
A Transformer-based Approach for Translating
Natural Language to Bash Commands

Quchen Fu, Zhongwei Teng, Jules White, Douglas C. Schmidt
Dept. of Computer Science

Vanderbilt University
Nashville, TN, USA

{quchen.fu, zhongwei.teng, jules.white, d.schmidt}@vanderbilt.edu

Abstract—This paper explores the translation of natural lan-
guage into Bash Commands, which developers commonly use to
accomplish command-line tasks in a terminal. In our approach
a terminal takes a command as a sentence in plain English and
translates it into the corresponding string of Bash Commands.
The paper analyzes the performance of several architectures on
this translation problem using the data from the NLC2CMD
competition at the NeurIPS 2020 conference. The approach
presented in this paper is the best performing architecture on
this problem to date and improves the current state-of-the-art
accuracy on this translation task from 13.8% to 53.2%.

Index Terms—Bash Commands Generation, Transformer, Nat-
ural Language Processing

I. INTRODUCTION

Translating natural language into source code for software
or scripts can help developers find ways of accomplishing
tasks in programming languages they are not familiar with,
similar to how help forums like Stack Overflow are used
today. As early as 1966, Sammet [1] envisioned a future of
automated code generation where people program in their
native language. While generating software templates from
configuration files is common practice today, the research in
translating natural language into programming language code
is still relatively nascent.

This paper focuses on the task of translating natural lan-
guage into the Bash scripting language. Translating natural
language into Bash Commands is an example of semantic pars-
ing, which means natural language is translated into logical
forms that can be executed [2]. For example, the phrase “how
do I compress a directory into a bz2 file” can be translated to
the Bash Command: tar -cjf FILE_NAME PATH.

In the near term, natural language to Bash Commands trans-
lation is unlikely to replace discussion groups or help forums.
These translations, however, can provide a quick reference
mechanism that may improve on-demand code suggestions
and popups generated by integrated development environments
(IDEs). This type of AI-based approach complements other
prior work, such as SOFix [3], which can fix bugs in code by
mining postings in Stack Overflow.

This paper provides the following contributions to the study
of translating natural language into Bash Commands:

1) It describes an architecture that improves the state-of-
the-art performance on translating national language to
Bash Commands from 13.8% to 53.2%,

2) It presents results demonstrating that the Transformer
model [4] is the current best-performing architecture,

3) It shows how parameter values can be modified to shrink
vocabulary size by 90% and improve accuracy, and

4) It explores the use of Beam Search to provide multiple
potential translations and adapt the beam score to create
heuristic weights that improved the accuracy by 1.2%.

The remainder of this paper is organized as follows: Sec-
tion II summarizes recent development in semantic pars-
ing; Section III describes the overall structure of our model
pipeline; Section IV analyzes the performance of different
models and training techniques, as well as metric and error
analysis for our SOTA model; and Section V presents con-
cluding remarks.

II. BACKGROUND ON TRANSLATION MODELS

The Natural Language to Command (NLC2CMD) com-
petition [5] was launched at the NeurIPS 2020 conference
to foster improvements in translating natural language to
Bash Commands. The competition challenged teams to build
models that could transform descriptions of command-line
tasks in English to their Bash syntax. NLC2CMD is an updated
challenge based on the NL2Bash [6] dataset, in which the
NL2Bash is used as the public training dataset and hidden
validation/test data are provided by IBM [5].

The best results in prior work on the problem of translat-
ing natural language to Bash Commands were produced by
Tellina [7]. Tellina used the Gated Recurrent Unit Network
(GRU) [8], which is a recurrent neural network (RNN) that
achieved 13.8% accuracy on the NLC2CMD metrics proposed
by IBM [5]. The Tellina [7] paper produced the NL2Bash [6]
dataset and new semantic parsing methods that set the baseline
for mapping English sentences to Bash Commands.

Transformer models generally have better accuracy and
faster training times [4] than RNNs [9] on machine translation
tasks. Prior research on machine translation has primarily in-
vestigated a single architecture, Gated Recurrent Unit Network
(GRU), for translating natural language to Bash Commands.
This paper enhances prior research by exploring the perfor-
mance of several architectures on the NLC2CMD dataset.

III. APPLICATION ARCHITECTURE

We tested several data processing, architecture, and post-
processing strategies on the problem of translating natural lan-

guage to Bash commands. Although this model will likely be
improved by subsequent work, it provides a starting point for
researchers focusing on natural language to Bash Command
translation. In particular, our results show that the Transformer
model is a robust foundation for future research in this area.

