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Developing software for networked applications is hard and developing reusable software 
for networked applications is even harder. First, there are the complexities inherent to 
distributed systems, such as optimally mapping application services onto hardware nodes, 
synchronizing service initialization, and ensuring availability while masking partial fail-
ures. These complexities can stymie even experienced software developers because they 
arise from fundamental challenges in the domain of network programming.  

Unfortunately, developers must master the accidental complexities, such as low-level and 
non-portable programming interfaces and the use of function-oriented design techniques 
that require tedious and error-prone revisions as requirements and/or platforms evolve. 
These complexities arise largely from limitations with the software tools and techniques 
applied historically by developers of networked software. 

Despite the use of object-oriented technologies in many domains, such as graphical user 
interfaces and productivity tools, much networked software still uses C-level operating 
system (OS) application programmatic interfaces (APIs), such as the UNIX socket API or 
the Windows threading API. Many accidental complexities of networked programming 
stem from the use of these C-level OS APIs, which are not type-safe, often not reentrant, 
and are not portable across OS platforms. The C APIs were also designed before the 
widespread adoption of modern design methods and technologies, so they encourage de-
velopers to decompose their problems functionally in terms of processing steps in a top-
down design, instead of using OO design and programming techniques. Experience over 
the past several decades has shown that functional decomposition of non-trivial software 
complicates maintenance and evolution because functional requirements are rarely stable 
design centers [OOSC].  

Fortunately, two decades of advances in design/implementation techniques and pro-
gramming languages have made it much easier to write and reuse networked software. In 
particular, object-oriented (OO)  programming languages (such as C++, Java, and C#) 
combined with patterns (such as Wrapper Facades [POSA2], Adapters, and Template 
Method [GoF]) and frameworks (such as host infrastructure middleware like ACE 
[C++NPv2] and the Java class libraries for network programming [JNP], and similar host 
infrastructure middleware) help to encapsulate low-level functional OS APIs and mask 
syntactic and semantic differences between platforms. As a result, developers can focus 
on application-specific behavior and properties in their software, rather than repeatedly 
wrestling with the accidental complexities of programming the low-level networking and 
OS infrastructure. 

A key benefit of applying patterns and frameworks to networked software is that they can 
help developers help craft reusable architectures that (1) capture the common structure 
and behavior in a particular domain and (2) make it easy to change or replace various al-
gorithms, policies, and mechanisms selectively without affecting other existing parts of 
the architecture. While most developers of networked software can apply well-designed 



OO frameworks to their applications, the knowledge of how to create such a framework 
remains a black art that has historically been learned only by extensive (and expensive) 
trial and error. In addition to the conventional challenges of devising a flexible OO de-
sign that can expand and contract to meet new requirements, networked software must 
often run efficiently and scalably in a range of operating environments. The goal of this 
chapter is to help demystify the black art of OO frameworks for networked software by 
using a case study to systematically dissect the design and implementation of a represen-
tative networked software application.  

In general, the beauty of our solution stems from its use of patterns and OO techniques to 
balance key domain forces, such as reusability, extensibility, and performance. In particu-
lar, our approach enables developers to identify common design/programming artifacts, 
thereby enhancing reuse. It also provide a means to encapsulate variabilities in a common 
and parameterizable way, thereby enhancing extensibility and portability. 

Sample Application: Logging Service  
The OO software that we use as the basis of our case study is a networked logging ser-
vice. As shown in Figure 1, this service consists of client applications that generate log 
records and send them to a central logging server that receives and stores the log records 
for later inspection and processing. 

 
Figure 1. Architecture of a networked logging service  

The logging server portion of our networked logging service provides an ideal context for 
demonstrating the beauty of OO networked software because it exhibits the following 
dimensions of design-time variability that developers can choose from when implement-
ing such a server: 



• Different interprocess communication (IPC) mechanisms (such as sockets, SSL, 
shared memory, TLI, named pipes, etc.) that developers can use to send and receive 
log records.  

• Different concurrency models (such as iterative, reactive, thread-per-connection, 
process-per-connection, various types of thread pools, etc.) that developers can use to 
process log records.  

• Different locking strategies (such as thread-level or process-level recursive mutex, 
non-recursive mutex, readers/writer lock, null mutex, etc.) that developers can use to 
serialize access to resources, such as a count of the number of requests, shared by 
multiple threads. 

• Different log record formats can be transmitted  from client to server, and once re-
ceived by the server the log records can be handled in different ways, e.g., printed to 
console, stored to a single file, or even one file per client to maximize parallel writes 
to disk. 

