
1

January, 2001

Using Real-time CORBA Effectively
Patterns & Principles

Irfan Pyarali

irfan@cs.wustl.edu

Comp. Sci. Dept.
Washington University,

St. Louis

Carlos O’Ryan &
Douglas Schmidt

{coryan,schmidt}@uci.edu

Elec. & Comp. Eng. Dept.
University of California, Irvine

www.cs.wustl.edu/~schmidt/tutorials-corba.html/

Washington University, StL
University of California, Irvine 2

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Historical Challenges

Motivation for Real-time Middleware
Trends

•Many distributed applications require real-time
QoS guarantees
•e.g., avionics, real-time stock trading, telecom

•Building QoS-enabled applications manually is
tedious, error-prone, & expensive

•Conventional middleware does not support real-
time effectively

•Building distributed systems is hard
•Building them on-time & under budget
is even harder

•Hardware keeps getting smaller, faster, & cheaper

1 1
Proxy

service

Service

service

AbstractService

service

Client

•Software keeps getting larger, slower, & more expensive

New Challenges

2

Washington University, StL
University of California, Irvine 3

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

CORBA Overview
Interface

Repository
IDL

Compiler
Implementation

Repository

Client
OBJ
REF

Object
(Servant)

in args
operation()
out args +

return

DII IDL
STUBS

ORB
INTERFACE

IDL
SKEL DSI

Object Adapter

ORB CORE GIOP/IIOP/ESIOPS

•CORBA shields applications from
environment heterogeneity
•e.g., languages, operating systems,
networking protocols, hardware

•Common Object Request Broker
Architecture (CORBA)

•A family of specifications
•OMG is the standards body
•Over 800 companies

•CORBA defines interfaces, not
implementations

• It simplifies development of
distributed applications by
automating

•Object location
•Connection management
•Memory management
•Parameter (de)marshaling
•Event & request demultiplexing
•Error handling
•Object/server activation
•Concurrency

Washington University, StL
University of California, Irvine 4

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Caveat: Requirements & Historical Limitations
of CORBA for Real-time Systems

Requirements
•Location transparency
•Performance transparency
•Predictability transparency
•Reliability transparency

Historical Limitations
•Lack of QoS specifications
•Lack of QoS enforcement
•Lack of real-time programming features
•Lack of performance optimizations

NETWORK
OPERATIONS

CENTER

HSM
ARCHIVE
SERVER

AGENT

INTERACTIVE
AUDIO/VIDEO

AGENT ARCHITECTURE

SPC
HARDWARE

EMBEDDED
TAO

MIB

AGENT

3

Washington University, StL
University of California, Irvine 5

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Real-Time CORBA Overview
• RT CORBA adds QoS control to
regular CORBA improve the
predictability of applications, e.g.,
•Bounding priority inversions &
•Managing resources end-to-end

• Policies & mechanisms for
resource configuration/control in
RT-CORBA include:
•Processor Resources

• Thread pools
• Priority models
• Portable priorities

•Communication Resources
• Protocol policies
• Explicit binding

•Memory Resources
• Request buffering

• These capabilities address some
important (though by no means
all) real-time application
development challenges

Client
OBJ
REF

Object
(Servant)

in args
operation()

out args + return

IDL
STUBS

IDL
SKEL

Object Adapter

ORB CORE GIOP

Protocol Properties

End-to-End Priority
Propagation

Thread
Pools

Standard
SynchronizersExplicit

Binding

Portable Priorities

Scheduling
Service

Real-time CORBA leverages the CORBA
Messaging QoS Policy framework

Washington University, StL
University of California, Irvine 6

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Overview of the CORBA QoS Policy Framework

Default Policies

ORB Policy Overrides

Thread Policy Overrides

Object Policy Overrides

object->request (arguments);

•CORBA defines a QoS framework that includes policy management for
request priority, queueing, message delivery quality, timeouts, etc.

