
1

Controlling Quality-of-Service in Distributed Real-time
and Embedded Systems via Adaptive Middleware

Richard E. Schantz, Joseph P. Loyall, Craig Rodrigues

BBN Technologies
Cambridge, MA, USA

{schantz, jloyall, crodrigu}@bbn.com

Douglas C. Schmidt
Vanderbilt University
Nashville, TN, USA

d.schmidt@vanderbilt.edu

Abstract
Computing systems are increasingly distributed, real-

time, and embedded (DRE) and must operate under
highly unpredictable and changeable conditions. An im-
portant and challenging problem for DRE systems is
therefore adaptation of behavior and reconfiguration of
resources to maintain the best possible application per-
formance in the face of changes in system load and avail-
able resources. To provide predictable mission-critical
quality of service (QoS) end-to-end, QoS-enabled mid-
dleware services and mechanisms have begun to emerge.
The current generation of commercial-off-the-shelf
(COTS) middleware, however, lacks adequate support for
applications with stringent QoS requirements in changing,
dynamic environments.

This paper presents two contributions to research on
adaptive and reconfigurable DRE systems. First, we de-
scribe the structure and functionality of an advanced
middleware platform for developing applications that
apply various techniques to adapt themselves to changes
in resource availability to meet real-time quality of ser-
vice (QoS) requirements. Second, we present the results of
a case study of a multimedia application for Unmanned
Aerial Vehicle (UAV) video distribution we developed
using this middleware platform in conjunction with QoS-
enabled operating systems and networking protocols. We
describe the design of the multimedia application using
our middleware platform and report empirical results
showing how adaptive behavior and end-to-end resource
management techniques are used to reconfigure the sys-
tem dynamically to meet timeliness requirements, even in
the face of processing power and network bandwidth re-
strictions that are characteristic of many types of DRE
systems. Our results show that our adaptive middleware
can effectively coordinate the reconfiguration of resources
end-to-end and adapt application behavior to continue to
meet QoS requirements over changing environments.

Keywords: Adaptive middleware, reconfigurable DRE
systems, aspect-oriented design, and multimedia applica-
tions.

1 Introduction

1.1 Emerging Trends and Challenges
Some of the most challenging problems facing soft-

ware developers are those associated with producing

software for real-time and embedded systems in which
computer processors control physical, chemical, or bio-
logical processes or devices. Examples of such systems
include airplanes, automobiles, CD players, cellular
phones, nuclear reactors, oil refineries, and patient moni-
tors. In most of these real-time and embedded systems,
the right answer delivered too late becomes the wrong
answer, i.e., achieving real-time performance end-to-end
is essential.

Real-time and embedded systems have historically
been relatively small-scale, but the trend is toward much
greater functionality and complexity. In particular, real-
time and embedded systems are increasingly being con-
nected via wireless and wireline networks – including the
Internet – to create large-scale distributed real-time and
embedded (DRE) systems, such as hot rolling mills, tele-
immersion environments, fly-by-wire aircraft, and total
ship computing environments. These DRE systems in-
clude many interdependent levels, such as network/bus
interconnects, many coordinated local and remote endsys-
tems, and multiple layers of software, that together yield
the following challenges.
• As distributed systems, DRE systems require capa-

bilities to manage connections and message transfer
between separate machines.

• As real-time systems, DRE systems require predict-
able and efficient control over end-to-end system re-
sources, such as memory, CPU, and network band-
width.

• As embedded systems, DRE systems have weight,
cost, and power constraints that limit their computing
and memory resources. For example, embedded sys-
tems often cannot use conventional virtual memory,
since software must fit on low-capacity storage me-
dia, such as EEPROM or NVRAM.
DRE systems have historically been developed and

validated using relatively static development and analysis
techniques (such as function-oriented design and rate
monotonic analysis) to implement, allocate, schedule, and
manage their resources. These static approaches are most
suitable for closed DRE systems, where the set of applica-
tion tasks that will run in the system and the loads they
will place on system resources change infrequently and
are known in advance. They are not well-suited, however,
for the next-generation of open DRE systems, which
evolve more rapidly and must collaborate with multiple
remote sensors, provide on-demand browsing and actua-
tion capabilities for human operators, and respond flexi-

2

bly to unanticipated situational factors that arise at run-
time [9].

In open DRE systems, end-to-end control and adapta-
tion of various application quality of service (QoS) prop-
erties (such as latency, jitter, and throughput) are essential
to maintain the best possible performance in the face of
changes in available computing and networking resources
and changes in mission requirements. The computing and
networking infrastructure must therefore be flexible
enough to support varying workloads at different times
during an application’s lifecycle, while also maintaining
highly predictable and dependable behavior. Key chal-
lenges for DRE systems are therefore control and adapta-
tion of resources to maintain the best possible real-time
application performance in the face of competing de-
mands and changes in load and available resources.

1.2 Towards Adaptive Middleware for DRE
Systems

 R&D activities on QoS for DRE systems over the past
decade [2, 3, 4, 6, 7, 8, 10, 12, 13] have yielded a number
of improvements to commonly available computing and
networking infrastructures that can recognize and react to
environmental changes. At the heart of these infrastruc-
tures is middleware. Middleware is systems software that
resides between the applications and the underlying oper-
ating systems and networks to provide reusable services
that can be composed, configured, and deployed to create
DRE applications rapidly and robustly [5].

As computing and networking performance continues
to increase, so too does application demand for more con-
trol over computing and networking resources through
middleware interfaces. Meeting this growing demand
motivates the need for adaptive middleware-centric QoS
management abstractions [6,8,10] and aspect-oriented
software techniques [20,22]. Supporting this adaptive
middleware QoS management architecture efficiently,
predictably, and scalably requires new dynamic and adap-
tive resource management techniques that can (1) inte-
grate control and measurement of resources end-to-end,
(2) mediate the resource requirements of multiple (often
competing) applications, and (3) dynamically adjust re-
source allocation in response to changing requirements
and conditions. Our earlier R&D efforts on these topics
have focused on The ACE ORB (TAO) [3] and the Quality
Objects (QuO) framework [2], which leverage Real-time
CORBA [12] to provide efficient and predictable middle-
ware structures and services, and adaptive QoS man-
agement policies, respectively, in supporting DRE system
QoS requirements. TAO
(deuce.doc.wustl.edu/Download.html) is an open-source
distribution middleware layer platform targeted (for DRE
applications with both deterministic and statistical QoS
requirements, as well as best-effort requirements. QuO
(quo.bbn.com/quorelease.html) is an open-source QoS
adaptive middleware layer framework designed to run on
distribution middleware (such as CORBA and Java RMI)
using aspect-oriented languages [19] and techniques [21]

to support applications that can specify (1) their QoS re-
quirements via rule-based contracts, (2) the system ele-
ments that must be monitored and controlled to measure
and provide QoS, and (3) the structure and behavior for
adapting to QoS variations that occur at run-time.