It is relatively straightforward to implement any one of these combinations, such as 
socket-based IPC, thread-per-connection concurrency model, and a thread-level non-re-
cursive mutex logging server. A one-size-fits-all solution, however, is inadequate to meet 
the needs of all logging services because different customer requirements and different 
operating environments can significantly impact time/space tradeoffs, cost, and schedule. 
A key challenge is therefore to design a configurable logging server that is easily extensi-
ble to meet new needs with a minimum of effort. At the heart of the solution to this chal-
lenge is a thorough understanding of the patterns and associated design techniques 
needed to develop OO frameworks that efficiently  

• Capture common structure and behavior in base classes and generic classes  

• Enable selective customization of behavior via subclasses and by providing concrete 
parameters to generic classes. 

Figure 2 illustrates the design of an OO logging server framework that realizes the ap-
proach outlined above. The core of this design is the Logging_Server class, which 
defines the common structure and functionality for the logging server via the use of 

• C++ parameterized types, which allow developers to defer the selection of data types 
used in generic classes or functions until their point of instantiation.  

• The Template Method pattern [GoF], which defines the skeleton of an algorithm, 
delegating individual steps to methods which may be overridden by subclasses 

• The Wrapper Façade pattern [POSA2], which encapsulates non object-oriented APIs 
and data within type-safe object-oriented classes. 



 
Figure 2. Object-oriented design for the logging server framework 

Subclasses and concrete instantiations of Logging_Server refine this common reus-
able architecture to customize variable steps in the logging server behavior by selecting 
desired IPC mechanisms, concurrency models, and locking strategies. The Logging_ 
Server is thus a product-line architecture [PLA] that defines an integrated set of classes 
that collaborate to define a reusable design for a family of related logging servers. 

The remainder of this chapter is organized as follows. The next section describes the OO 
design of the logging server framework, exploring the architecture of the logging server 
framework and the forces that influence the design of the OO framework to motivate why 
we selected certain patterns and language features, as well as summarize alternative ap-
proaches that rejected for various reasons. Two further sections present several C++ se-
quential programming instantiations of the logging server framework and concurrent pro-
gramming instantiations of this framework. We conclude by summarizing the beauty of 
the OO software concepts and techniques in this chapter. 

Object-Oriented Design of the Logging Server Framework  
Before we discuss the OO design of our logging server, it is important to understand sev-
eral key concepts about OO frameworks. Most programmers are familiar with the con-
cept of a class library, which is a set of reusable classes that provides functionality that 
may be used when developing their OO programs. OO frameworks extend the benefits of 
OO class libraries in the following ways [Johnson]: 

• They define “semi-complete” applications that embody domain-specific object 
structures and functionality. Classes in a framework work together to provide a ge-
neric architectural skeleton for applications in a particular domain, such as graphical 
user interfaces, avionics mission computing, or networked logging services. Complete 
applications can be composed by inheriting from and/or instantiating framework 
components. In contrast, class libraries are less domain-specific and provide a smaller 



scope of reuse. For instance, class library components like classes for strings, com-
plex numbers, arrays, and bitsets are relatively low-level and ubiquitous across many 
application domains. 

• Frameworks are active and exhibit “inversion of control” at run-time. Class li-
braries are typically passive, i.e., they perform isolated bits of processing when in-
voked by threads of control from self-directed application objects. In contrast, frame-
works are active, i.e., they direct the flow of control within an application via event 
dispatching patterns, such as Reactor [POSA2] and Observer [GoF]. The ``inversion 
of control'' in the run-time architecture of a framework is often referred to as “The 
Hollywood Principle,” which states “Don't call us, we'll call you” [Hollywood].  

Frameworks are typically designed by analyzing various potential problems that the 
framework might address and identifying which parts of each solution are the same and 
which areas of each solution are unique.  This design method is called commonal-
ity/variability analysis [CVA], which covers the following topics: (1) scope, which de-
fines the domains (i.e., problem areas a framework addresses) and context of the frame-
work, (2) commonalities, which describe the attributes that recur across all members of 
the family of products based on the framework, and (3) variabilities, which describe the 
attributes unique to the different members of the family of products.  

Understanding the Commonalities 
The first step in designing our logging server framework is therefore to understand the 
parts of the system that should be implemented by the framework (commonalities) and 
parts of the system left to be specialized in subclasses or parameters (variabilities). This 
analysis is straightforward because the steps involved in processing a log record sent over 
a network can be decomposed into the steps shown in Figure 3, which are common to all 
logging server implementations.  

