (e.g., tracing
kernel- and user-level functions/variables) to locate and resolve performance issues. The Java
virtual machine (JVM) profiler interface (Binder, 2005) is another example that allows de-
velopers to implement third-party profiler applications that interact with the JVM. Similar to
DTrace, the JVM profiler interfaces allow profiler applications to monitor virtual machine-
and user-level events while Java applications are executing.

Although tools such as DTrace and the JVM profiler interface are beneficial, SOA-based de-
velopment techniques operate at higher level of abstraction than existing profiling tools sup-
port effectively. For example, a single node (such as a server) could host multiple compo-
nents of the same type, i.e., each component is an instance of the same component type. Con-
sequently, low-level profiling tools will not be able to distinguish between performance is-
sues related to each component. Next-generation system profiling to similar to CUTS can

distinsuigh between performance issues related to each component, though they cannot pro-
vide the same low-level details as traditional profiling tools.

Future research is, therefore, needed to understand how to integrate low-level profiling tools
with next-generation tools that operate at the component level. Although SOAs manage low-
level implementation details, such as interaction with operating system APIs and networking
protocols, the ability to profile applications using low-level tools can provide insight as to
how to configure the SOA middleware properly. Moreover, profiling application behavior at
the component-level will allow developers to understand how their components interact with
the underlying SOA middleware (and operating system) so developers can provide the best
implementation that are most beneficial to their applications.

CONCLUDING REMARKS
This chapter motivated the need for combining system execution modeling (SEM) tools with
model-driven engineering (MDE) technologies to address the development and integration
challenges of service-oriented architecture (SOA)-based enterprise distributed real-time and
embedded (DRE) systems. To meet this need, we discussed the necessary ingredients (i.e.,
behavioral and structural modeling languages, emulation techniques, and analysis methods)
and describe key challenges to overcome to guide in developing next-generation SEM tools
in general while using our next-generation MDE-based SEM tool called CUTS as an exam-
ple. We also showed how CUTS could be applied to the SLICE case study from the domain
of shipboard computing to address integration challenges during early stages of development.

The following summarizes the benefits of applying CUTS to evaluate the QoS of enterprise
DRE systems based on our experience thus far:

• Early integration testing. CUTS allowed us to emulate system components using the

target hardware and software infrastructure. More importantly, we were able to emulate
the system at early stages of development instead of waiting until completely implement-
ing the real components and trying to resolve all issues during integration phase. We had
attempted this is previous stages of the MLRM project described in the case study, but
were unsuccessful since we missed project deadlines and had an increase in project ef-
fort..

• Extensive QoS testing. CUTS allowed us to rapidly create and quantitatively evaluate a

range of deployment plans to see how they impacted end-to-end QoS behavior. Much
more time and effort would have been required if these tests were conducted manually,
i.e.,without the visual SEM tool functionality and automation provided by CUTS and the
underlying CIAO and DAnCE QoS-enabled middleware and CoSMIC MDE tools. More
importantly, CUTS provided qualitative performance analysis to assist in locating defi-
ciencies in current deployments so we can determine alternative deployments that meet
end-to-end QoS requirements more effectively.

• Continuous system integration testing. The use of SEM tools enabled us to substitute

real components for the emulated ones quickly, so we could incrementally evaluate QoS
performance with more realistic workloads as knowledge of the application and system

infrastructure evolves. This emulation enabled us to benchmark the performance of the
system to evaluate QoS continuously. Moreover, it helped reduce the amount of time and
effort spent during system integration trying to resolve the challenges we had addressed
since the early stages of development.

Although there are many benefits to using CUTS to evaluate QoS of enterprise DRE systems,
we also discovered that the following work is needed to improve the evaluation of QoS in
component-based enterprise DRE systems:

• Functional testing for (in)correctness. It is becoming common practice to unit-test the

business-logic of a component throughout the development lifecycle using continuous in-
tegration tools (Fowler, 2006). This helps increase confidence that the underlying frame-
work used in the component is functioning correctly. When the business-logic is encapsu-
lated inside a component, functional testing usually does not occur until integration test-
ing (Li, 2005). Future work, therefore, is need to allow CUTS to provide unit testing for
systems at the component-level (e.g., verifying input/output values are translated cor-
rectly between the components interface and business-logic, or exceptions are interpreted
and handled correctly at the component-level), while utilizing the QoS testing features al-
ready provided by CUTS.