This paper describes how TAO and QuO have been
integrated with multimedia middleware services (such as
the CORBA Audio/Video Streaming Service [11]), real-
time operating systems (such as Real-time Linux [14]),
and QoS-enabled networking protocols (such as IntServ
[16] and DiffServ [15]). The goal of this integration is to
simplify the development and operation of robust DRE
systems that can adapt to changes in resource availability
toward meeting their applications’ QoS requirements. We
present our approach in the context of a multimedia ap-
plication for Unmanned Air Vehicles (UAV) video distri-
bution we have developed using adaptive middleware. In
this application a video flow from a UAV source adapts to
meet its mission QoS requirements (such as timeliness
and video quality) in the face of restrictions in processing
power and network bandwidth.

The ideas underlying this paper represent a long term
and continuing research initiative in this area. The paper
is based on, incorporates, and extends earlier work, some
of which has been reported earlier in fragmentary fashion.
A key contribution of this paper is to pull together more
detailed aspects of the technical design and applied appli-
cation context with new and more extensive empirical
evaluation results. In particular, we discuss distinct be-
haviors and techniques that can be used to adapt to limita-
tions and restrictions in processing power and network
bandwidth, e.g., reduction of the video flow volume by
selectively dropping frames and managing the resources
associated with the end-to-end paths. We also present and
analyze empirical results gathered to evaluate this appli-
cation in the context of an open experimentation platform
(OEP) developed to evaluate these technologies in opera-
tional contexts.

An OEP is a hardware/software laboratory environ-
ment incorporating COTS infrastructure and representa-
tive applications operating in it, which can be modified
and augmented with technology and application innova-
tions, toward evaluating their contribution to technical
challenges in that context. We are currently using the
Emulab facility at the University of Utah
(www.emulab.net) to host the multimedia application
OEP environment. The results from our OEP experiments
in Section 5 show how the adaptation techniques pre-
sented in Section 4 can be controlled effectively by apply-
ing the integrated resource management framework de-
scribed in Section 3 and by superimposing application-
level policies managed via middleware to regulate per-
formance problems caused by processor and/or network
load. Our multimedia application case study in Section 2
provides insight into emerging aspect-oriented engineer-
ing practices where applications are composed from exist-
ing software component building blocks, and highlights
some of the difficulties encountered and solution paths

taken to meet end-to-end QoS constraints within this de-
velopment paradigm.

2 Applying Managed QoS to DRE Systems:
the Multimedia Application Case Study

This section presents our case study of a multimedia
application for UAV video distribution. In this applica-
tion, multi-layer resource management mechanisms are
coordinated via adaptive middleware to ensure video
flows can meet their mission QoS requirements (such as
timeliness, jitter, and image resolution) by adapting to
restrictions in available processing power and network
bandwidth. As shown in Figure 1, the resulting architec-
ture adaptively controls video transmission captured from
cameras via a distribution process to viewers on various
computer displays using the following three stage pipe-
line:
1. Sensor sources, (endsystems 1-3) including processes

with live camera feeds (and those that simply replay
from a pre-recorded file to simulate airborne sensors),
which send video images to

2. Distributor processes, (endsystem 4) which are re-
sponsible for distributing the video to one or more

3. Receivers, (endsystems 5-7) including human-oriented
video displays and CPU-intensive image processing
software.

The management of end-to-end QoS in the UAV
video dissemination application crosscuts the core func-
tional decomposition of the application. It therefore repre-
sents a separate concern, one representing how the work
is done, rather than what is done and requires coordinat-
ing the QoS management from end-to-end in a video
stream and across video streams that are sharing re-

sources. Too often, these types of applications have been
developed by intertwining the QoS management code
within the core functionality code.

Our UAV multimedia application uses the QuO and
TAO middleware outlined in Section 1.3 to separate the
QoS concerns and manage them by engaging application
adaptive behavior, such as dropping frames, requesting
resource reservations, indicating prioritization among data
streams, and ensuring transparent fault recovery in a
bounded amount of time. QuO includes a QoS encapsula-
tion model [21] and a set of aspect-oriented languages
[23] we used to develop encapsulated QoS behaviors as
separate aspects and weave the QoS management code
into the places where QoS can be measured, controlled,
and managed, as illustrated in Figure 2. In the QuO QoS
encapsulation model the individual QoS behaviors are
known as qoskets, and this term is used throughout the
paper to denote specific, narrowly focused aspects of an
overall QoS management approach.

This application exhibits a wide variety of character-
istics that are representative of many multimedia applica-
tions. These characteristics include varying (1) data for-
mats, such as MPEG and PPM, with different data sizes
and compression characteristics, (2) network transports,
such as wireless, LAN, and WAN, with variable and con-
strained bandwidth over both noisy and private channels,
(3) image processing algorithms, such as image display
and image recognition processes, with different CPU us-
age patterns, (4) granularities of real-time deadlines, rang-
ing from microseconds to milliseconds and seconds, and
(5) resource constraints. Thus, while this paper demon-
strates our results on a particular application suite, the
characteristics of that suite are representative of a broad
class of time-sensitive, mobile, and dispersed applica-
tions, especially in the domains of pervasive computing,
remote sensing, hazardous operating environments, and
automated process control.

In the context of our multimedia application, manag-
ing real-time end-to-end QoS requires supporting and
coordinating the following measures of operational effec-
tiveness:

Control Station Host 5

CORBA A/V
Streaming Service

UAV Host 1

Image
File

Image
File

Host 4

W ired

W ireless
Ethernet

Image
Distributor
Process 1

Image
Distributor
Process 2

Image
Distributor
Process 3

Sensor
Source

Process Filter

Filter
Contract

UAV Host 2

Image
File

Image
File

Sensor
Source

Process Filter

Filter
Contract

UAV Host 3
Sensor
Source

Process
Scale/

Compress

Quality
Contract

Bandwidth
Management

Bandwidth
Management

Bandwidth
Management

Throughput
Contracts

Displays

Control Station Host 6

Throughput
Contracts

Displays

Control Station Host 7

ATR
Contract

ATR
Display

… …

Fig. 1. Architecture of the Multimedia Application Suite

• Minimal frame rate. Full motion video is typically
30 frames per second (fps), but smooth video is still
acceptable above 20 fps. Lower frame rates are visi-
bly less smooth, but are usable as long as other quali-
ties (such as data fidelity and jitter) are controlled.
Our multimedia application uses variable frame rates

Sender Create RTP
Header
Timestamp
Sequence In

st
ru

m
en

t
Pe

rio
di

c
D

el
iv

er
y A/V

Streams
Adapter

MP E G_ A V _ S en d e r: :M P E G_ A V _S e n d er () : f ra me _ n um b er _ (0), s ta r te d _(0) , te m p _ le n _(0) { }

// / E a c h ti m e t h e M P E G p a rs e r ha s a n e w f ra m e , it c al ls t h is m e th o d

in t MP E G_ A V _ S e nd e r: :p r o ce s sF r a m e(c on s t MP E Gp a rs e r* m p, c h ar * b u f, s iz e_ t le n) {

fo r (C on n e ct io n _ M a n ag e r: :P r o to c ol _O bj e ct s: :i te r at o r ite r a to r = p r ot o co l_ o b je ct s .b eg i n () ;

 it er a to r ! = p ro t oc o l_ o bj e ct s. en d (); + + it e ra to r) {
 i n t re s ul t = (* i te ra t or). in t _i d _- > se n d _f ra me (n ew _b u f, n e w _ le n) ;

 i f (r e su lt < 0) A C E _ E R R OR _ R E T U R N ((L M _ E R R OR , " s en d f a ile d :% p " ,