 
Figure 3.  Logging server main loop 

During this stage of the design process we define each step as abstractly as possible. For 
example, at this stage we’ve made minimal assumptions about the type of IPC mecha-
nisms, other than they are connection-oriented to ensure reliable delivery of log records. 
Likewise, we’ve avoided specifying the type of concurrency strategy (e.g., whether the 
server can handle multiple requests, and if so how they are dispatched) or the synchroni-
zation mechanism used by each step. The actual choice of specific behavior for a step is 
thus deferred to the subsequent concrete implementation(s) that provide a particular vari-
ant for each step. 

The Template Method pattern [GoF] is a useful way to define abstract steps and defer 
implementation of their specific behavior to later steps in the design process. This pattern 
defines a base class that implements the common—but abstract—steps in the template 
method in terms of hook methods that can be overridden selectively by concrete imple-
mentations. Programming language features, such as pure virtual functions in C++ or ab-



stract methods in Java, can be used to ensure that all concrete implementations define the 
hook methods. Figure 4 shows the structure of the Template Method pattern and demon-
strates how this pattern is applied to the design of our OO logging server framework. 

 
Figure 4. Template method pattern and applying template method  

to the OO logging server framework  

Accommodating Variation 
Although the Template Method pattern addresses the overall design of the steps in our 
logging server framework, we’re left with the question of how to accommodate all three 
dimensions of variability defined earlier (i.e., IPC, concurrency, and synchronization 
mechanisms) needed to support our design. One approach would simply use the Template 
Method pattern and implement one IPC/concurrency/synchronization combination per 
concrete subclass. Unfortunately, this approach would yield exponential growth in the 
number of concrete subclasses, as each addition to any dimension could generate another 
implementation for each possible combination of the other dimensions. A pure Template 
Method design, therefore, would not be substantially better than handcrafting one-off im-
plementations of a logging server for each variant.  

A more effective and scalable design could leverage the fact that our variability dimen-
sions are largely independent. The choice of a different IPC, for instance, is unlikely to 
require changes in the concurrency or synchronization mechanisms used.  Moreover, 
there is a high-level commonality in how different types of IPC and synchronization 
mechanisms function, e.g., IPC mechanisms can initiate/accept connections and 
send/receive data on connections, whereas synchronization mechanisms have operations 
to acquire and release locks. The design challenge is to encapsulate the accidental com-
plexities in these APIs so that they can be used interchangeably.  

A solution to this challenge is to use the Wrapper Façade pattern [POSA2], which pre-
sents a single unified OO interface for the underlying non-OO IPC and synchronization 
mechanisms provided by system functions in an OS. Wrapper facades are particularly 
useful for enhancing portability by hiding accidental complexities between mechanisms, 
as well as making it less tedious and error-prone to work with these APIs. For instance, a 
wrapper façade can define a higher-level type system that ensures only correct operations 
are called on the underlying non-OO (and less type-safe) OS IPC and synchronization 
data structures. The role of a wrapper façade is shown in Figure 5.  



 
Figure 5. Wrapper façade design pattern 

ACE [C++NPv1] is widely used example of host infrastructure middleware that defines 
unified OO interfaces using wrapper façades for both IPC and synchronization mecha-
nisms. We base the wrappers façades in this chapter on simplified versions of those pro-
vided by ACE. Figure 6 shows some of the wrapper facades provided by ACE.  

 
Figure 6. Some ACE wrapper facades for  

passive connection establishment and synchronization 

The Acceptor wrapper façade provides the means to create passive mode connections 
and provides “traits” to represent aspects of a mechanism that work essentially the same 
way across different implementations, just with different APIs. For instance, 
PEER_STREAM and PEER_ADDR, designate dependant wrapper facades appropriate for send-
ing/receiving data and for addressing by the IPC mechanism, respectively. 
SOCK_Acceptor is a subclass of Acceptor used in this chapter to implement a factory for 
passively establishing connections implemented using the socket API.  

The Mutex wrapper façade provides an interface whose methods acquire and release 
locks, including a Recursive_Mutex implemented using a mutex that will not deadlock 
when acquired multiple times by the same thread a RW_Lock that implements read-
ers/writer semantics, and a Null_Mutex whose acquire()/release() methods are inline 
no-ops. The latter class is an example of the Null Object pattern [Woolf] and is useful for 
eliminating synchronization without changing application code. Figure 6 makes it appear 
as if each family of classes is related by inheritance, but they are actually implemented by 
classes unrelated by inheritance that have a common interface and can be used as type 
parameters to C++ templates. We made this design choice  to avoid virtual method call 
overhead.   