•QoS is managed through interfaces derived from CORBA::Policy
•Each QoS Policy has an associated PolicyType that can be queried

•A PolicyList is sequence of policies

•Server-side policies are specified by associating QoS policy objects wi th
a POA
• i.e., can be passed as arguments to POA::create_POA()

•Client-side QoS policies & overrides can be established & validated via
calls to Object::validate_connection() & other CORBA APIs

•Client-side policies are specified at 3
“overriding levels”:
1.ORB-level through PolicyManager
2.Thread-level through
PolicyCurrent

3.Object-level through overrides in an
object reference

4

Washington University, StL
University of California, Irvine 7

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Applying RT CORBA to Real-time Avionics

Key System Characteristics
•Deterministic & statistical deadlines

•~20 Hz
•Low latency & jitter

•~250 usecs
•Periodic & aperiodic processing
•Complex dependencies
•Continuous platform upgrades

•Test flown at China Lake NAWS by Boeing
OSAT II ‘98, funded by OS-JTF
• www.cs.wustl.edu/~schmidt/TAO-boeing.html

•Also used on SOFIA project by Raytheon
• sofia.arc.nasa.gov

•First use of RT CORBA in mission computing
•Drove Real-time CORBA standardization

•Test flown at China Lake NAWS by Boeing
OSAT II ‘98, funded by OS-JTF
• www.cs.wustl.edu/~schmidt/TAO-boeing.html

•Also used on SOFIA project by Raytheon
• sofia.arc.nasa.gov

•First use of RT CORBA in mission computing
•Drove Real-time CORBA standardization

Key Results

Goals
•Apply COTS & open systems to
mission-critical real-time avionics

Washington University, StL
University of California, Irvine 8

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Applying RT CORBA to Image Processing
Goals
•Examine glass bottles
for defects in real-
time

System
Characteristics
•Process 20 bottles
per sec
•i.e., ~50 msec per
bottle

•Networked
configuration

•~10 cameras
Key Software Solution Characteristics

•Affordable, flexible, & COTS
•Embedded Linux (Lem)
•Compact PCI bus + Celeron processors

•Affordable, flexible, & COTS
•Embedded Linux (Lem)
•Compact PCI bus + Celeron processors

•Remote booted by DHCP/TFTP
•Real-time CORBA (ACE+TAO)

www.krones.com

5

Washington University, StL
University of California, Irvine 9

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Applying COTS to Hot Rolling Mills
Goals
•Control the processing of molten
steel moving through a hot rolling
mill in real-time

System Characteristics
•Hard real-time process automation
requirements
• i.e., 250 ms real-time cycles

•System acquires values
representing plant’s current state,
tracks material flow, calculates new
settings for the rolls & devices, &
submits new settings back to plant

Key Software Solution Characteristics

•Affordable, flexible, & COTS
•Product-line architecture
•Design guided by patterns & frameworks

•Affordable, flexible, & COTS
•Product-line architecture
•Design guided by patterns & frameworks

•Windows NT/2000
•Real-time CORBA (ACE+TAO)

www.siroll.de

Washington University, StL
University of California, Irvine 10

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Base Station

Missed
Deadline!

An Example Distributed Application
•Consider an application where
cooperating drones explore a
surface & report its properties
periodically
•e.g., color, texture, etc.

•This is a simplification of various
autonomous vehicle use-cases

•Drones aren’t very “smart,”
•e.g., they can fall off the “edge” of the
surface if not stopped

•Thus, a controller is used to coordinate their
actions
•e.g., it can order them to a new position

6

Washington University, StL
University of California, Irvine 11

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Designing the Application
Base Station CPU

Drone CPU 1

 : Drone

 : Base_Station

Drone CPU 2

 : Drone

 : Controller : Controller
User

•End-users talk to a
Base_Station object
•e.g., they define high-level
exploration goals for the drones

•The Base_Station object
controls the drones remotely using
Drone objects
•Drone objects are proxies for the
underlying drone vehicles
•e.g., they expose operations for
controlling & monitoring
individual drone behavior

•Each drone sends information obtained from its sensors back to the
Base_Station via a Controller object
•This interaction is an example of Asynchronous Completion
Token & Distributed Callback patterns

Washington University, StL
University of California, Irvine 12

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Defining Application Interfaces with CORBA IDL
•Each Drone talks to one Controller

•e.g., Drones send alarm messages
when they detect an edge

•The Controller should take
corrective action if a Drone detects it’s
about to fall off an edge!

•The Base_Station interface is a
Controller factory
•Drones use this interface to create
their Controllers during power up

•End-users use this interface to set
high-level mobility targets

interface Drone {
void turn (in float degrees);
void speed (in short mph);
void reset_odometer ();
short odometer ();
// …

};

interface Controller {
void edge_alarm ();
void turn_completed ();

};

exception Lack_Resources {};

interface Base_Station {
Controller new_controller (in string name)

raises (Lack_Resources);
void set_new_target (in float x, in float y);
//……

};