• Pluggable QoS analysis capabilities. Currently, CUTS provides minimum QoS analy-

sis, such as end-to-end execution timing analysis and worst-case scenario analysis. We
are, however, learning that there are times when our analysis tools may not provide
enough details in certain situations, such as correlation analysis across multiple tests
based on performance metrics or analyzing proprietary systems and data. Future work is
therefore needed to extend CUTS to support pluggable analysis tools (or objects) that can
analyze collected metrics and collect metrics we do not collect (e.g., input/output parame-
ter values or current state of a component) at run-time.

CUTS is currently being transitioned from the MLRM project to a production Naval ship-
building program to assist system engineers and architects in evaluating QoS performance
metrics of DRE systems. An open-source version of CUTS and the other MDE tools and
QoS-enabled SOA-based middleware platforms described in this paper can be downloaded
from www.dre.vanderbilt.edu/CUTS.

REFERENCES
AndroMDA (2007). team.andromda.org.
Antkiewicz , M. (2006a, September). Round-trip engineering of framework-based software

using framework-specific modeling languages. In proceeding of 21st IEEE International
Conference on Automated Software Engineering, 323 – 326, Washington, DC, USA.

Antkiewicz, M. & Czarnecki, K. (2006b, October). Framework-specific modeling languages
with round-trip engineering. In proceeding of 9th International Conference on Model
Driven Engineering Languages and Systems, 692 – 706, Genova, Italy.

Antkiewicz, M. & Czarnecki, K. (2006c, October). Round-trip engineering of eclipse plug-
ins using eclipse workbench part interaction FSML. In Proceedings of International

Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA). Portland, OR.

Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A. & Schmidt, D. C.
(2005). A platform-independent component modeling language for distributed real-time
and embedded systems. In proceedings of the 11th Realtime Technology and Application
Symposium (pp. 190–199), San Francisco, CA.

Baude, F., Caromel, D., Huet, F., Mestre, L., & Vayssiere, J. (2002). Interactive and de-
scriptor-based deployment of object-oriented grid applications. Proceedings of the 11th
International Symposium on High Performance Distributed Computing, Edinburgh, UK.

Beck, K. (2000). Extreme programming explained: Embrace change. Boston: Addison-
Wesley.

Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., & Yi, W. (1995). UPPAAL: A tool
suite for automatic verification of real-time systems. Proceedings of Workshop on Verifi-
cation and Control of Hybrid Systems III, 1066, 232 – 243.

Bertolino, A. & Mirandola, R. (2004). Software performance engineering of component-
based systems. Proceedings of the 4th International Workshop on Software and Perform-
ance (pp. 238 – 242). Redwood Shores, CA.

Binder, W. (September 2005). Portable, efficient, and accurate sampling profiling for java-
based middleware. Proceedings of the 5th international Workshop on Software Engineer-
ing and Middleware (pp. 46 – 53), Lisbon, Portugal.

Box, D. & Shukla, D. (2006). WinFX workflow: Simplify development with the declarative
model of windows workflow foundation. MSDN Magazine, 21, 54–62.

Bucci, G., Fedeli, A., Sassoli, L., & Vicario, E. (2003, July). Modeling flexible real time sys-
tems with preemptive time Petri nets. Proceeding of 15th Euromicro Conference on Real-
time Systems (pp. 279 – 286). Porto, Portugal.

BPMN Information Home (2005). www.bpmn.org.
CPNTools: Computer tools for coloured Petri nets. (2006) Demark: University of Aarhus,

CPN Group. wiki.daimi.au.dk/cpntools/cpntools.wiki.
Cantrill, B. M., Shapiro, M. W. & Levanthal, A. H. (2004). Dynamic instrumentation of

production systems. Proceedings of the USENIX Annual Technical Conference 2004 on
USENIX Annual Technical Conference, Boston, MA.

Curtis, B., Kellner, M., & Over, J. (1992). Process modeling. Communications of the ACM,
35 (9), 75 – 90.