Bash Commands can be complex and nested, as shown in
Figure 1. This structure helps explain why programmers may
find it hard to create—or even comprehend—Bash Commands,
thereby motivating the need for a customizable parser. We
built our parser atop the Tellina [7] parser that was developed
based on Bashlex [10] in prior work. This parser can parse
a Bash Command into an abstract syntax tree (AST) that
consists of utility nodes, each of which may contain multiple
corresponding flags and parameters. During the tokeniza-
tion stage, utilities, and flags are kept “as is” and parame-
ters are categorized and replaced with _NUMBER, _PATH,
_FILE, _DIRECTORY, _DATETIME, _PERMISSION,
_TIMESPAN, _SIZE, with the default option of _REGEX.
Natural language sentences are pre-processed by filtering out
the stop words. The remaining words are then decapitalized
and lemmatized to create a relatively smaller word vocab.

Fig. 1. Visualization of the Tokenization Process

Our application approach uses Transformers for both the
encoder and the decoder. The encoder and decoder each consist
of six layers. The model is trained for 2,500 steps and uses
an ensemble of the four top-performing single models. Since
the focus is on training an efficient and robust model that can
be deployed easily, the need to modify the network structure
was relatively low. We therefore chose to implement our
Transformer model with OpenNMT [11], which is an open-
source neural sequence learning framework.

We found the Transformer model is (1) sensitive to learning
rate and that (2) larger batch sizes will produce better results.
The detailed training hyperparameters are available on our
GitHub repository1. We trained our model on 2 Nvidia 2080
Ti Graphic cards with 64GB memory. Our model achieved
53.2% accuracy on the hidden test dataset for the NLC2CMD
competition and had the top performance in both inference
time and energy consumption.

IV. IMPROVING NATURAL LANGUAGE TO BASH
TRANSLATION

This section investigates specific research questions and
provides empirically grounded answers that helped guide the

1github.com/magnumresearchgroup/Magnum-NLC2CMD

design of our architecture. Building a natural language to Bash
translation model involves three phases: (1) pre-processing of
the training data, (2) selecting the best model architecture for
the task, and (3) devising an effective approach for determining
which of many possible translations should be presented to the
user. Here we discuss key research findings in each of these
areas and provide information that should aid other researchers
in developing more accurate methods of translating natural
language to Bash Commands.

For our investigation we utilized the NLC2CMD dataset,
which contains 10,347 pairs of English sentences and their
corresponding Bash Commands. Of the 10,347 pairs of data,
29 were not syntactically correct Bash Commands and were
therefore excluded. The size of this public dataset was rela-
tively small in the natural language processing research field
and the goal for data processing was to create a small word
vocabulary and utilize as much data as possible [12].

The ideal metric for an evaluation would check if the
predicted Bash Command produces the same result as the
reference answer. That metric is not practical, however, since
establishing a simulated environment for 10K variant situa-
tions is beyond the scope of this paper. Instead, our scoring
mechanism specifically checks for structural and syntactic
correctness that “incentivizes precision and recall of the correct
utility and its flags, weighted by the reported confidence” [5].
The metric first define two terms: Flag score Si

F and Utility
score Si

U .
The flag score is defined as twice the intersection of

reference flags and predicted flags number minus the union,
scaled by the max number of either reference flags or predicted
flags (Equation 1 [5]). The range of flag scores is between -1
and 1.

Si
F (Fpred, Fref) =

1

N

(
2× |Fpred ∩ Fref| − |Fpred ∪ Fref|

)
(1)

Utility score is defined as the number of correct reference
utilities scaled by capping the flag score between 0 and 1,
minus the number of wrong utilities, scaled by the max number
of either reference utilities or predicted utilities (Equation
2 [5]). By summing all the utility scores within a predicted
command, the range of normalized utility scores is between
-1 and 1.

SU =
∑

i∈[1,T]

1

T
×
(
|Upred = Uref|×

1

2

(
1+Si

F

)
−|Upred 6= Uref|

)
(2)

Comparison of Transformer, RNN/BRNN, and their
combination architectures in terms of accuracy and train-
ing, inference time. Since the literature published on trans-
lating natural language to Bash Commands is sparse, an
important concern is identifying which architectures perform
best. In particular, Sequence-to-Sequence [13] models have
been studied extensively in the context of translations, so we
explored their performance on this particular task. These mod-
els consist of two main components: an encoder and a decoder.
The encoder turns the inputs into vectors and the decoder
reverses the process. We compared different combinations of
encoder-decoder layers, including RNN, Bidirectional RNN

(BRNN), and Transformer, to translate natural language to
Bash Commands.

Chen et al. [14] discovered that (1) Transformer quality
gains stemmed mostly from the Transformer encoder and (2)
RNN decoders often have faster inference times. We therefore
mixed and tested different combinations of encoder and de-
coder types. Table I summarizes the performance comparison
(measured in seconds) between different model structures.