7

Washington University, StL
University of California, Irvine 13

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

QoS-related Application Design Challenges
•Our example application contains the
following QoS-related design challenges
1. Obtaining portable ORB end-system

priorities
2. Preserving priorities end-to-end
3. Enforcing certain priorities at the server
4. Changing CORBA priorities
5. Supporting thread pools effectively
6. Buffering client requests
7. Synchronizing objects correctly
8. Configuring custom protocols
9. Controlling network & end-system

resources to minimize priority inversion
10. Avoiding dynamic connections
11. Simplifying application scheduling
12. Controlling request timeouts

•The remainder of this tutorial illustrates how
these challenges can be addressed by
applying RT CORBA capabilities

Washington University, StL
University of California, Irvine 14

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

•Problem: Mapping CORBA priorities to
native OS host priorities

•Solution: Standard RT CORBA priority
mapping interfaces
•OS-independent design supports
heterogeneous real-time platforms

•CORBA priorities are “globally” unique
values that range from 0 to 32767

•Users can map CORBA priorities onto
native OS priorities in custom ways

•No silver bullet, but rather an
``enabling technique'‘
• i.e., can’t magically turn a general-
purpose OS into a real-time OS!

Obtaining Portable ORB End-system Priorities
ORB ENDSYSTEM A

32767

0

R
T

C
O

R
B

A
::P

riority

0

255

ORB ENDSYSTEM B

0

31

8

Washington University, StL
University of California, Irvine 15

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Priority Mapping Example

class MyPriorityMapping : public RTCORBA::PriorityMapping {
CORBA::Boolean to_native (RTCORBA::Priority corba_prio,

RTCORBA::NativePriority &native_prio)
{

native_prio = 128 + (corba_prio / 256);
// In the [128,256) range…
return true;

}

// Similar for CORBA::Boolean to_CORBA ();
};

•Define a priority mapping class that always uses native priorities in the range
128-255
•e.g., this is the top half of LynxOS priorities

•Problem: How do we configure this new class?
•Solution: Use TAO’s PriorityMappingManager

Washington University, StL
University of California, Irvine 16

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

TAO’s PriorityMappingManager
• TAO provides an extension that uses a locality constrained object to configure the
priority mapping:

CORBA::ORB_var orb = ...; // the ORB
// Get the PriorityMappingManager
CORBA::Object_var obj =

orb->resolve_initial_references (“PriorityMappingManager”);
TAO::PriorityMappingManager_var manager =

TAO::PriorityMappingManager::_narrow (obj);

// Create an instance of your mapping
RTCORBA::PriorityMapping *my_mapping =

new MyPriorityMapping;

// Install the new mapping
manager->mapping (my_mapping);

• It would be nice if this feature were standardized in RT CORBA…
•The current specification doesn’t standardize this in order to maximize
ORB implementer options, e.g., link-time vs. run-time bindings

9

Washington University, StL
University of California, Irvine 17

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Preserving Priorities End-to-End
•Problem: Requests could run at
the wrong priority on the server
•e.g., this can cause major
problems if edge_alarm()
operations are processed too
late!!

•Solution: Use RT CORBA
priority model policies
•SERVER_DECLARED

•Server handles requests at
the priority declared when
object was created

•CLIENT_PROPAGATED
•Request is executed at the
priority requested by client
(priority encoded as part of
client request)

Washington University, StL
University of California, Irvine 18

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Applying CLIENT_PROPAGATED
•Drones send critical messages to Controllers in the Base_Station
•edge_alarm() runs at the highest priority in the system
•turn_completed() runs at a lower priority in the system

CORBA::PolicyList policies (1); policies.length (1);
policies[0] = rtorb->create_priority_model_policy

(RTCORBA::CLIENT_PROPAGATED,
DEFAULT_PRIORITY /* For non-RT ORBs */);

// Get the ORB’s policy manager
PortableServer::POA_var controller_poa =

root_poa->create_POA
(“Controller_POA”,
PortableServer::POAManager::_nil (),
policies);

// Activate one Controller servant in <controller_poa>
controller_poa->activate_object (my_controller);

•Note that CLIENT_PROPAGATED policy is set on the server & exported to
the client along with an object reference

10

Washington University, StL
University of California, Irvine 19

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Changing CORBA Priorities
•Problem: How can RT-CORBA applications change the priority of
operations?