Deng, G., Balasubramanian, J., Otte, W., Schmidt, D. & Gokhale, A. (2005). DAnCE: A
QoS-enabled component deployment and configuration engine. Proceedings of the 3rd
Working Conference on Component Deployment. Grenoble, France.

Florescu, O., Hoon, M., Voeten, J., & Corporall, H. (2006, July). Probabilistic Modelling and
Evaluation of Soft Real-Time Embedded Systems. Proceedings of Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS VI). Samos, Greece.

Denning, P.J. & Buzen, J.P. (1978). The operation analysis of queuing network models.
Computing Surveys, 10, 3, 225-261.

Fowler, M. (2006). Continuous Integration.
www.martinfowler.com/articles/continuousIntegration.html

Garland, S. (2005). The TIOA User Guide and Reference Manual.
tioa.csail.mit.edu/public/Documentation/
Guide.doc.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA, Addison-Wesley.

Gokhale, A., Balasubramanian, K., Balasubramanian, J., Krishna, A., Edwards, G., Deng, G.,
Turkay, E., Parsons, J., & Schmidt, D. (2006). Model driven middleware: A new para-
digm for deploying and provisioning distributed real-time and embedded applications.
The Journal of Science of Computer Programming: Special Issue on Model Driven Ar-
chitecture.

Grassi, V., Mirandola, R., & Sabetta, A. (2005). From design to analysis models: A kernel
language for performance and reliability analysis of component-based systems. Fifth In-
ternational Workshop on Software and Performance, Palma de Mallorca, Spain.

Hatcliff, J., Deng, W., Dwyer, M., Jung, G., & Prasad, V. (2003). Cadena: An integrated de-
velopment, analysis, and verification environment for component-based systems. In Pro-
ceedings of the 25th International Conference on Software Engineering. Portland, OR.

Hauswirth, M., Diwan, A., Sweeney, P & Mozer, M. (2005). Automating vertical profiling.
In Proceeding of the 19th Conference of Object Oriented Programming, Systems, Lan-
guages and Applications. San Diego, CA.

Herman, I., Melançon, G., & Marshall, M.S. (2000). Graph visualization and navigation in
information visualization: A survey. IEEE Transactions on Visualization and Computer
Graphics, 6 (1), 24 – 43.

Hill, J. H. & Gokhale, A. (2006). Continuous QoS provisioning of large-scale component-
based systems using model driven engineering. Poster preseted at International
Conference on Model Driven Engineering Languages and Systems, Genova, Italy.

Hill, J. H. & Gokhale, A. (2007, March). Model-driven engineering for development-time
QoS validation of component-based software systems. In Proceeding of International
Conference on Engineering of Component Based Systems, Tuscon, AZ.

IDC Quantitative Research Group (2005). 2005 Mission Critical Survey: Survey Report.
download.microsoft.com/download/1/8/a/18a10d4f-deec-4d5e-8b24-87c29c2ec9af/idc-
ms-missioncritical-ww-261005.pdf

Karsai, G., Sztipanovits, J., Ledeczi, A. & Bapty, T. (2003). Model-integrated development
of embedded software, In Proceedings of the IEEE, 91 (1), 145-164.

Kaul, D., Kogekar, A., Gokhale, A., Gray, J., & Gokhale, S. (2007). Managing variability in
middleware provisioning using visual modeling languages. In Proceedings of the Hawaii
International Conference on System Sciences HICSS-40 (2007), Visual Inter-
actions in Software Artifacts Minitrack, Software Technology Track. Big Island, HI.

Kristensen, L.M., Christensen, S., & Jensen, K. (1998). The practitioner's guide to coloured
Petri nets. International Journal on Software Tools for Technology Transfer, 2, 98-132.

Lacour, S., Perez, C., & Priol, T. (2004). Deploying CORBA components on a computational
grid: General principles and early experiments using the globus toolkit. In Proceedings of
the 2nd International Working Conference on Component Deployment. Edinburgh, UK.

Lardieri, P., Balasubramanian, J., Schmidt, D., Thakar, G., Gokhale, A., & Damiano, T.
(2007 to appear). A multi-layered resource management framework for dynamic resource
management in enterprise DRE systems. In C. C Cavanaugh (Ed.) Journal of Systems and
Software: special issue on Dynamic Resource Management in Distributed Real-time
Systems.