TABLE I
MODEL PERFORMANCE COMPARISON

Encoder Decoder Accu. (Para) Accu. Train Inference
Trans. Trans. 0.509 0.522∗ 1625 0.126
Trans. RNN - - - -
RNN Trans. 0.448 0.486 1490 0.116
RNN RNN 0.151 0.336 1151∗ 0.069
BRNN Trans. 0.483 0.495 1411 0.120
BRNN RNN 0.301 0.476 1218 0.065∗

The results shown in Table I indicate that using the Trans-
former as both an encoder and decoder has the best accuracy
in this particular case.2 Likewise, the model with an RNN as
the decoder can reduce inference time by 50%.

The NLC2CMD competition brought together a widely
diverse set of initial approaches. We entered our architecture
into the NLC2CMD competition and achieved the highest
accuracy with one of the lowest energy and latency scores
of all techniques. The complete results for the competition are
shown in Table II.

TABLE II
THE NLC2CMD COMPETITION RESULTS

Team Model Accuracy Power Latency
Magnum (this paper) 0.532∗ 682.3 0.709
Hubris GPT-2 0.513 809.6 14.87
Jb Clas.+Trans. 0.499 828.9 3.142
AICore Two-stage Trans. 0.489 596.9∗ 0.423
Tellina [7] BRNN (GRU) 0.138 916.1 3.242

Effect of parameters masking on vocabulary size and
translation accuracy. Since obtaining training data of paired
English and Bash Commands is hard, the model may not be
able to learn the entire vocabulary that it must translate to
or from. Finding ways of reducing vocabulary size is thus
essential to develop more accurate models.

Bash Commands typically consist of three terms: (1) utilities
that specify the main goals of the command (e.g., ls), (2)
flags that provide metadata regarding command execution
(e.g., -verbose), and (3) parameters that specify directories,
strings, or other values that the command should operate on.
Each utility has a bounded number of flags that can be passed
to it. In contrast, parameters have a much larger range of
values. Training examples for translating natural language to
Bash Commands provide values for the parameters, which can
vary significantly between translated examples of the same
command.

2The OpenNMT [11] framework currently does not support a Transformer
encoder + RNN decoder.

We hypothesized that including the actual parameter values
(such as ls /var/www and ls /etc) from the training ex-
amples would greatly increase the overall vocabulary size and
decrease model accuracy. Our rationale for this hypothesis was
that there were few limited paired examples and translation
models typically perform worse with large vocabulary sizes
and limited training data.

Fig. 2. Example of a Bash Command

To test this hypothesis, we used the English and Bash tok-
enizers from the Tellina model [7] with our modification. As
shown in Figure 2, Bash tokens can be categorized as utilities,
flags, and parameters (i.e., arguments, such as a specific path).
The English tokenizer decapitalized all the letters and replaced
parameters with generic forms. The Bash tokenizer parsed
Commands into syntax trees with each element labeled as
utility, flag, or parameter.

The accuracy metric focused mainly on the structure and
syntactic correctness of the Bash command. We therefore
replaced all the parameters in Bash with their correspond-
ing generic representations. For example, a folder path like
tmp/bin is replaced with PATH. By applying this transfor-
mation, the Bash vocabulary size was reduced from 8,184 to
776 tokens, and the accuracy of the Transformer models we
tested increased by 1.3%. As shown in Table I, we achieved
accuracy and performance increases across all architectures,
especially for the ones with lower accuracy.

Utilizing Beam scores for balancing between exploration
gains and minimizing scoring penalties. To better utilize the
Bash suggestion ability of the translation model, users were
provided with five Bash translations for each English sentence,
ranked by confidence from high to low. One way to produce
multiple translations is to enable Beam Search [15], which
creates a tree structure exploration space and evaluates the
probability of words at each step. This scoring mechanism
thus allowed for five predictions for each invocation (English
sentence) and expected confidence weights at each position.

We explored the impact of Beam Search on translation
accuracy. When Beam Search is enabled, the Transformer
model produced a negative beam score for each corresponding
prediction. We observed a strong correlation between a high
score and a correct prediction by mapping the exponential of
the beam score to the range 0-1. Figure 3 shows the confi-
dence score distribution contrasted with correct and incorrect
predictions. We also found the translation quality of the same
sentence between Beam Searches tended to have a strong
correlation, which means Beam Search alone is an insufficient
solution for five Bash translations.

When the first prediction in our tests got a negative score,
only 9.2% of the time did the other four predictions get any
positive score. Based on our observations, we hypothesized

Fig. 3. Histogram of Confidence Score Distribution

that when the first result from Beam Search led to a wrong
prediction, the rest of the predictions would also likely be
incorrect. A better solution would thus involve ensembling
different models to decrease the bias for the five predictions.