•Solution: Use the RTCurrent to change the priority of the current thread
explicitly
•The RTCurrent can also be used to query the priority
•Values are in the CORBA priority range
•Behavior of RTCurrent is thread-specific
// Get the ORB’s RTCurrent object
obj = orb->resolve_initial_references (“RTCurrent”);

RTCORBA::RTCurrent_var rt_current =
RTCORBA::RTCurrent::_narrow (obj);

// Change the current priority
rt_current->the_priority (VERY_HIGH_PRIORITY);

// Invoke the request at <VERY_HIGH_PRIORITY> priority
// The priority is propagated (see previous page)
controller->edge_alarm ();

Washington University, StL
University of California, Irvine 20

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Design Interlude: The RTORB Interface

CORBA::ORB_var orb = CORBA::ORB_init (argc, argv);

CORBA::Object_var obj =
orb->resolve_initial_references (“RTORB”);

RTCORBA::RTORB_var rtorb =
RTCORBA::RTORB::_narrow (obj);

// Assuming this narrow succeeds we can henceforth use RT
// CORBA features

•Problem: How can the ORB be extended without changing the
CORBA::ORB API?

•Solution: Use the Extension Interface pattern
•Use resolve_initial_references() interface to obtain the extension
•Thus, non real-time ORBs and applications are not affected by RT CORBA
enhancements!

11

Washington University, StL
University of California, Irvine 21

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Applying SERVER_DECLARED
•Problem: Some operations must always be invoked at a fixed priority

•e.g., the Base_Station methods are non-critical, so they should
always run at lower priority than the Controller methods

•Solution: Use the RT CORBA SERVER_DECLARED priority model
CORBA::PolicyList policies (1); policies.length (1);
policies[0] = rtorb->create_priority_model_policy

(RTCORBA::SERVER_DECLARED, LOW_PRIORITY);

// Get the ORB’s policy manager
PortableServer::POA_var base_station_poa =

root_poa->create_POA
(“Base_Station_POA”,
PortableServer::POAManager::_nil (),
policies);

// Activate the <Base_Station> servant in <base_station_poa>
base_station_poa->activate_object (base_station);

•By default, SERVER_DECLARED objects inherit the priority of their RTPOA
• It’s possible to override this priority on a per-object basis, however!

Washington University, StL
University of California, Irvine 22

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Extended RT POA Interface
•RT CORBA extends the POA interface via inheritance
module RTPortableServer {

local interface POA : PortableServer::POA {
PortableServer::ObjectId activate_object_with_priority
(in PortableServer::Servant servant_ptr,
in RTCORBA::Priority priority)

raises (ServantAlreadyActive, WrongPolicy);
// ...

};
•Methods in this interface can override default SERVER_DECLARED priorities
// Activate object with default priority of RTPOA
MyBase_Station *station = new MyBase_Station;
base_station_poa->activate_object (station);

// Activate another object with a specific priority
RTPortableServer::POA_var rt_poa =

RTPortableServer::POA::_narrow (base_station_poa);
rt_poa->activate_object_with_priority (another_servant,

ANOTHER_PRIORITY);

12

Washington University, StL
University of California, Irvine 23

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Supporting Thread Pools Effectively
•Problem: Pre-allocating
threading resources on the
server portably & efficiently
•e.g., the Base_Station
must have sufficient
threads for all its priority
levels

•Solution: Use RT CORBA
thread pools to configure
server POAs to support
•Different levels of service
•Overlapping of computation
& I/O

•Priority partitioning
Note that a thread pool can
manage multiple POAs

Washington University, StL
University of California, Irvine 24

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Creating & Destroying Thread Pools
interface RTCORBA::RTORB {

typedef unsigned long ThreadpoolId;

ThreadpoolId create_threadpool (
in unsigned long stacksize,
in unsigned long static_threads,
in unsigned long dynamic_threads,
in Priority default_priority,
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

void destroy_threadpool (in ThreadpoolId threadpool)
raises (InvalidThreadpool);

};

There are factory
methods for controlling
the life-cycle of RT-
CORBA thread pools

13

Washington University, StL
University of California, Irvine 25

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Creating Thread Pools with Lanes
interface RTCORBA::RTORB {

struct ThreadpoolLane {
Priority lane_priority;
unsigned long static_threads;
unsigned long dynamic_threads;

};
typedef sequence <ThreadpoolLane>

ThreadpoolLanes;

ThreadpoolId create_threadpool_with_lanes (
in unsigned long stacksize,
in ThreadpoolLanes lanes,
in boolean allow_borrowing
in boolean allow_request_buffering,
in unsigned long max_buffered_requests,
in unsigned long max_request_buffer_size);

};

•Thread pools with lanes can
be used to partition the
threads in a thread pool into
different subsets, each with
different priorities

• It’s possible to “borrow”
threads from lanes with
lower priorities

Washington University, StL
University of California, Irvine 26

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Configuring Thread Pool Lanes
// Define two lanes
RTCORBA::ThreadpoolLane high_priority =
{ 10 /* Priority */,