Tying it All Together 



Another design challenge is how to associate a concurrency strategy with an IPC and syn-
chronization mechanism. One approach would be to use the Strategy pattern [GoF], 
which encapsulates algorithms as objects so they can be swapped at run-time. This ap-
proach would provide the Logging_Server with a pointer to abstract base classes of Ac-
ceptor and Mutex and then rely on dynamic binding and polymorphism to dispatch the 
virtual methods to the appropriate subclass instances.  

While a Strategy-based approach is feasible, it is not ideal.  Each incoming log record 
may generate several calls to methods in the Acceptor and Mutex wrapper facades. Per-
formance could therefore degrade since virtual methods incur more overhead than non-
virtual method calls. Given that dynamically swapping IPC or synchronization mecha-
nisms is not a requirement for our logging servers, a more efficient solution is to use C++ 
parameterized types to instantiate our logging server classes with the wrapper façades for 
IPC and synchronization. We therefore define the following generic abstract base class 
called Logging_Server from which all logging servers in this chapter will inherit:   

template <typename ACCEPTOR, typename MUTEX> 
class Logging_Server { 
 public: 
   typedef Log_Handler<typename ACCEPTOR::PEER_STREAM> HANDLER; 
    
   Logging_Server (int argc, const char *argv); 
 
   // Template method that runs each step in the main event loop. 
   virtual void run (void); 
  
protected: 
   // Hook methods that enable each step to be varied. 
   virtual void open (void); 
   virtual void wait_for_multiple_events (void) = 0; 
   virtual void handle_connections (void) = 0; 
   virtual void handle_data  
                   (typename ACCEPTOR::PEER_STREAM *stream = 0) = 0; 
 
   // Increment the request count, protected by the mutex.    
   virtual void count_request (size_t number = 1); 
 
   // Instance of template parameter that accepts connections. 
   ACCEPTOR acceptor_;  
 
   // Keeps a count of the number of log records received. 
   size_t request_count_; 
 
   // Instance of template parameter that serializes access to  
   // the request_count_. 
   MUTEX mutex_; 
 
   // Address that the server will listen on for connections. 
   std:string server_address_; 
}; 

Most methods in Logging_Server are pure virtual, which ensures that subclasses imple-
ment them. The open() and count_request() methods shown below, however, are re-
used by all logging servers in this chapter:  



template <typename ACCEPTOR, typename MUTEX>  
Logging_Server<ACCEPTOR, MUTEX>::Logging_Server  

(int argc, char *argv[]): request_count_ (0) {  
  // Parse the argv arguments and store the server address_... 
} 
 
template <typename ACCEPTOR, typename MUTEX> void  
Logging_Server<ACCEPTOR, MUTEX>::open (void) {  
  return acceptor_.open (server_address_);  
} 

 
template <typename ACCEPTOR, typename MUTEX> void 
Logging_Server<ACCEPTOR, MUTEX>::count_request (size_t number) {  
  mutex_.acquire (); request_count_ += number; mutex_.release ();  
} 

The Log_Handler class is responsible for demarshaling a log record from a connected 
data stream whose IPC mechanism is designated by the ACCEPTOR type parameter. The 
implementation of this class is outside the scope of this chapter, and could itself be an-
other dimension of variability, e.g., logging servers might want to support different log 
message formats. If we were to support varying the format of method of storing incoming 
log messages, this class could be yet another template parameter in our logging frame-
work. For our purposes, it is sufficient to know that it is parameterized by the IPC 
mechanism and provides two methods: peer(), which returns a reference to the data 
stream, and log_record(), which reads a single log record from the stream.  

The primary entry point into Logging_Server is the template method called run(), 
which implements the steps outlined in Figure 3, delegating the specific steps to the hook 
methods declared in the protected section of Logging_Server, as shown in the code 
fragment below:  

template <typename ACCEPTOR, typename MUTEX> void  
Logging_Server<ACCEPTOR, MUTEX>::run (void) { 
  try { 
    // Step 1: initialize an IPC factory endpoint to listen for  
    // new connections on the server address. 
    open (); 
 
    // Step 2: Go into an event loop 
    for (;;) { 
      // Step 2a: wait for new connections or log records  
      // to arrive. 

wait_for_multiple_events (); 
 
// Step 2b: accept a new connection (if available) 

      handle_connections (); 
 
      // Step 2c: process received log record (if available) 
      handle_data (); 
    } 
  } catch (...) { /* ... Handle the exception ... */ } 
} 

The beauty of this code is that 



• Its pattern-based design makes it easy to handle variation in concurrency models, e.g., 
by varying the behavior of the run() template method by providing specific imple-
mentation of the hook methods in the implementation of subclasses and  

• Its template-based design makes it easy to handle variation in IPC and synchroniza-
tion mechanisms, e.g., by plugging in different types into the ACCEPTOR and MUTEX 
template parameters.  