 " M P E G _ A V _ S en d e r: :p r oc e ss _ fr a me se n d \n "), - 1) ;

 p r e v_ t v = n o w _t v ; }

 th i s- > fr a me_ n u mb e r_ + + ; }
 A C E _C A T C H A N Y {

 A C E _ P R IN T _E X C E P T I O N (A C E _ A N Y _ E X C E P T I ON , "A V _S e n d er :: p ro c es s _f ra m e F a i le d\ n ");

 r et u rn -1 ; }

 A C E _E N D T R Y ;

 r e tu r n 0 ; }
te m p la t e cl as s A C E _ A u to _ A r ra y _P t r <c h a r> ;

lo n g se n d er _ p id = 0 ;

st a tic A C E _C S t ri n g p ro c es s _n a me _ ;

S en d e r: :S e n de r (vo id) : d e bu g _ le v el _ (0), s en d e r_ m m d ev ic e _ (0) , f il en a m e _ (" i np u t ") , in p u t_ fi le _ (0) ,

 f ra me _ ra t e_ (5), e nd l es s _l oo p _ (0) , se n d er _ na me _ (" se n de r "), u se _ q os _ st re a m _ (0) {

 m p _. re g is te r C al lb a ck (&a v _) ; }
in t S en d e r: :p a r se _ ar g s (i nt a r gc , c ha r * * ar g v) {

 i f(a rg c < 2) { u s a ge (); r et u rn - 1 ; }

 f o r(in t i= 0 ; i < a rg c ; i+ +) {

 / / P ar s e co mm an d l in e a rg u m e n ts

 A C E _G et _O pt o p ts (a rg c , a r g v, " s: f: r :d :l ");
 i n t c;

 w hi le ((c = o p ts ()) ! = -1) {

 s w it ch (c) {

 ca s e 'f ': th i s- > fi le na me _ = o p t s.o p t ar g ; br e ak ;

 ca s e 'r ': t hi s- > fr a me _r a te _ = A C E _ OS : :a to i (o p ts .o p t ar g); b r ea k ;
 ca s e 's ': t hi s- > se n d er _ n am e_ = op t s. op t ar g ; br e a k;

 ca s e 'l ': th i s- > en d le s s_ lo o p _ = 1 ; br e ak ;

 ca s e 'd ': t h is -> d eb u g _ le ve l _ = A C E _ O S :: a to i (o p ts .o p ta r g) ; b re a k;

 d ef au l t: u s ag e () ; re tu r n - 1; } }

 r e tu r n 0 ; }
in t S en d e r: :i n it (i n t ar g c, c h ar * a rg v [] , C O R B A : :E n v ir o nm en t & A C E _ T R Y _ E N V) {

 / / In i tia l iz e th e e n dp o in t s tr a te g y w it h th e o r b a nd po a .

 i f (r e su lt ! = 0) re tu r n r es u lt ;

 / / In i tia l iz e th e c o nn e ct io n m an a g er .

 i f (r e su lt ! = 0) re tu r n r es u lt ;
 / / P ar s e th e c om m a nd li ne a r g um en t s

 r e su l t = th is - >p a r se _ ar g s (a r gc , a rg v);

 i f (r e su lt ! = 0) re tu r n r es u lt ;

 / / Op en fi le to re a d.

 t h is -> i np u t _f il e_ = A C E _ OS :: fo p en (t hi s- > fi le n am e_ .c _ st r () , "r ");
 i f (t h is -> in p u t_ f ile _ = = 0)

 A C E _ E R R OR _R E T U R N ((L M_ D E B U G , " C a n n ot o p en in p u t f il e %s \n " , th is - >f il en a me _ .c _s tr ()) , -1);

 / / S er v an t R e fe r en c e C o un t in g t o ma n ag e l ife t ime

 r e tu r n 0 ; }

// M e t ho d t o s en d d a ta a t t he s p ec i fie d r a te
in t S en d e r: :p a c e_ d a ta (C O R B A : :E n v ir on m en t &A C E _ T R Y _ E N V) {

 / / T h e tim e th a t sh o u ld l a ps e b et w e en tw o c o n se cu t iv e fr a me s se n t.

 A C E _T i m e _V al u e in te r _f r am e_ ti me ;

 / / T h e tim e b et w ee n t w o c on s e cu t iv e fr a m e s.

 i n te r _f ra m e _ ti me .s et (1 / (d o ub l e) t h is -> fr a m e _r a te _);
av _ .s e tI n te rf ra m e T i m e(in t er _ fr a m e _t ime) ;

 c h a r b uf [B U FS I Z];

 A C E _T R Y {

 // T h e ti me t ak e n fo r s e nd i ng a fr a me a nd p re p ar in g f o r th e n e xt f ra m e

 A C E _ Hig h _ R es _ T ime r e la p se d _ tim er ;

 // P u t an ex tr a M P E G s ta r t s e q ue n c e to m a k e D V D v ie w ha p p y

 mp _ .p u tB y te (0) ; m p _. p u tB y te (0) ; mp _. p ut B y te (1) ; m p_ . pu t B y te (0);

 // C o n ti nu e t o se n d d a ta t il l th e fi le i s re a d to th e e nd .
 w h il e (1) {

 / / R ea d f ro m th e f ile i n to a m es sa g e b lo c k .

 i n t n = A C E _ OS :: fr e ad (b u f, si z eo f(c ha r), B U F S I Z , t h is -> in p u t_ f ile _);

 i f (n < 0) A C E _ E R R OR _ R E T U R N ((L M_ E R R OR , " S en d e r: :p a c e_ d a ta f re a d f ai le d \n "), -1) ;

 i f (n = = 0) {
 if (th i s- >e n d le ss _ lo o p _) {

 // A t e nd of f il e go b a c k to th e b eg i nn i n g

A C E _ OS :: r ew i n d (t h is -> in p u t_ f ile _); }

 e ls e {

 // A t e nd of f il e br e a k th e l oo p a n d e n d th e s en d e r.
if (D E B U G_ L E V E L > 0) A C E _ D E B U G ((L M_ D E B U G , "H an d le _ S ta r t: E nd of f il e\ n "));

 b re a k ; } }

 f o r(in t i= 0 ; i < n ; i + +) { m p_ . pu t B yt e (b u f[i]); } } }

 A C E _ C A T C H A N Y {

 A C E _ P R IN T _ E X C E P T I O N (A C E _ A N Y _ E X C E P T IO N , " S e n de r :: p ac e _d a ta Fa i le d \n ");

 re t ur n - 1 ; }
 A C E _ E N D T R Y ;

 r e tu r n 0 ; }

vo id S en d er : :u s ag e () {

 A C E _ D E B U G((L M _D E B U G, " U s a ge : \n \n ")) ;

 A C E _ D E B U G((L M _D E B U G, " s e n de r - f [fi le n am e] - r [f ra me r a te] -s [se n d er n a me]\ n "));
 A C E _ D E B U G((L M _D E B U G, " [-l, l oo p f o re v er] - d [d e b u g le v el]\ n"));