3 /* Static Threads */,
0 /* Dynamic Threads */ };

RTCORBA::ThreadpoolLane low_priority =
{ 5 /* Priority */,

7 /* Static Threads */,
2 /* Dynamic Threads */};

RTCORBA::ThreadpoolLanes lanes(2); lanes.length(2);
lanes[0] = high_priority; lanes[1] = low_priority;

RTCORBA::ThreadpoolId pool_id =
rt_orb->create_threadpool_with_lanes (

1024 * 10, // Stacksize
lanes, // Thread pool lanes
false, // No thread borrowing
false, 0, 0); // No request buffering

When a thread pool is
created it’s possible to
control certain resource
allocations
•e.g., stacksize, request
buffering, & whether or
not to allow “borrowing”
across lanes

14

Washington University, StL
University of California, Irvine 27

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Installing Thread Pools on a RT-POA
// From previous page
RTCORBA::ThreadpoolId pool_id = // ...

// Create Thread Pool Policy
RTCORBA::ThreadpoolPolicy_var tp_policy =

rt_orb->create_threadpool_policy (pool_id);

// Create policy list for RT-POA
CORBA::PolicyList RTPOA_policies(1); RTPOA_policies.length (1);
RTPOA_policies[0] = tp_policy;

// Create POAs
PortableServer::POA_var rt_poa_1 =

root_poa->create_POA (“RT-POA_1”, // POA name
PortableServer::POAManager::_nil (),
RTPOA_policies); // POA policies

PortableServer::POA_var rt_poa_2 =
root_poa->create_POA (“RT-POA_2”, // POA name

PortableServer::POAManager::_nil (),
RTPOA_policies); // POA policies

Note how multiple RT
POAs can share the
same thread pools

Washington University, StL
University of California, Irvine 28

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Thread Pools Implementation Strategies
•There are two general strategies to implement RT CORBA thread
pools:
1.Use the Half-Sync/Half-Async pattern to have I/O thread(s)

buffer client requests in a queue & then have worker threads in
the pool process the requests

2.Use the Leader/Followers pattern to demultiplex I/O events into
threads in the pool without requiring additional I/O threads

•Each strategy is appropriate for certain application domains
•e.g., certain hard-real time applications cannot incur the non-
determinism & priority inversion of additional request queues

•To evaluate each approach we must understand their
consequences
•Their pattern descriptions capture this information
•Good metrics to compare RT-CORBA implementations

15

Washington University, StL
University of California, Irvine 29

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

The Half-Sync/Half-Async Pattern
Sync
Service
Layer

Async
Service
Layer

Queueing
Layer

<<read/write>>
<<read/write>>

<<read/write>>

<<dequeue/enqueue>> <<interrupt>>

Sync Service 1 Sync Service 2 Sync Service 3

External
Event Source

Queue

Async Service

Intent
The Half-Sync/Half-Async
architectural pattern
decouples async & sync
service processing in
concurrent systems, to
simplify programming
without unduly reducing
performance

• This pattern defines two service
processing layers—one async and
one sync—along with a queueing
layer that allows services to
exchange messages between the
two layers

• The pattern allows sync services,
such as servant processing, to run
concurrently, relative both to each
other and to async services, such as
I/O handling & event demultiplexing

work()

notification

: External Event
Source

: Async Service : Queue

notification

read()

enqueue()

message

: Sync Service

work()

message

read()

message

Washington University, StL
University of California, Irvine 30

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Queue-per-Lane Thread Pool Design
Design Overview

• Single acceptor endpoint
• One reactor for each priority level
• Each lane has a queue
• I/O & application-level request
processing are in different threads

Pros
• Better feature support, e.g.,

• Request buffering
• Thread borrowing

• Better scalability, e.g.,
• Single acceptor
• Fewer reactors
• Smaller IORs

• Easier piece-by-piece integration into
the ORB

Cons
• Less efficient because of queuing
• Predictability reduced without
_bind_priority_band() implicit
operation

16

Washington University, StL
University of California, Irvine 31

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

The Leader/Followers Pattern
Intent
The Leader/Followers architectural
pattern provides an efficient
concurrency model where multiple
threads take turns sharing event
sources to detect, demux, dispatch, &
process service requests that occur on
the event sources

TCP Sockets +
select()/poll()

UDP Sockets +
select()/poll()

Iterative
Handle Sets

TCP Sockets +
WaitForMultple

Objects()