Implementing Sequential Logging Servers  
This section demonstrates the implementation of logging servers that feature sequential 
concurrency models, i.e., all processing is performed in a single thread. We cover both 
iterative and reactive implementations of sequential logging servers below.  

An Iterative Logging Server 
Iterative servers process all log records from each client before handling any log records 
from the next client. Since there is no need to spawn or synchronize threads we use the 
Null_Mutex façade to parameterize the Iterative_Logging_Server subclass template, 
as follows:  

template <typename ACCEPTOR> 
   class Iterative_Logging_Server :  

  virtual Logging_Server<ACCEPTOR, Null_Mutex> { 
public: 
  typedef Logging_Server<ACCEPTOR, Null_Mutex>::HANDLER HANDLER; 
  Iterative_Logging_Server (int argc, char *argv[]); 
 
protected: 
  virtual void open (void); 
  virtual void wait_for_multiple_events (void) {}; 
  virtual void handle_connections (void); 
  virtual void handle_data  

(typename ACCEPTOR::PEER_STREAM *stream = 0); 
  HANDLER log_handler_; 
 
  // One log file shared by all clients. 
  std::ofstream logfile_; 
}; 

Implementing this version of our server is straightforward. The open() method decorates 
the behavior of the method from the Logging_Server base class by opening an output 
file before delegating to the parent’s open(), as follows: 

template <typename ACCEPTOR> void  
Interative_Logging_Server<ACCEPTOR>::open (void) { 
  logfile_.open (filename_.c_str ()); 
  if (!logfile_.good ()) throw std::runtime_error; 
  // Delegate to the parent’s open() method. 
  Logging_Server<ACCEPTOR, Null_Mutex>::open (); 
}  

The wait_for_multiple_events() method is a no-op. It is not needed because we just 
handle a single connection at any one time. The handle_connections() method therefore 
simply blocks until a new connection is established, as follows: 

 



template <typename ACCEPTOR> void  
Iterative_Logging_Server<ACCEPTOR>::handle_connections (void)  
{ acceptor_.accept (log_handler_.peer ()); } 

Finally, handle_data() simply reads log records from the client and writes them to the 
log file until the client closes the connection or an error occurs: 

template <typename ACCEPTOR> void  
Iterative_Logging_Server<ACCEPTOR>::handle_data (void) { 
    while (log_handler_.log_record (logfile _)) 
      count_request (); 

   } 

While the iterative server is straightforward to implement, it suffers from the drawback of 
only being able to service only a one client at a time. A second client that attempts to 
connect may time out while waiting for the first to finish its request. 

A Reactive Logging Server 

    Figure 7. Reactive logging server interface

The reactive logging server alleviates one of the primary drawback with the iterative log-
ging server described above by processing multiple client connections and log record re-
quests via operating system synchronous event demultiplexing APIs provided by the OS, 
such as select() and WaitForMultipleObjects(). These APIs can monitor multiple 

clients by waiting in a single thread of 
control for I/O-related events to occur 
on a group of I/O handles and then 
interleave the processing of log 
records. Since a reactive logging 
server is still fundamentally sequen-
tial, however, it inherits from the 
iterative logging server implemented 
earlier, as shown in Figure 7.  

The Reactive_Logging_Server class 
overrides all four hook methods that it 
inherits from base class Iterative_ 
Logging_Server. Its open() hook 
method decorates the behavior of the 

base class method to initialize the ACE_Handle_Set member variables, which are part of 
the wrapper façades that simplify the use of select(), as shown below:  

template <typename ACCEPTOR> void  
Reactive_Logging_Server<ACCEPTOR>::open () { 
  // Delegate to base class. 
  Iterative_Logging_Server<ACCEPTOR>::open (); 
 
  // Mark the handle associated with the acceptor as active. 
  master_set_.set_bit (acceptor_.get_handle ()); 
 
  // Set the acceptor’s handle into non-blocking mode. 
  acceptor_.enable (NONBLOCK); 
} 



The wait_for_multiple_events() method is needed in this implementation, unlike its 
counterpart in Iterative_Server. As shown in Figure 8, this method uses a synchro-
nous event demultiplexer (in this case, select()) to detect which I/O handles have con-
nection or data activity pending.  