Li, Z., Sun, W., Jiang, Z. B., & Zhang X. (2005) BPEL4WS unit testing: Framework and im-
plementation. In Proceedings of the IEEE International Conference on Web Services
(ICWS’05) (pp 103–110), Orlando, FL.

Ledeczi, A., Maroti, M., Karsai G., & Nordstrom G. (1999). Metaprogrammable toolkit for
model-integrated computing. In Proceedings of the IEEE International Conference on the
Engineering of Computer-Based Systems Conference (pp 311 – 317). Nashville, TN.

Lynch, N. and Tuttle, M. (1989). An introduction to input/output automata. CWI-Quarterly,
2(3), 219 – 246.

Margaria, T. (2004). Modeling dependable systems: What can model driven development
contribute and what likely not? In Proceedings of IEEE International Symposium on Ob-
ject-Oriented Real-Time Distributed Computing. Vienna, Austria.

Mania, D., Murphy, J. & McManis, J. (2002). Developing performance models from non-
intrusive monitoring traces. In Proceeding of Information Technology and Telecommuni-
cations (IT&T).

Merlin , P. M (1974). A study of the recoverability of computing systems. Department of
Information and Computer Science, University of California, Irvine, CA.

Menascé, D., Almeida, V. & Dowdy, L. (2004). Performance By Design: Computer Capacity
Planning by Example (pp. 135 – 141). Prentice Hall: Upper Saddle River, NJ.

Dutto, M. & Lautenbacher, F. (2007). Java Workflow Tooling (JWT) Creation Review.
 www.eclipse.org/proposals/jwt/JWT%20Creation%20Review%2020070117.pdf

Object Management Group (2002). Real-time CORBA Specification. OMG Document for-
mal/02-08-02.
Northrop, L., Feiler. P., Gabriel, R., Goodenough, J., Linger, R., Longstaff, T., Kazman, R.,

Klein, M., Schmidt, D., Sullivan, K. & Wallnau, K. (2006). Ultra-Large-Scale Systems:
The Software Challenge of the Future. Carnegie Mellon.

Parsons, T., Mos, A. & Murphy, J. (2006, August). Non-intrusive end-to-end runtime path
tracing for J2EE systems. IEEE Proceedings Software, 153, 149 – 161.

Peterson, James L. (1977). Petri nets. ACM Computing Surveys, 9 (3), 223 – 252.
PlanetLab Consortium (2006). PLANETLAB: An Open Platform for Developing, Deploying,

and Accessing Planetary-Scale Services. http://www.planet-lab.org.
Ricci, R., Alfred, C., & Lepreau, J. (2003). A solver for the network testbed mapping prob-

lem. SIGCOMM Computer Communications Review, 33.
Shankaran, N., Koutsoukos, X., Schmidt, D.C., & Gokhale, A. (2005). Evaluating adaptive

resource management for distributed real-time embedded systems. In Proceedings of 4th
Workshop on Adaptive and Reflective Middleware. Grenoble, France.

Slaby, J., Baker, S., Hill, J. & Schmidt, D. (2005). Defining behavior and evaluating QoS
performance of the SLICE scenario (Tech. Rep. No. ISIS-05-608). Nashville, TN: Van-
derbilt University.

Slaby, J., Baker, S., Hill, J. & Schmidt, D. (2006). Applying system execution modeling tools
to evaluate enterprise distributed real-time and embedded system QoS. In Proceedings of
the 12th International Conference on Embedded and Real-Time Computing Systems and
Applications. Sydney, Australia.

Schmidt, D. C. (2006). Model-driven engineering. IEEE Computer, 39, 41 – 47.
Smith, C. (1990). Performance Engineering of Software Systems. Addison-Wesley.
Smith, C. & Williams, L. (2001). Performance Solutions: A Practical Guide to Creating Re-

sponsive, Scalable Software. Addison-Wesley.

Smith, M., Friese, T., & Freisleben, B. (2006). Model driven development of service-oriented
grid applications. In Proceedings of the Advanced International Conference on Telecom-
munications and International Conference on Internet and Web Applications and Ser-
vices. Guadeloupe, French Caribbean.

Subramonian, V. (2006). Timed automata models for principled composition of middleware
(Tech. Rep. No. WUCSE-2006-23). St. Louis, MI: Washington University, Computer
Science and Engineering Department.