UDP Sockets +
WaitForMultiple

Objects()

Concurrent
Handle Sets

Iterative HandlesConcurrent Handles
Handles

Handle Sets

Handle
uses

demultiplexes

*

*

Handle Set
handle_events()
deactivate_handle()
reactivate_handle()
select()

Event Handler

handle_event ()
get_handle()

Concrete Event
Handler B

handle_event ()
get_handle()

Concrete Event
Handler A

handle_event ()
get_handle()

Thread Pool

join()
promote_new_leader()

synchronizer

Washington University, StL
University of California, Irvine 32

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Reactor-per-Lane Thread Pool Design
Design Overview
•Each lane has its own set of
resources
•i.e., reactor, acceptor
endpoint, etc.

•I/O & application-level request
processing are done in the
same thread

Pros
•Better performance

•No context switches
•Stack & TSS optimizations

•No priority inversions during
connection establishment

•Control over all threads with
standard thread pool API

Cons
•Harder ORB implementation
•Many endpoints = longer IORs

17

Washington University, StL
University of California, Irvine 33

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Buffering Client Requests

SERVER ORB COREI/O
THREADS

Thead Pool A

PRIORITY 10 PRIORITY 35 PRIORITY 20

Thead Pool B

•Problem: Some types of applications
need more buffering than is provided by
the OS I/O subsystem
•e.g., to handle “bursty” client traffic

•Solution: Buffer client requests in ORB

•RT CORBA thread pool buffer
capacities can be configured with:
•Maximum number of bytes and/or
•Maximum number of requests

•An ORB can reject a request to
create a thread pool with buffers

•Some ORBs do not use queues to
avoid priority inversions
•This design is still compliant,
however, since the maximum
buffer capacity is always 0

•Moreover, queueing can be done
within the I/O subsystem of the
OS

Washington University, StL
University of California, Irvine 34

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

•Problem: An ORB & application may
need to use the same type of mutex
to avoid priority inversions
•e.g., using priority ceiling or
priority inheritance protocols

•Solution: Use the
RTCORBA::Mutex interface to
ensure that consistent mutex
semantics are enforced across ORB
& application domains

Synchronizing Objects Properly

RTCORBA::Mutex_var mutex = rtorb->create_mutex ();
...
mutex->lock ();
// Critical section here…
mutex->unlock ();
...
rtorb->destroy_mutex (mutex);

CLIENT

Mutex
lock()
unlock()
try_lock()

ORB CORE

OBJECT
ADAPTER

OBJECT
(SERVANT)

mutex 3

mutex 2

mutex 4

mutex 1

18

Washington University, StL
University of California, Irvine 35

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Configuring Custom Protocols
•Problems: Selecting communication protocol(s) is crucial to obtaining QoS

•TCP/IP is inadequate to provide end-to-end real-time response
•Thus, communication between Base_Station, Controllers, &
Drones must use a different protocol
•e.g., VME, 1553, shared memory, VIA, firewire, bluetooth, etc.

•Moreover, communication between Drone & Controller cannot be
queued

•Solution: Protocol selection policies
•Both server-side & client-side
policies are supported

•Some policies control protocol
selection, others configuration

•Order of protocols indicates
protocol preference

•Some policies are exported to
client in object reference

Oddly, RT-CORBA only specifies protocol properties for TCP!

Washington University, StL
University of California, Irvine 36

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Example: Configuring protocols
•First, we create the protocol properties

RTCORBA::ProtocolList plist; plist.length (2);
plist[0].protocol_type = MY_PROTOCOL_TAG; // Custom protocol
plist[0].trans_protocol_props =

/* Use ORB proprietary interface */
plist[1].protocol_type = IOP::TAG_INTERNET_IOP; // IIOP
plist[1].trans_protocol_props = tcp_properties;
RTCORBA::ClientProtocolPolicy_ptr policy =

rtorb->create_client_protocol_policy (plist);

•Next, we configure the list of protocols to use

RTCORBA::ProtocolProperties_var tcp_properties =
rtorb->create_tcp_protocol_properties (

64 * 1024, /* send buffer */
64 * 1024, /* recv buffer */
false, /* keep alive */
true, /* dont_route */
true /* no_delay */);

19

Washington University, StL
University of California, Irvine 37

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Controlling Network Resources
•Problems:

•Avoiding request-level (“head-of-line”)
priority inversions

•Minimizing thread-level priority inversions
•Control jitter due to connection
establishment

_validate_connection (out CORBA::PolicyList
inconsistent_policies);