 
Figure 8.  Using a synchronous event demultiplexer in the Reactive_Logging_Server 

After wait_for_multiple_events() has executed, the Reactive_Logging_Server has 
a cached a set of handles with pending activity (i.e., either new connection requests or 
new incoming data events), which will then be handled by its other two hook methods: 
handle_connections() and handle_data(). The handle_connections() method 
checks whether the acceptors handle is active, and if so, accepts as many connections as 
possible and caches them in the master_handle_set_. Similarly, the handle_data() 
method iterates over the remaining active handles marked by select() earlier. This ac-
tivity is simplified by the ACE socket wrapper façade that implements an instance of the 
Iterator pattern [GoF] for socket handle sets, as shown in Figure 9. 
 
The following code implements a Reactive_Logging_Server main program that uses 
the socket API: 

int main (int argc, char *argv[]) { 
  Reactive_Logging_Server<SOCK_Acceptor> server (argc, argv); 
  server.run (); 
  return 0; 
} 

The first line of our main function parameterizes the Reactive_Logging_Server with 
the SOCK_Acceptor type, which will cause the C++ compiler to generate code for a reac-
tive logging server that is able to communicate over sockets.  This will, in turn, param-
eterize its Logging_Server base class with both the SOCK_Acceptor and Null Mutex, 
by virtue of the hard-coded template argument provided when we inherited from it.   The 
second line calls the run () template method, which is delegated to the Logging_Server 



base class, which itself delegate to the various hook methods we implemented in this 
class.   

 
Figure 9.  Reactive server connection/data event handling 

Evaluating the Sequential Logging Server Solutions 

The Reactive_Logging_Server improves upon the Iterative_Logging_Server by 
interleaving its servicing of multiple clients, rather than just handling one client in its en-
tirety at a time. It does not take advantage of OS concurrency mechanisms, however, so it 
cannot leverage multi-processors effectively to process multiple log records in parallel. It 
also cannot overlap computation and communication by processing log records while 
reading new records.  These limitations impede its scalability as the number of clients 
increases, even if the underlying hardware supports multiple simultaneous threads of exe-
cution.  

Although the Iterative_Logging_Server and Reactive_Logging_Server only run in 
a single thread of control—and are thus not scalable for most production systems—their 
simplicity highlights several more beautiful aspects of our OO framework-based design: 

• Our use of hook methods in the Logging_Server::run() template method shielded 
application developers from low-level details, e.g., how a logging server performs 
IPC and event demulxiplexing operations, thereby enabling the developers to focus 
on domain-specific application logic by leveraging the expertise of framework de-
signers.    

• Our use of wrapper façades in allows us to lock/unlock mutexes, listen on a particular 
IPC mechanism to accept new connections, and wait for multiple I/O events con-
cisely, efficiently, and portably.  Without these useful abstractions, we would have 
had to write many lines of tedious and error-prone code that would be hard to under-
stand, debug, and evolve. 



The benefits from these abstractions become more apparent with more complex concur-
rent logging servers shown below, as well as with more complex framework use cases, 
such as graphical user interfaces [GoF] or communication middleware [POSA2]. 

Implementing Concurrent Logging Servers 
To overcome the scalability limitations of the iterative and reactive servers shown in Sec-
tion 3, the logging servers in this section use both OS concurrency mechanisms: proc-
esses and threads.  Using the APIs provided by operating systems to spawn threads or 
processes, however, can be a daunting task due to accidental complexities in their design.  
These complexities stem from semantic and syntactic differences that exist not only be-
tween different operating systems, but also different versions of the same operating sys-
tem.  Our solution to these complexities is again to apply wrapper façades that provide a 
consistent interface across platforms and integrate these wrapper facades into our OO 
Logging_Server framework.   

A Thread-per-Connection Logging Server 

Our thread-per-connection logging server (TPC_Logging_Server) uses a main thread that 
waits for and accepts new connections from clients.  After accepting a new connection, a 
new worker thread will be spawned to handle incoming log records from that connection.  
Figure 10 shows the steps in this process. 

 
Figure 10.  Steps in the thread-per-connection logging server 

The main loop for this particular logging server differs from the steps depicted in Figure 
3 since the call to handle_data() is not necessary, as the worker threads are responsible 
for that call.  There are two ways to handle this situation: 

1. We could note that the base run() method calls handle_data() with the default ar-
gument of a NULL pointer, and simply have our implementation exit immediately for 
that input.   

2. We could simply override the run() method with our own implementation that omits 
this call.   

Solution two may at first appear advantageous since it avoids a virtual method call to 
handle_data(). Solution one is better in this case, however, since the performance hit of 
that virtual call is not a limiting factor and overriding the run() template method would 
prevent this class from benefiting from changes to the base class implementation, poten-
tially causing it to fail in subtle and pernicious ways.   