 A C E _ D E B U G((L M _D E B U G, " [-- qo s]\ n")); }

co n st c h ar * Se n d er : :n a m e () c on s t { re tu r n s en d e r_ n a me _. c_ s tr () ; }

in t ma in (in t a rg c , c h a r ** a r gv) {

 s e nd e r _p i d = A C E _ O S :: g et p id () ;
 p r o ce ss _ n am e_ = A C E :: b as e na m e (ar g v[0]) ;

 A C E _ D E C L A R E _ N E W _ C O R B A _ E N V ;

 A C E _ T R Y {

 C O R B A : :O R B _ v a r or b = C O R B A :: O R B _ in i t (a rg c , a r g v, 0 , A C E _ T R Y _E N V);

 A C E _ T R Y _ C HE C K;
 C O R B A : :O b j ec t_ v a r ob j = o r b -> r es o lv e_ i ni ti a l_ re f er en c e s (" R o ot P O A " , A C E _ T R Y _ E N V);

 A C E _ T R Y _ C HE C K;

 // G et t h e P OA _ va r o b je ct f ro m O b je c t_ v ar

 P or t ab l eS e rv e r: :P O A _v a r r oo t _p o a = P o rt a b le Se r v er :: P OA :: _ n ar r ow (o b j. in (), A C E _ T R Y _ E N V) ;

 A C E _ T R Y _ C HE C K;
 P or t ab l eS e rv e r: :P O A Ma n ag e r_ v a r m g r = r oo t _p o a -> th e _ P O A M a n a ge r (A C E _T R Y _E N V) ;

 A C E _ T R Y _ C HE C K;

 mg r- > ac t iv a te (A C E _T R Y _E N V);

 A C E _ T R Y _ C HE C K;

 // I ni ti al iz e t he A V S tr e am c om po n e nt s .
 T A O_ A V _ C O R E :: in s ta n c e () -> in i t (o rb . in (), r oo t _p o a .in () , A C E _T R Y _ E N V) ;

 A C E _ T R Y _ C HE C K;

 // I ni ti al iz e t he C l ie n t.

 in t r es u lt = 0 ;

 re s u lt = S E N D E R : :in s ta n c e () -> in i t (a rg c , ar g v, A C E _ T R Y _ E N V) ;
 A C E _ T R Y _ C HE C K;

 if (re su l t < 0) A C E _E R R O R _R E T U R N ((L M _E R R O R , " c li en t :: in it f a ile d \n "), - 1) ;

 S E N D E R :: in s ta n ce ()- > p ac e _d a ta (A C E _ T R Y _ E N V) ;

 A C E _ T R Y _ C HE C K; }

 A C E _ C A T C H A N Y {
 A C E _ P R IN T _ E X C E P T I O N (A C E _ A N Y _ E X C E P T IO N ," S en d e r F ai le d \n "); r et u rn -1 ; }

 A C E _ E N D T R Y ; A C E _C H E C K _ R E T U R N (-1);

 r e tu r n 0 ; }

A/V
Streams
Adapter

Distributor
Dis tri butor_Rece ive r_C al lback::Distri butor _Rec eiver_C al lbac k (voi d) { }
Int D is tribut or_Rec ei ver _Call back::re cei ve_frame (AC E_Mess age_Bl ock *f rame,
 TAO_AV_fr am e_i nfo *, const ACE _A ddr &) {
 // Upc all from the A VStre ams when ther e i s dat a t o be rec eive d f rom the se nde r.
 // Send fr ame to all rec ei vers.
 for (Connec ti on_Manager ::Pr otocol _Objec ts: :i ter ator ite rator = prot oc ol _obje cts .begi n ();
 iter ator ! = pr otocol_objects .end (); ++i te rator) {
 i nt res ult = (*iter ator) .int_id_- >send_f rame (frame);
 i f (r esul t < 0) ACE_ERR OR_RETUR N ((LM_ERROR , "se nd fai le d:%p",
 "Se nder::pac e_data send\n") , -1) ; }
 re turn 0; }
int Di st ribut or_Rec ei ver _Call back::handle_dest roy (void) {
 // Call ed when t he sender request s the st ream to be shutdow n.
 ACE_TRY_NEW_ENV {
 / / We c an clos e down now.
 DISTRIBUTO R:: ins tance ()->done (1); }
 ACE_CATC HANY {
 AC E_PRIN T_E XCEPTION (AC E_ANY_EXCEPT ION ,
 "D is tributor_Re ce iver_Cal lback: :handl e_destr oy Faile d\ n");
 return -1; }
 ACE_ENDTR Y;
 re turn 0; }
 int r esult = obje ct_->se nd_fram e (fram e);
 prev_tv = now_tv; }
 re turn re sult ; }
Dis tri butor:: Dist ri butor (voi d) : debug_le vel _ (0), s ende r_name _ ("sende r") ,
 di str ibutor _name _ ("di st ributor ") , done_ (0) { }
Dis tri butor:: ~Dis tri butor (voi d) {}
Int D is tribut or::par se_args (int ar gc, char **argv) {
 // Par se c ommand li ne argume nts
 ACE_Ge t_O pt opt s (ar gc, argv, "s:r: d:");
 int c ;
 whil e ((c = opts ()) ! = -1) {
 swi tch (c) { case ' s': thi s- >s ende r_nam e_ = opts.optarg; bre ak;
 case ' r': thi s ->distri butor_nam e_ = opts .opt arg; bre ak;
 case ' d': this ->debug_l evel _ = ACE _O S::atoi (opts. opt arg) ; break;
 de fault : return -1; } }
 re turn 0; }
int Di st ribut or::i nit (i nt argc, char ** argv, C ORBA::Envi ronm ent &A CE_TRY_ENV) {
 // Par se t he com mand l ine argum ents
 re sult = t his ->pars e_ar gs (argc , argv) ;
 if (res ult != 0) re turn re sult ;
 re turn 0; }
int Di st ribut or::done (voi d) const { re turn this->done_; }
voi d Di str ibutor: :done (int done) { this->done_ = done; }
int mai n (int argc , c har **argv) {
 ACE_DECLA RE_NEW_CORBA_EN V;
 ACE_TRY {
 / / Ini ti al iz e the ORB fi r st .
 CO RBA: :ORB_var orb = CORBA ::ORB_i ni t (argc, ar gv, 0, ACE_TR Y_ENV) ;
 AC E_TRY_CHEC K;
 CO RBA: :Obj ect _var obj = orb->re sol ve_i nit ial_refe rences ("RootPOA", ACE_TRY _EN V);
 AC E_TRY_CHEC K;
 / / Get the POA _var obje ct fr om Objec t_var.
 Por tabl eServe r:: POA_var r oot _poa = PortableServe r:: POA::_nar row (obj .in () , ACE_TRY_EN V);