CLIENT
ORB CORE

P1-5 P10-20 P21-100

SERVER
ORB CORE

 PRIORITY-BANDED
PRIVATE CONNECTIONS

P1-5 P10-20 P21-100

•Solution: Use explicit binding
mechanisms, e.g.,
•Connection pre-allocation

•Eliminates a common
source of operation jitter

•Private Connection Policy
•Guarantees non-
multiplexed connections

•Priority Banded Connection
Policy
• Invocation priority
determines which
connection is used

Washington University, StL
University of California, Irvine 38

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Pre-allocating Network Connections
•Problem: Dynamically establishing connections from the base station
to/from the drones can result in unacceptable jitter, which can be
detrimental to time-critical applications

•Solution: Pre-allocate one or more connections using the
Object::_validate_connection() operation, which is defined in the
CORBA Message specification

Drone_var drone = …; // Obtain reference to a drone

// Pre-establish connections using current
// policy overrides
CORBA::PolicyList_var inconsistent_policies;

// The following operation causes a _bind_priority_band()
// “implicit” request to be sent to the server
CORBA::Boolean successful =

drone->_validate_connection (inconsistent_policies);

20

Washington University, StL
University of California, Irvine 39

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Private Connection Policy
•Problem: To minimize priority inversions, some applications cannot share
a connection between multiple objects
•e.g., drones reporting edge_alarm() requests should use
exclusive, pre-allocated resources

•Solution: Use the RT CORBA PrivateConnectionPolicy to
guarantee non-multiplexed connections

// Use an exclusive connection to access the
// Controller objects
policies[0] =

rtorb->create_private_connection_policy ();

CORBA::Object_var obj =
controller->_set_policy_overrides

(policies, CORBA::ADD_OVERRIDES);

CORBA::PolicyList_var inconsistent_policies;
CORBA::Boolean success =

obj->_validate_connection (inconsistent_policies);
// If successful <obj> has a private connection

Washington University, StL
University of California, Irvine 40

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Priority Banded Connection Policy
•Problem: To minimize priority inversions, high-priority operations should not
be queued behind low-priority operations

•Solution: Use different connections for different priority ranges via the RT
CORBA PriorityBandedConnectionPolicy

// Create the priority bands
RTCORBA::PriorityBands bands (2); bands.length (2);
bands[0].low = LOW_PRIO; // We can have bands with
bands[0].high = MEDIUM_PRIO; // a range of priorities or
bands[1].low = HIGH_PRIO; // just a “range” of 1!
bands[1].high = HIGH_PRIO;

// Now create the policy…
CORBA::PolicyList policies (1); policies.length (1);
policies[0] =

rtorb->create_priority_banded_connection_policy (bands);
// Use just like any other policies…

•This policy can be used on the client-side to pre-allocate connections

21

Washington University, StL
University of California, Irvine 41

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Simplifying Application Scheduling
•Problem: Although RT-CORBA gives developers control over system
resources it has two deficiencies:
•It can be tedious to configure all the various policies
•Application developer must select the right priority values

•Solution: Apply the RT-CORBA Scheduling Service to simplify application
scheduling
•Developers just declare the current activity
•Properties of an activity are specified using an (unspecified) external tool
•Note that the Scheduling Service is an optional part of the RT-CORBA 1.0
specification

// Find the scheduling service
RTCosScheduling::ClientScheduler_var scheduler = … ;

// Schedule the ‘edge_alarm’ activity
scheduler->schedule_activity (“edge_alarm”);

controller->edge_alarm ();

The client-side
programming model
Is simple

Washington University, StL
University of California, Irvine 42

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Server-side Scheduling
// Obtain a reference to the scheduling service
RTCosScheduling::ServerScheduler_var scheduler = … ;

CORBA::PolicyList policies; // Set POA policies

// The scheduling service configures the RT policies
PortableServer::POA_var rt_poa = scheduler->create_POA
(“ControllerPOA”,
PortableServer::POAManager::_nil (),
policies);

// Activate the servant, and obtain a reference to it.
rt_poa->activate_servant (my_controller);
CORBA::Object_var controller =

rt_poa->servant_to_reference (my_controller);

// Configure the resources required for this object
// e.g., setup interceptors to control priorities
scheduler->schedule_object (controller, “CTRL_000”);

Servers can also be
configured using the
Scheduling Service

22

Washington University, StL
University of California, Irvine 43

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Other Relevant CORBA Features
•RT CORBA leverages other advanced CORBA features to provide a
more comprehensive QoS-enabled ORB middleware solution, e.g.:
•Timeouts: CORBA Messaging provides policies to control
roundtrip timeouts