The main challenge here is implementing the concurrency strategy itself.  As with the 
Iterative_Server in Section 3.1, the wait_for_multiple_events() method is super-
fluous because our main loop simply waits for new connections, so it is sufficient for 
handle_connections()to block on accept() and subsequently spawn worker threads to 
handle connected clients.  Our TPC_Logging_Server class must therefore provide a 
method to serve as an entry point for the thread.  In C and C++, a class method may only 
serve as an entry point to a thread if it is defined as static, so we define the 
TPC_Logging_Server::svc()static class method. 

At this point, we have an important design decision to make: what exactly does the thread 
entry point do?  It is tempting to simply have the svc() method itself perform all of the 
work necessary to receive log records from its associated connection.  This design is less 
than ideal, however, since static methods cannot be virtual, which will cause problems if 
we later derive a new logging server from this implementation to change the way it han-
dles data events. Application developers would then be forced to provide an implementa-
tion of handle_connections() that is textually identical to this class to call the proper 
static method.  Moreover, to leverage our existing design and code, it is preferable to 
have the log record processing logic inside the handle_data() method and define a 
Thread_Args helper object that holds the peer returned from accept() and a pointer to 
the Logging_Server object itself.  Our class interface will therefore look like the dia-
gram in Figure 11. 

 
Figure 11.  Thread-per-connection server interface 

The remainder of TPC_Logging_Server is straightforward to implement, requiring only 
that our thread entry point delegate processing to the virtual method handle_data() us-
ing the server_pointer contained within the Thread_Args helper object passed to the 
svc() method, as shown in Figure 12. 



 
Figure 12.  Thread-per-connection thread behavior 

The following code implements a TPC_Logging_Server main program that uses the se-
cure socket API and the readers/writer lock: 

int main (int argc, char *argv[]) { 
  TPC_Logging_Server<SSL_Acceptor, RW_Lock> server (argc, argv); 
  server.run (); 
  return 0; 
} 

This main() function instantiates a TPC_Logging_Server that communicates using SSL 
connections and uses a RW_Lock to synchronize the count_connections() function in 
the Logging_Server base class.  Except for the name of the class we are instantiating, 
this main() function is identicalto the one that was written earlier in this chapter for the 
Reactive_Logging_Server.  This commonality is another beautiful aspect of our de-
sign: regardless of the particular combination of concurrency, IPC, and synchronization 
mechanisms we choose to use, the instantiation and invocation of our server remains the 
same. 

The thread-per-connection logging service addresses the scalability limitations with the 
sequential implementations described in Section 3. The design of our OO framework 
made it straightforward to integrate this concurrency model with minimal changes to the 
existing code. In particular, TPC_Logging_Server inherits implementations of open(), 
count_request(), and most importantly run(), allowing this class to leverage bugfixes 
and improvements to our main event loop transparently. Moreover, adding the necessary 
synchronization around the request_count_ is simply a matter of parameterizing the 
TPC_Logging_Server with the RW_LOCK class. 

A Process-per-Connection Logging Server 
The process-per-connection logging server described next is similar to the thread-per-
connection design shown in Figure 10, except that instead of spawning a thread, we 
spawn a new process to handle incoming log records from each client. The choice of 
processes over threads for concurrency forces us to make design choices to accommodate 
the variations in process creation semantics between platforms.  There are two key se-



mantic differences between the process APIs on Linux and Windows that our server de-
sign must encapsulate 

•  In Linux (and other POSIX systems) the primary vehicle for creating new processes 
is the fork() system function, which generates an exact duplicate of the calling pro-
gram image, including open I/O handles, differing only in their return value from 
fork().  At this point, child processes can choose to proceed from that point, or load 
a different program image using the exec*() family of system calls.    

• Windows, however, uses the CreateProcess() API call, which is functionally 
equivalent to a POSIX fork() followed immediately by a call to one of the exec*() 
system functions.  The impact of this difference is that in Windows you have an en-
tirely new process that by default does not have access to I/O handles open in the par-
ent.  To use a connection accepted by the parent process, therefore, the handle must 
be explicitly duplicated and passed to the child on the command line.   

We therefore define a set of wrapper façades that not only hide the syntactic differences 
between platforms, but also provide a way to hide the semantic differences as well.  
These wrappers consist of the three cooperating classes shown in Figure 13. The Process 
class represents a single process and is used to create and synchronize processes. The 
Process_Options class provides a way to set both platform-independent (such as com-
mand line options and environment variables) and platform-specific process options 
(such as avoiding zombie processes).  Finally, the Process_Manager class portably man-
ages the lifecycle of groups of processes.  We won’t cover all the use of these wrapper 
façades in this chapter, though they are based on the wrapper facades in ACE 
[C++NPv1]. It is sufficient to know that not only can processes be created portably on 
Linux and Windows, but also that I/O handles can be duplicated and passed portably and 
automatically to the new process. 