 A CE_TRY_CHEC K;
 Portabl eSer ver: :POA Manager _var m gr = r oot_poa->the_POAManager (ACE_TRY_EN V);
 A CE_TRY_CHEC K;
 m gr- >act ivate (ACE _TR Y_ENV) ;
 A CE_TRY_CHEC K;
 / / Ini ti aliz e t he AVStreams components.
 / / Ini ti aliz e t he Di st ri butor
 i nt res ult = D ISTRI BUTO R:: inst ance ()- >ini t (argc , ar gv, ACE_TR Y_ENV);
 A CE_TRY_CHEC K;
 i f (resul t != 0) re tur n re sul t;
 w hi le (!DISTR IBU TOR::i nstance ()->done ()) {
 orb- >perf orm _work (ACE _T RY_ENV);
 ACE_TR Y_CHECK ; }
 / / Hac k for now. ...
 A CE_OS::s leep (1) ; }
 ACE_CATC HANY {
 A CE_PRIN T_EXCEPTION (AC E_ANY_EXCE PTIO N,"mai n");
 re turn -1; }
 ACE_ENDT RY;
 ACE_CHE CK_RETUR N (-1);
 re turn 0; }

Ins
tru

me
nt

Fi
lte

r

Fr
ag

me
nt

Ins
tru

me
nt

Fi
lte

r

Fr
ag

me
nt

SendAllFrames

DropBFrames
DropPandBFrames

A/V
Streams
Adapter

CPU Load

Sender
Control

Sender
Control

Distributor Host

UAV

A/V
Streams
Adapter

Receiver
in t R ec e iv er _ St r ea m E n d Po i nt :: g et _c a llb a c k (c o ns t ch a r * flo w n a me, T A O _ A V _ C al lb a ck *&c a ll ba c k) {

 A C E _ D E C L A R E _ N E W_ C OR B A _ E N V ;

 / / C re a te a nd re tu r n th e s en d e r ap p li ca ti o n ca ll b ac k t o A V S tr ea ms f or f u rt he r u p ca ll s.
 i n t r e tv a l = 0 ;

 c a ll ba c k = &t hi s- > ca ll b ac k _;

 r e tu r n re tv a l; }
R ec e iv er _ C al lb a ck : :R e ce iv e r_ C a ll ba c k (v o id) : fr am e_ c ou n t_ (1) {

 A C E _ I N E T _A d d r in e t_ a dd r (o u tp u t_ p o rt , " l oc a lh o st ") ;

 d v d vi ew _ e n dp o in t _. op e n (in e t_ a d dr); }

in t R ec e iv er _ C al lb a ck : :r ec e iv e_ fr a m e (A C E _ Me s sa g e_ B lo c k * fr am e, T A O_ A V _f r am e _ in fo * /* fr am e_ in f o* /,
 co n st A C E _ A d d r &) {

 / / U pc a ll fr o m t he A V S t re a ms w h en t h er e is d a ta t o b e re ce iv e d fr o m t h e se n de r .

 + + fr a m e _c o un t _;
 w h i le (f r am e ! = 0) {

 ch a r * bu f = f ra m e -> r d _p tr ();

 if (o u tp u t _f il e) {
 // W r it e th e re c ei ve d d a ta t o th e fi le .

 in t re su l t = A C E _OS : :f w ri te (se nd _ b u f, se n d _l en , 1 , o u tp u t_ fi le); }

 d vd v ie w _ en d p oi n t_ .s en d (se n d_ b u f, se n d _l en) ;

 fr a m e = fr a m e -> co n t () ; }
 r e tu r n 0; }

R ec e iv er :: R ec e iv er (v oi d) : d e bu g _ le ve l_ (0), mm d e vi ce _ (0) , o u tp u t_ f ile _ n am e _ (), is _o u tp u t _f il e_ (0) ,

 s en d er _ n am e_ ("d i st ri b ut o r"), r ec e iv er _ na me _ ("r e ce iv e r"), u s e_ q os _ st re a m_ (0) {}
R ec e iv er :: ~ R ec ei v er (vo id) { }

in t R ec e iv er :: in it (in t, c h ar * * , C O R B A ::E n v ir o nm en t & A C E _ T R Y _ EN V) {

 / / In it ia li ze t h e en d p oi nt s tr a te gy w ith th e o rb a n d p oa .
 i n t r e su lt = t h is -> re a ct iv e _s tr a te g y_ .i n it (T A O_ A V _ C O R E :: in s ta n ce ()- >o r b () ,

 T A O _ A V _C OR E :: in st an c e () -> p o a ());

 i f (r es u lt != 0) r et u rn r e su lt ;

 / / In it ia li ze t h e co n ne c ti on m an a g er .
 / / R eg is te r th e r ec e iv er m m d ev ic e o bj ec t w it h th e OR B

 C O R BA ::O R B _v a r or b = T A O _ A V _ C OR E :: in s ta n ce ()- >o r b () ;

 r e tu r n 0; }
in t R ec e iv er :: p ar s e_ a rg s (i n t a r gc , ch a r * *a r gv) {

 i f(ar g c < 2){

 u sa g e();

 r et u rn - 1 ; }
 / / Pa r se t h e co m ma n d li ne a r g ume n ts

 A C E _ G e t_ Op t op t s (a rg c , a r g v, " f: s: r: d :p :") ;

 i n t c ;
 w h i le ((c = o p ts ()) != - 1) {

 sw i tc h (c) {

 ca se ' f' : t h is -> o ut p u t_ fi le _n a me _ = o pt s. op t ar g ; th is -> i s_ ou t p ut _ fil e_ = 1; b r ea k ;
 ca se ' s' : th is -> s en d er _ n ame _ = o p ts .o p ta r g; b r ea k ;

 ca se ' r' : th is -> r ec e iv er _ na m e _ = o p ts .o p ta rg ; b re a k ;

c a se ' d ': th is -> d e bu g _ le ve l_ = A C E _O S: :a to i (o p ts .o p ta r g) ; br e ak ;

 ca se ' p ': o ut p ut _ po r t = A C E _O S: :a to i (o p ts .o pt a rg); b r ea k ;
 de fa u lt : A C E _E R R OR _ R E T U R N ((L M _E R R O R , " U s ag e : re ce iv e r -f f ile n am e") , - 1) ; } }

 r e tu r n 0; }

vo id R ec e iv er :: u sa g e() {
 A C E _ D E B U G((L M _ D E B U G, " U sa g e: \n \n ")) ;

 A C E _ D E B U G((L M _ D E B U G, " re c ei ve r -s [se n d er n a me] - r [r e ce iv er n a m e]\ n"));

 A C E _ D E B U G((L M _ D E B U G, " - d [d e b ug le ve l] - f [fi le n a m e] \n ")) ;
 A C E _ D E B U G((L M _ D E B U G, " - p [o u tp u t U D P p o rt , d e fa u lt is % d]\n " , ou t p ut _ po r t));

 A C E _ D E B U G((L M _ D E B U G, " [-- qo s]\ n")); }

A C E _C s tr in g R e c ei ve r :: ou tp u t _f il e_ n am e (v oi d) {

 r et u rn t h is -> o ut p ut _ fil e_ n a me_ ; }
in t R ec e iv er :: is _ ou t pu t _f il e (v oi d) {

 r e tu r n th is -> i s_ o ut p ut _ fil e_ ; }

in t R ec e iv er :: sp a w n _v i ew e r() {
 if (A C E _ O S : :a cc e ss (" .. /d v dv ie w / sr c/ d vd v ie w " , X _ O K) ! = 0) {

 re t ur n - 1; }

 A C E _P r o ce ss p r oc e ss ;