Task, B., Paniscotti, D., Roman, A., & Bhanot, V. (2006). Using model-driven engineering to
complement software product line engineering in developing software defined radio
components and applications. In Proceedings of International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA). Portland, OR

Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostic, K., Chase, J., & Becker, D.
(2002). Scalability and accuracy in a large-scale network emulator. In Proceedings of 5th
Symposium on Operating Systems Design and Implementation (OSDI).

Waddington, D., Roy, N. & Schmidt, D.C. (2007). Dynamic analysis and profiling of multi-
threaded systems. Designing Software-Intensive Systems: Methods and Principles, Ed.
Dr. Pierre F. Tiako, Langston University, OK.

Wang, N. & Gill, C. (2003). Improving real-time system configuration via a QoS-aware
CORBA component model. Hawaii International Conference on System Sciences, Soft-
ware Technology Track, Distributed Object and Component-based Software Systems.

White, J., Schmidt, D.C., & Gokhale, A. (2005). Simplifying the development of autonomic
enterprise Java Bean applications via model driven development. In Proceedings of the
International Conference on Autonomic Computing (ICAC). Seattle, WA.

White, J., Gokhale, A. & Schmidt, D.C. (2007). Simplifying autonomic enterprise Java Bean
applications via model-driven development: A case study. Submitted to the
Journal of Software and System Modeling.

White, S. A. (2005, March). Using BPMN to Model a BPEL Process. www.bptrends.com.
Yilmaz, C., Krishna, A. S., Memon, A., Porter, A., Schmidt, D. C., Gokhale, A. & Natarajan,

B. (2005). Main effects screening: A distributed continuous quality assurance process for
monitoring performance degradation in evolving software systems. Proceedings of the
27th International Conference on Software Engineering, 293 – 302, St. Louis, MO.

ADDITIONAL READING
Chatterjee, A. (2007). Service-component architectures: A programming model for SOA. Dr.

Dobb’s Journal, 400, 40 – 45.
Chilimbi, T. M. & Hauswirth, M. (2004). Low-overhead memory leak detection using adap-

tive statistical profiling. Proceedings of the 11th international Conference on Architec-
tural Support for Programming Languages and Operating Systems, Boston, MA.

Cascaval, C., Duesterwald, E., Sweeney, P. F., & Wisniewski, R. W. (2006). Performance
and environment monitoring for continuous program optimization. IBM Journal of Re-
search and Development, 50 (2/3), 239 – 248.

Haran, M., Karr, A., Orso, A., Portor, A. & Sanil, A. (2005). Applying classification tech-
niques to remotely-collected program execution data. Proceedings of the 10th European
Software Engineering Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, Lisbon, Portugal.

Hauswirth, M., Sweeney, P., Diwan, A. & Hind, M. (2004). Vertical profiling: Understand-
ing the behavior of object-oriented applications. ACM SIGPLAN Notices, 39 (10), 251 –
269.

Hill, J. H. & Gokhale, A. (in press). Model-driven engineering for early QoS validation of
component-based software systems, Journal of Software, 2 (2).

Huselius, J. & Andersson, J. (2005). Model synthesis for real-time systems. Proceedings of
the Ninth European Conference on Software Maintenance and Reengineering, Manches-
ter, UK.

Laugelier, G., Sahraoui, H., & Poulin, P. (2005). Visualization-based analysis of quality for
large-scale software systems. Proceedings of the 20th IEEE/ACM international Confer-
ence on Automated Software Engineering, Long Beach, CA.

Li, Z., Sun, W., Jiang, Z. B., & Zhang, X. (2005). BPEL4WS unit testing: Framework and
implementation. Proceedings of the IEEE International Conference on Web Services, Or-
lando, FL.

Ledeczi, A., Nordstrom, G., Karsai, G., Volgyesi, P., Maroti, M. (2001). On metamodel
composition. Proceedings of the 2001 IEEE International Conference on Control Appli-
cations, Mexico City, Mexico.

Kaynar, D. K., Lynch, N., Segala, R., & Vaandrager, F. (2006). The Theory of Timed I/O
Automata, Synthesis Lectures on Computer Science. Morgan and Claypool Publishers.