•Reliable oneways: which are also part of CORBA Messaging
•Asynchronous invocations: CORBA Messaging includes
support for type-safe asynchronous method invocation (AMI)

•Real-time analysis & scheduling: The RT CORBA 1.0
Scheduling Service is an optional compliance point for this
purpose
•However, most of the problem is left for an external tool

•Enhanced views of time: Defines interfaces to control & query
“clocks” (orbos/1999-10-02)

• RT Notification Service: Currently in progress in the OMG
(orbos/00-06-10), looks for RT-enhanced Notification Service

•Dynamic Scheduling: Currently in progress in the OMG
(orbos/98-02-15) to address additional policies for dynamic &
hybrid static/dynamic scheduling

Washington University, StL
University of California, Irvine 44

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Controlling Request Timeouts
•Problem: Our Controller object should not block indefinitely when trying
to stop a drone that’s fallen off an edge!

•Solution: Override the timeout policy in the Drone object reference
// 10 milliseconds (base units are 100 nanosecs)
CORBA::Any val;
val <<= TimeBase::TimeT (100000000UL);

// Create the timeout policy
CORBA::PolicyList policies (1); policies.length (1);
policies[0] = orb->create_policy

(Messaging::RELATIVE_RT_TIMEOUT_POLICY_TYPE, val);

// Override the policy in the drone
CORBA::Object_var obj = drone->_set_policy_overrides

(policies, CORBA::ADD_OVERRIDE);

Drone_var drone_with_timeout = Drone::_narrow (obj);
drone_with_timeout->stop (); // Timeout takes effect here.

23

Washington University, StL
University of California, Irvine 45

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

RT CORBA in Practice: The ACE ORB (TAO)
Features
•Open-source
•500+ classes &
500,000+ lines of C++

•ACE-based
•Over 25 person-years
of effort

•Ported to UNIX,
Win32, MVS, & many
RT & embedded OSs
• e.g., VxWorks, QNX,
LynxOS, Chorus

www.cs.wustl.edu/~schmidt/TAO.html

Protocol
Properties Explicit Binding

Thread
Pools

Scheduling Service

Standard
Synchronizers

Portable Priorities

•Large open-source user community
www.cs.wustl.edu/~schmidt/TAO-users.html

•Commercial support by OCI
• www.theaceorb.com/

Washington University, StL
University of California, Irvine 46

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Open Issues with the Real-Time CORBA Specification
•No standard APIs for setting & getting priority mappings & priority
transforms

•No compelling use-cases for server-set client protocol policies
•Semantic ambiguities

•Valid policy configurations & their semantics
• e.g., should a protocol property affect all endpoints or just some?

•Resource definition & allocation
•Mapping of threads to connection endpoints on the server

•The bounds on priority inversions is a quality of implementation
•No requirement for I/O threads to run at the same priority as
request processing threads

Bottom-line: RT CORBA applications remain
dependant on implementation details

24

Washington University, StL
University of California, Irvine 47

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

Additional Information
•Real-time CORBA spec
•www.cs.wustl.edu/~schmidt/PDF/RT-ORB-std.pdf

•Patterns for concurrent & networked objects
•www.posa.uci.edu

•ACE & TAO open-source middleware
•www.cs.wustl.edu/~schmidt/ACE.html
•www.cs.wustl.edu/~schmidt/TAO.html

•CORBA research papers
•www.cs.wustl.edu/~schmidt/corba-research.html

•CORBA tutorials
•www.cs.wustl.edu/~schmidt/tutorials-corba.html

Washington University, StL
University of California, Irvine 48

C. O’Ryan, I. Pyarali, D. Schmidt Using RT CORBA

R&D User
Needs

Standard
COTS

R&D

Concluding Remarks
•RT CORBA 1.0 is a major step forward for QoS-enabled middleware

•e.g., it introduces important capabilities to manage key ORB end-
system/network resources

•We expect that these new capabilities will increase interest in--and
applicability of--CORBA for distributed real-time & embedded systems

•RT CORBA 1.0 doesn’t solve all real-
time development problems, however
• It lacks important features:

•Standard priority mapping
manager

•Dynamic scheduling
•Addressed in RT CORBA 2.0

•Portions of spec are under-specified
•Thus, developers must be familiar
with the implementation decisions
made by their RT ORB

•Our work on TAO has helped advance
middleware for distributed real-time &
embedded systems by implementing
RT CORBA in an open-source ORB &
providing feedback to the OMG