The metric used to measure the “accuracy” of predictions is
critical in any deep learning model. A key question is therefore
how to communicate the expected “quality” or “accuracy”
of a translation to a user. The goal is to ensure they see a
wide range of possible translations, but also understand which
translations the model are more confident about.

For each English sentence, five translations to Bash Com-
mands are produced to better assist users by providing multiple
choices. The metric for evaluating the final (i.e., all five)
accuracy can be summarized as the following [5]: If any of
the predictions have a positive score, take the max among the
five, otherwise take the average:

if ∃p∈A(nlc) such that S(p) > 0,

Score(A(nlc)) = max
p∈A(nlc)

S(p) (3)

otherwise,
Score(A(nlc)) =

1

|A(nlc)|
∑

p∈A(nlc)

S(p) (4)

Considering the scoring mechanism that every predicted result
contributes to model performance evenly, we hypothesized that
using 1.0 as the first confidence weight and using Beam Search
to produce the other four prediction weights would improve
model performance. The evaluation score increased accord-
ingly. In contrast, the improvement vanishes if completely
neglecting other predictions when the first prediction is wrong.
To achieve the balance between exploration and minimize
punishment, we capped our confidence score empirically with
the following equation:

Confidencei =
(
eBeamScore
i

)
/2, 2 ≤ i ≤ 5 (5)

A. Error Analysis

Previous research [6] listed sparse training data, utility
errors, and flag errors as the top three causes of wrong
predictions. Since sparse training data is a subjective metric,
we only analyze the incorrect utility and flag predictions. We

used a separate, independently created testing dataset of 1,867
samples (previous work manually analyzed 100 samples from
the dev dataset collected the same way as the training dataset),
and evaluated the accuracy results in more detail.

For all the test Bash translation items, 52.2% were translated
correctly, 33.9% were translated to the wrong utility, and
14.0% had flag errors in the translation. More than two-thirds
of all errors are utility errors, meaning the variety of flags is
less significant than having enough data for each utility.

V. CONCLUDING REMARKS

This paper evaluated various deep learning approaches to
translating natural language into Commands in the Bash script-
ing language and presented the highest performing model pub-
lished to date on the NLC2CMD dataset. Our results showed
that Transformer-based models considerably outperform the
RNN-based models in the English-to-Bash translation task.
Word vocabulary size and whether to post-process translations
directly affected the results.

REFERENCES

[1] J. Sammet, “The use of english as a programming language,” Commun.
ACM, vol. 9, pp. 228–230, 1966.

[2] J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on
freebase from question-answer pairs,” in EMNLP, 2013.

[3] X. Liu and H. Zhong, “Mining stackoverflow for program repair,” 2018
IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp. 118–129, 2018.

[4] I. Caswell and B. Liang, “Recent advances in google translate,” 2020.
[Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-
in-google-translate.html

[5] M. Agarwal, T. Chakraborti, Q. Fu, D. Gros, X. V. Lin, J. Maene,
K. Talamadupula, Z. Teng, and J. White, “Neurips 2020 nlc2cmd
competition: Translating natural language to bash commands,” ArXiv,
vol. abs/2103.02523, 2021.

[6] X. V. Lin, C. Wang, L. Zettlemoyer, and M. D. Ernst, “Nl2bash: A
corpus and semantic parser for natural language interface to the linux
operating system,” ArXiv, vol. abs/1802.08979, 2018.

[7] X. V. Lin, “Program synthesis from natural language using recurrent
neural networks,” 2017.

[8] J. Chung, Çaglar Gülçehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” ArXiv,
vol. abs/1412.3555, 2014.

[9] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur,
“Recurrent neural network based language model,” in INTERSPEECH,
2010.

[10] I. Kamara, “Bashlex,” 2014. [Online]. Available:
https://github.com/idank/bashlex

[11] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush, “Open-
nmt: Open-source toolkit for neural machine translation,” ArXiv, vol.
abs/1701.02810, 2017.

[12] B. Ahmadnia, P. Kordjamshidi, and G. Haffari, “Neural machine transla-
tion advised by statistical machine translation: The case of farsi-spanish
bilingually low-resource scenario,” 2018 17th IEEE International Con-
ference on Machine Learning and Applications (ICMLA), pp. 1209–
1213, 2018.

[13] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in NIPS, 2014.

[14] M. Chen, O. Firat, A. Bapna, M. Johnson, W. Macherey, G. Foster,
L. Jones, N. Parmar, M. Schuster, Z.-F. Chen, Y. Wu, and M. Hughes,
“The best of both worlds: Combining recent advances in neural machine
translation,” in ACL, 2018.

[15] S. Wiseman and A. M. Rush, “Sequence-to-sequence learning as beam-
search optimization,” in EMNLP, 2016.