Kounev, S. & Buchmann, A. (2003). Performance modeling and evulation of large-scale
J2EE applications. Proceedings of the 29th International Conference of the Computer
Measurement Group (CMG) on Resource Management and Performance Evaluation of
Enterprise Computing Systems, Dallas, TX.

Kounev, S. (2006). Performance modeling and evaluation of distributed component-based
systems using queuing Petri nets. IEEE Transactions of Software Engineering, 32 (7),
486 – 502.

Memon, A., Porter, A., Nagarajan, A., Schmidt, D. & Natarajan, B. (2004). Skoll: Distrib-
uted quality assurance. Proceedings of the 26th IEEE/ACM International Conference on
Software Engineering, Edinburgh, Scotland.

Metz, E., Lencevicius, R., & Gonzalez, T. (2005). Performance data collection using a hybrid
approach. Proceedings of the 10th European Software Engineering Conference held
jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, Lisbon, Portugal.

Mos A. & Murphy, J. (2004). COMPAS: Adaptive Performance Monitoring of Component-
Based Systems. Proceedings of 2nd ICSE Workshop on Remote Analysis and Measure-
ment of Software Systems, Beijing, China.

Odom, J., Hollingsworth, J. K., DeRose, L., Ekanadham, K., & Sbaraglia, S. (2005). Using
dynamic tracing sampling to measure long running programs. Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, Seattle, WA.

Parsons, T. & Murphy, J. (in press). Detecting performance antipatterns in component-based
enterprise systems. Journal of Object Technology.

Saff, D. & Ernst, M. D. (2004). An experimental evaluation of continuous testing during de-
velopment. Proceedings of the 2004 ACM SIGSOFT international Symposium on Soft-
ware Testing and Analysis, Boston, MA.

Schroeder, P. J., Kim, E., Arshem, J., Bolaki, P. (2003). Combining behavior and data mod-
eling in automated test case generation. Proceedings of the 3rd International Conference
on Quality Software, Dallas, TX.

Srinivas, K. & Srinivasan, H. (2005). Summarizing application performance from a compo-
nents perspective. Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, Lisbon, Portugal.

Stewart, C. & Shen, K. (2005). Performance modeling and system management for multi-
component online services. Proceedings of the 2nd USENIX Symposium on Networked
Systems Design and Implementation, Boston, MA.

Wu, W., Spezialetti, M. & Gupta, R. (1996). Designing a non-intrusive monitoring tool for
developing complex distributed applications. Proceedings of the 2nd IEEE international
Conference on Engineering of Complex Computer Systems, Washington, D.C.

BIOGRAPHIES
James H. Hill is a 4th year Ph.D. student in the Electrical Engineering and Computer
Science Department at Vanderbilt University, Nashville, TN. His primary research interests
include using model-driven engineering techniques to assist in locating flaws related to
quality-of-service earlier in the development lifecycle as opposed to integration time when it
can require more time and effort to locate and resolve them. He received his B.S. in
Computer Science from Morehouse College, Atlanta, GA in 2004 and M.S. in Computer
Science from Vanderbilt University in 2006. James Hill is a member of ACM.

Douglas C. Schmidt is a Professor of Computer Science and Associate Chair of the
Computer Science and Engineering program at Vanderbilt University. He has published 9
books and over 350 technical papers that cover a range of research topics, including patterns,
optimization techniques, and empirical analyses of software frameworks and domain-specific
modeling environments that facilitate the development of distributed real-time and embedded
(DRE) middleware and applications running over high-speed networks and embedded system
interconnects. Dr. Schmidt has also led the development of ACE, TAO, CIAO, and
CoSMIC, which are widely used, open-source DRE middleware frameworks and model-
driven tools that contain a rich set of components and domain-specific languages that
implement patterns and product-line architectures for high-performance DRE systems.

John M. Slaby is currently a Senior Principle S/W Engineer with Raytheon Integrated De-
fense Systems. He has spent over 25 years in software engineering working for high technol-
ogy start-ups focused on data networking. He is currently involved in research focused on
dynamic resource management and model-based engineering using domain-specific model-
ing languages. His background includes software engineering, engineering management, ar-
chitecture, product management, product marketing, training, and customer support.