 A C E _P r o ce ss _ Op tio n s o pt io n s;
 op t io n s. co mma n d _l in e (" % s - z %d a " , ". ./ dv d v ie w /s rc /d v d vi ew " , o ut p ut _ po r t) ;

 p id _t v ie w e r_ p id = A C E _O S : :f or k () ;

 p id _ t re ce iv e r_ p id = 0;

 s w itc h (v ie w e r_ p id) {

 c a se - 1: / * er r or * / A C E _ O S: :e x it (9 9) ; b re a k;
 c a se 0 : /* c h il d */ p r oc e ss .s pa w n (o p ti on s); A C E _ OS :: ex it (0) ; b r ea k ;

 d e fa u lt : /* p a re n t * / re c ei ve r _p i d = A C E _ O S ::f o rk ();

 s w it c h(re c ei ve r _p i d) {
 c a se - 1: / * er ro r * / A C E _OS : :e x it(9 8) ; br e ak ;

 c a se 0 : /* c h ild */ b re a k ;

 d e fa u lt : b r ea k ; }

 b r e ak ; }
 in t s ta tu s 1, s ta tu s 2;

 if (re c ei ve r _p id != 0) {

 A C E _O S: :w a it p id (v ie w e r_ p id , &s ta tu s 1, 0);
 A C E _O S: :w a it p id (r e ce iv e r_ p id , &st a tu s2 , 0);

 A C E _O S: :e x it(0); }

 r et u rn 0 ; }
c on s t c h a r * R ec e iv er :: n am e() c o n st {

 re tu r n r ec ei v er _ na me _ .c _s tr () ; }

in t ma in (in t a rg c , c h ar * * a rg v) {

 re c ei ve r_ p id _ = (C OR B A : :L o ng) A C E _OS : :g e tp id () ;
 pr o ce s s_ n am e_ = A C E : :b a se n a me(a rg v [0]) ;

 A C E _D E C L A R E _ N E W_ C OR B A _ E N V ;

 A C E _T R Y {
 // I n iti a liz e th e O R B fi rs t.

 C O R B A : :O R B _ v ar o r b = C OR B A : :OR B _ in it (ar g c, a r gv , 0, A C E _ T R Y _ EN V);

 A C E _ T R Y _ C H E C K;
 C O R B A : :O b j ec t_ v ar o b j = o rb -> r e so lv e _i ni ti al _ re fe re n c es ("R o o tP O A " , A C E _T R Y _ E N V) ;

 A C E _ T R Y _ C H E C K;

 // G e t th e P OA _ va r o b je ct f ro m Obj e ct _v a r.

 P o rt ab l eS e rv e r: :P O A _ v ar r o ot _ po a = P o r ta bl e Se r ve r ::P OA : :_ n a rr o w (o b j. in (), A C E _ T R Y _E N V) ;
 A C E _ T R Y _ C H E C K;

 P o rt ab l eS e rv e r: :P O A M an a g er _v a r mg r = r oo t_ p o a- > th e _P O A M an a ge r (A C E _T R Y _ E N V);

 A C E _ T R Y _ C H E C K;
 mg r -> a ct iv at e (A C E _ T R Y _ E N V);

 A C E _ T R Y _ C H E C K;

 // I n iti a liz e th e A V S t re am s co m p o ne n ts .

 T A O_ A V _ C OR E :: in st a nc e ()-> i ni t (o rb . in (), ro o t_ p o a. in (), A C E _ T R Y _E N V) ;
 A C E _ T R Y _ C H E C K;

 R e ce iv e r *r e ce iv e r = R E C E IV E R : :i ns ta n c e ();

 in t r es u lt = r ec e iv er -> p a rs e _a r gs (ar g c, a rg v);
 if (re s ul t == -1) re tu r n -1 ;

 r ec e iv er -> s p aw n _ v ie w er () ;

 if (re c ei ve r -> is _ ou t pu t _f il e ()) {
 // Ma k e su r e w e h av e a v al id < o u tp u t_ fi le >

 ou t p ut _ fil e = A C E _ OS :: fo p en (re c ei ve r -> o ut p ut _ fi le _n a me () .c _ st r (), " w ");

 if (o u tp u t _f il e = = 0)

 A C E _E R R OR _ R E T U R N ((L M _D E B U G, " C a n no t o pe n o u tp u t fil e % s \n " ,
 r e ce iv e r- >o u tp u t _f ile _ n am e (). c_ s tr ()) , - 1) ;

 el se A C E _ D E B U G ((L M _D E B U G , “ F il e O pe n e d S uc c es sf u lly \n ")); }

 r es u lt = r ec e iv er -> i ni t (a rg c , a r g v, A C E _ T R Y _E N V) ;
 A C E _ T R Y _ C H E C K;

 if (re s ul t != 0) re tu r n r es u lt ;

 o rb - >r u n (A C E _T R Y _ E N V);
 A C E _ T R Y _ C H E C K;

 // H a c k fo r n o w

 A C E _ O S :: sl ee p (1) ;

 o rb - >d e st r oy (A C E _ TR Y _E N V) ;
 A C E _ T R Y _ C H E C K; }

 A C E _C A T C H A N Y {

 A C E _ P R IN T _ E X C E P T ION (A C E _ A N Y _ E X C E P T ION , "r e ce iv e r: :i ni t") ;
 r et u rn - 1 ; }

 A C E _E N D T R Y ;

 A C E _C H EC K _R E T U R N (- 1) ;

 A C E _OS : :f cl os e (o u tp u t_ f ile) ;
 re tu r n 0 ; }

Extract Header
Process

Timestamp
Process

Sequence In
st

ru
m

en
t

D
ef

ra
gm

en
t

Throughput

Normal

Degraded

Unusable

A/V
Streams
Adapter

Receiver
in t R ec e iv er _ S tr ea mE n d P oi nt :: g et _c a ll ba c k (c o ns t ch a r * flo w n a me , T A O_ A V _ C a llb a ck *& ca ll ba c k) {
 A C E _ D E C L A R E _ N E W_ C OR B A _ E N V ;

 / / C re a te a n d re tu r n th e s en d e r ap p li ca t io n ca l lb ac k t o A V S tr ea ms f or f u rt he r u p ca ll s.

 i n t r e tv a l = 0;

 c a ll ba c k = &t hi s- > ca ll b ac k _;
 r e tu r n re tv a l; }

R ec e iv er _ C al lb a ck : :R e ce iv e r_ C a ll ba c k (v o id) : fr am e_ c ou n t_ (1) {

 A C E _ I N E T _A d d r in e t_ a dd r (o u tp u t_ p o rt , " l oc a lh o st ") ;
 d v d vi ew _e n dp o in t _. op e n (i ne t_ a d dr) ; }

in t R ec e iv er _ C al lb a ck : :r ec e iv e_ f ra me (A C E_ M es sa g e_ B lo c k * fr am e, T A O_ A V _f r am e _ in fo * /* fr a me_ in f o* / ,

 co n s t A C E _ A d d r &) {
 / / U pc a ll fr o m t h e A V St re a ms w h en t h er e is d a ta t o b e re c ei ve d fr o m t h e se n de r .