 
Figure 13.  Portable process wrapper façades 

The design challenge is therefore to accommodate the fact that processes spawned after 
new connections are accepted will start at the beginning of our program.  We certainly 
don’t want child processes to attempt to open a new acceptor and listen for connections 
of their own—instead, they should only listen for data events on their assigned handle.  A 



naive solution to this problem would rely on applications to detect this condition and call 
a special entry point defined in the interface to our process based Logging_Server class. 

This simple solution, however, is less than ideal since not only would it require us to 
change the public interface of our process-based Logging_Server, but it would also ex-
pose intimate implementation details to applications, violating encapsulation.  A better 
solution is to override the run() template method inherited from the Logging_Server 
base class, which is passed a copy of the command-line argument by users, to determine 
if it has been passed any I/O handles.  If not, the process assumes it is a parent and dele-
gates to the base class run() method. Otherwise, the process assumes it’s a child so it 
decodes the handle and calls handle_data(), as shown in Figure 14.   

 
Figure 14.  Process-per-connection run() template method 

The remainder of this server implementation is straightforward.  As shown in Figure 15, 
the process wrapper façade makes the procedure for spawning our worker processes 
fairly simple.  The implementation for handle_data() should be textually identical to 
that shown in Figure 12. 

 
Figure 15.  Connection handling for the process-per-connection server 



Our reimplementation of the run() method from the Logging_Server base class allows 
us to maintain the beautifully simple, straightforward, and uniform invocation used by 
our other logging servers:.   

int main (int argc, char *argv[]) { 
  PPC_Logging_Server<SSL_Acceptor, Null_Mutex> server (argc, argv); 
  server.run (); 
  return 0; 
} 

This main() program differs from the thread-per-connection server only in the name of 
the class that is instantiated, and the fact that we have chosen to use a Null_Mutex to 
provide synchronization.  The dispatch of either a parent or a child process is handled 
transparently by the run() method, driven by the command-line arguments passed to the 
PPC_Logging_Server constructor. 

 Evaluating the Concurrent Logging Server Solutions 

Both concurrent logging servers described in this section significantly enhance the Reac-
tive_Logging_Server and Iterative_Logging_Server in terms of their ability to 
scale as the number of clients increases by taking leveraging hardware and OS support 
for multiple threads of execution. It is hard, however, to develop thread-per-connection 
and process-per-connection concurrency strategies in a platform-agnostic manner. We 
accomplished this task by using wrapper façades to hide platform differences. Our frame-
work-based server design also provided a common external interface to the Log-
ging_Server class, shielding the bulk of the logging server from the configured concur-
rency strategy. Moreover, our design leveraged the the run() template method inherited 
from the Logging_Server base class, allowing our implementations to integrate bugfixes 
or other enhancements to the main server event loop.  

Concluding Remarks 
The logging server application presented in this chapter provides a digestible—yet realis-
tic—vehicle for showing how to apply OO design/programming techniques, patterns, and 
frameworks to implementation software for networked applications. In particular, our OO 
framework demonstrates a number of beautiful design elements, ranging from its abstract 
design to concrete elements in the implementations of the different concurrency models.  
Our design also used C++ features, such as templates and virtual functions, in conjunc-
tion with design patterns, such as Wrapper Façade and the Template Method, to create a 
family of logging servers that is portable, reusable, flexible, and extensible.   

The Template Method pattern in the Logging_Server base class’s run() method  al-
lowed us to define common steps in a logging server, deferring specialization of indi-
vidual steps of its operation to hook methods in derived classes.  While this pattern 
helped factor out common into the base class, it did not adequately address all our re-
quired points of variability, such as synchronization and IPC mechanisms, For these re-
maining dimensions, therefore, we used the Wrapper Façade pattern to hide semantic and 
syntactic differences, ultimately making use of these dimensions entirely orthogonal to 
the implementation of individual concurrency models.  This design allowed us to use pa-
rameterized classes to address these dimensions of variability, which increased the flexi-
bility of our framework without affecting its performance adversely.   



Finally, our individual implementations of concurrency models, such as thread-per-
connection and process-per-connection, used wrapper façades to make their implementa-
tions more elegant and portable.  The end result is a labor-saving software architecture 
that enables developers to reuse common design and programming artifacts, as well as 
provide a means to encapsulate variabilities in a common, parameterizeable way. 

A concrete implementation of this logging server framework may be found on the web at 
www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/ACE/examples/Beautiful_Code and in-
the ACE distribution in ACE_wrappers/examples/Beautiful_Code. 
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