 + + f ra me _c o un t _;

 w h i le (fr am e ! = 0) {

 ch a r * bu f = f ra me -> r d _p t r();
 if (ou t pu t _f il e) {

 // Wr it e th e re c ei ve d d a ta t o th e f ile .

 in t re su l t = A C E _O S : :f w ri te (se n d_ b u f, se n d _l en , 1 , o u tp u t_ f ile); }
 d vd v ie w _ en d p oi n t_ .s en d (se n d _b u f, s en d _ le n) ;

 fr a me = fr a me -> co n t () ; }

 r e tu r n 0; }

R ec e iv er :: R e ce iv e r (v oi d) : d e bu g _ le ve l_ (0), mm d e vi ce _ (0) , o u tp u t _f il e_ n am e_ (), is _ ou t pu t _f il e_ (0) ,
 s en d e r_ n am e_ (" di st ri b ut o r"), r ec e iv er _ n ame _ ("r e ce iv e r") , u s e_ q os _ st re a m _ (0) {}

R ec e iv er :: ~ R ec e iv er (vo i d) { }

in t R ec e iv er :: in i t (in t, c h ar * * , C O R B A :: En v ir o n m en t &A C E _ T R Y _ E N V) {
 / / In it ia li ze t h e en d p oi n t s tr a te g y w ith th e o rb a n d p o a.

 i n t r e su lt = t h is -> r ea c tiv e _s tr a te g y_ .i n it (T A O_ A V _ C OR E :: in s ta n ce ()- >o r b () ,

 T A O_ A V _ C OR E :: in st a nc e () -> p o a ());
 i f (r es u lt != 0) r et u rn r e su lt ;

 / / In it ia li ze t h e co n n ec ti on man a g er .

 / / R eg is te r th e r ec e iv er m md ev ic e o bj e ct w it h t he O R B

 C O R B A :: OR B _v a r or b = T A O _ A V _ C OR E : :in s ta n ce ()- > or b () ;
 r e tu r n 0; }

in t R ec e iv er :: p ar s e_ a rg s (i n t a r gc , ch a r * *a r gv) {

 i f(ar g c < 2){
 u s ag e ();

 r et u rn - 1 ; }

 / / Pa r se t h e co mm a n d li n e ar g um en ts
 A C E _ Ge t_ Op t o pt s (a r gc , ar g v, " f: s: r: d :p :") ;

 i n t c ;

 w h i le ((c = o p ts ()) != - 1) {

 sw i tc h (c) {
 ca se ' f' : th is -> o u tp u t_ fi le _n a m e _ = o pt s. o pt a rg ; th is -> i s_ o ut p ut _ fil e _ = 1; b r ea k ;

 ca se ' s' : th is -> s en d e r_ n am e_ = o p ts .o p ta r g; b r ea k ;

 ca se ' r' : th is -> r ec e iv er _ n am e _ = o p ts .o p ta r g; b re a k ;
ca se ' d ': th i s- >d e b ug _ le v el _ = A C E _O S: :a t oi (o p ts .o p ta r g) ; br e ak ;

 ca se ' p ': o ut p ut _ po r t = A C E _O S: :a to i (o p ts .o pt a rg); b r ea k ;

 de fa u lt : A C E _E R R O R _R E T U R N ((LM _ E R R OR , " U s ag e : re c ei ve r -f f ile n a me") , - 1); } }

 r e tu r n 0; }
vo i d R ec e iv er :: u sa g e() {

 A C E _ D E B U G ((L M_ D E B U G, " U sa g e: \n \n "));

 A C E _ D E B U G ((L M_ D E B U G, " re c ei ve r -s [se n d er n a me] - r [r e ce iv e r na m e]\ n "));
 A C E _ D E B U G ((L M_ D E B U G, " - d [d e b u g le ve l] - f [fi le n a m e] \n ")) ;

 A C E _ D E B U G ((L M_ D E B U G, " - p [o u tp u t U D P p o rt , d e fa u lt i s % d]\ n" , o ut p ut _ po r t));

 A C E _ D E B U G ((L M_ D E B U G, " [-- q os]\ n")); }
A C E _C s tr i ng R e c ei ve r :: ou t pu t _f il e_ n am e (v o id) {

 r et u rn t h is -> o ut p ut _ fil e _n a me _; }

in t R ec e iv er :: is _ ou t pu t _f il e (v o id) {

 r e tu r n th is -> i s_ o ut p ut _ fi le _; }
in t R ec e iv er :: sp a w n _ vi ew e r () {

 if (A C E_ O S : :a cc e ss (" .. /d v dv i ew / sr c/ d vd v ie w " , X _ OK) ! = 0) {

 re t ur n - 1; }
 A C E _ Pr o ce s s p r o ce ss ;

 A C E _ Pr o ce s s_ O p ti on s o p tio n s;

 o pt io n s. co mm a n d _l in e (" % s -z % d a" , " ../ dv d v ie w /s rc /d v d vi ew " , o ut p u t_ p or t) ;
 p id _ t v ie w e r_ p id = A C E _OS : :f or k () ;

 p id _ t re ce i ve r_ p id = 0;
 s w it ch (v i ew e r_ p id) {

 c a se - 1 : / * er r or * / A C E _ OS: :e x it (9 9); b re a k;

 c a se 0 : /* c h il d */ p r oc e ss .s pa w n (o p ti o ns); A C E _ O S :: ex it (0) ; b r ea k ;

 d e fa u lt : /* p a re n t * / r ec ei v er _p i d = A C E _ OS :: fo rk ();
 sw i tc h(r ec ei v er _p i d) {

 c a se - 1: / * er r or * / A C E _O S: :e x it(9 8) ; br e ak ;

 c a se 0 : /* c h ild */ b re a k ;
 d e fa u lt : b r ea k ; }

 br e ak ; }

 in t s ta tu s 1, s ta tu s 2;
 if (re c ei ve r _p i d != 0) {

 A C E _O S: :w a it p id (v i ew e r_ p id , &s ta tu s 1, 0);

 A C E _O S: :w a it p id (r e ce iv e r_ p id , & st a tu s2 , 0);

 A C E _O S: :e x it (0); }
 r et u rn 0 ; }

c on s t ch a r * R ec e iv er :: n am e() c o n st {

 re tu r n r ec e iv er _ na me _ .c _s tr () ; }
in t ma in (in t a rg c , c h ar * * a rg v) {

 re c ei ve r _p id _ = (C OR B A : :L o n g) A C E _O S: :g e tp id ();

 p ro ce s s_ n am e_ = A C E: :b a se n a m e(a rg v [0]) ;

 A C E _D E C L A R E _ N E W _C O R B A _ E N V ;
 A C E _T R Y {

 / / I n it ia liz e t he OR B fi rs t.

 C O R B A : :O R B _ v ar o r b = C OR B A : :OR B _ in i t (a rg c , a r gv , 0, A C E _ T R Y _ E N V);
 A C E _ T R Y _ C HE C K;

 C O R B A : :O b j ec t_ v ar o b j = o rb - >r e so lv e _i ni ti al _ re fe r en c es ("R o o tP OA " , A C E _ T R Y _E N V) ;

 A C E _ T R Y _ C HE C K;
 / / G e t th e P OA _ v ar o b je ct f ro m O b je ct _v a r.

 P o rt a bl eS e rv e r: :P O A _ v ar r o ot _ po a = P o r ta b le Se r ve r :: PO A ::_ n a rr o w (o b j. in (), A C E _ T R Y _E N V) ;

 A C E _ T R Y _ C HE C K;

 P o rt a bl eS e rv e r: :P O A M an a g er _ va r mg r = r oo t_ p o a- > th e _P OA M an a g er (A C E _T R Y _ E N V) ;
 A C E _ T R Y _ C HE C K;

 mg r -> a ct iv a te (A C E_ T R Y _ E N V);

 A C E _ T R Y _ C HE C K;
 / / I n it ia liz e t he A V S t re a m s co m p o ne n ts .

 T A O_ A V _ C O R E :: in s ta nc e ()- >i n it (o r b. in (), r oo t_ p o a. in (), A C E _ T R Y _E N V) ;

 A C E _ T R Y _ C HE C K;
 R e ce iv e r *r e ce iv e r = R E C E IV E R : :i ns t an c e () ;

 i nt r es u lt = r ec e iv er -> p a rs e _a r gs (ar g c, a rg v);

 i f (re s ul t == -1) re tu r n -1 ;

 r ec e iv er -> s p aw n _ v ie w er () ;
 i f (re c ei ve r -> is _ ou t pu t _f il e ()) {

 // Ma k e su r e w e h av e a v al id < o u tp u t_ fi le >

 o ut p ut _ fil e = A C E _ O S :: fo p en (re c ei ve r -> o ut p u t_ fi le _n a m e () .c _ st r () , " w ");
 if (ou t pu t _f il e == 0)

 A C E _E R R O R _ R E T U R N ((L M _D E B U G , " C a n no t o pe n o u tp u t fil e %s \n " ,

 r e ce iv e r- > ou t pu t _f il e_ n am e () .c_ s tr ()) , - 1) ;

 el se A C E _ D E B U G ((L M _D EB U G , “ F il e Op en e d S uc c es sf u lly \ n")); }
 r es u lt = r ec e iv er -> i ni t (a rg c , ar g v, A C E _ T R Y _E N V) ;

 A C E _ T R Y _ C HE C K;

 i f (re s ul t != 0) re t ur n r es u lt ;
 o rb - > ru n (A C E _T R Y _ E N V);

 A C E _ T R Y _ C HE C K;

 / / H a c k fo r n o w
 A C E _ OS :: sl ee p (1) ;

 o rb - > de s tr oy (A C E _ T R Y _E N V) ;

 A C E _ T R Y _ C HE C K; }

 A C E _C A T C H A N Y {
 A C E _ P R IN T _ E X C E P T IO N (A C E _ A N Y _ E X C E P T ION , "r e ce iv e r: :i ni t") ;

 r et u rn - 1 ; }

 A C E _E N D T R Y ;
 A C E _C H E C K_R E T U R N (- 1) ;

 A C E _O S: :f cl os e (o u tp u t _f il e) ;

 re tu r n 0 ; }

Extract Header
Process

Timestamp
Process

Sequence In
st

ru
m

en
t

D
ef

ra
gm

en
t

Throughput
Display Host 1

Display Host 2

SendAllFrames

DropBFrames
DropPandBFrames

A/V
Streams
Adapter

Normal

Degraded

Unusable

Fig. 2. QoS Aspects are Separately Programmed and Woven into the UAV Video Dissemination Appli-

cation to Manage End-to-End QoS

3

4

as low as 2 fps for human viewing and lower for im-
age processing.

• Minimal latency. Some uses of sensor information
(such as remote piloting) require remote end viewers
to see an accurate and timely view of the sensor data,
which implies a minimal latency requirement. Studies
have indicated that humans can perceive a delay of
more than 100-200 ms, which provides a lower
bound timeliness requirement in cases where the
video is meant for human viewing and precision ac-
tion. In cases where an image is processed automati-
cally, the latency should be low enough such that the
information being processed is never stale relative to
what else is already available.

• Minimal jitter. Controlling the smoothness of the
video can have greater impact on the perceived qual-
ity than the frame rate. Minimizing jitter requires
control throughout the end-to-end path since it can be
affected by changes to video transmission rates, de-
livery latency, and display rates. Common strategies
for reducing jitter (such as buffering) are not as use-
ful in real-time video because of the timeliness con-
straints.

• Image quality. The image must be of high enough
quality (i.e., have the requisite image size, pixel
depth, etc.) for the purpose it is being used. For hu-
man viewing, the video must be large enough and
clear enough to discern details that humans need. For
automated processing, it means the image must con-
tain whatever important features the processing is in-
tended to detect.

• Coordination of multiple activities. The middleware,
in conjunction with OS, network, and application di-
rectives, must control and coordinate the necessary
allocations and tradeoffs that are made to ensure that
the highest priority streams and the most important
characteristics (e.g., frame rate, latency, and jitter) are
favored, even while other, less important characteris-
tics may be minimized or neglected.
Satisfying the measures of operational effectiveness

outlined above requires managing resources (particularly
CPU and network bandwidth) along the entire path from
video source to sink. It also involves trading off one prop-
erty (e.g., timeliness) against another property (e.g., fidel-
ity) based on the particular requirements of end-users at
that moment. For example, our multimedia application
cannot suspend the display during a period of network
congestion and resume the display from the same point in
the video flow when bandwidth is restored because that
can violate the timeliness constraint of the delivered im-
ages. It is likewise unacceptable to drop arbitrary frames
or retransmit lost frames continuously.

All remote operation calls in our multimedia applica-
tion are made via the TAO real-time ORB [3]. The TAO
implementation of the CORBA Audio/Video (A/V)
Streaming Service [4] is used to establish the video
streams and to transport the data. We encode QoS meas-

urement, control, and adaptation directives and policies
via QuO contracts [2] that are distributed throughout the
multimedia application. These contracts are responsible
for managing the resource and application/data adaptation
necessary to achieve an appropriate end-to-end QoS
matched to the circumstances relevant at that time. Often,
a single QoS aspect will require contracts at many places
to implement a particular QoS aspect. For example, con-
trolling image latency might include prioritizing the net-
work traffic (e.g., setting a Diffserv codepoint), shaping
the data to the amount of bandwidth available (e.g., com-
pressing or scaling), and monitoring the latency by time-
stamping. These operations affect code all along the video
path, since compressed images will need to be uncom-
pressed and timestamps will need to be inserted, removed,
and processed.

Our multimedia application illustrates a number of
challenges and design decisions that must be made, such
as centralized, policy-driven QoS management versus
localized, application-driven QoS management. In this
type of distributed system with remote UAVs connected
via narrow-pipe tactical links, a centralized QoS man-
agement is only practical if it is based on the dissemina-
tion of policy at discrete epochs, such as theater-wide
mission mode changes. Another design is decentralized,
cooperative control, in which all the UAV senders are
aware of their relative place in the mission and cooperate
to divide resources and achieve the mission. We have ex-
perimented with both designs and favor an approach in
which local qosket behaviors provide cooperative control
and management, directed by policy (such as the relative
importance and available resources) pushed by a central
QoS management authority residing coincident with the
theater command and control authority.

Another design challenge is the correct level at which
to represent QoS behaviors. Even when the application is
decomposed into components and the QoS behaviors are
organized into qosket components, the two crosscut one
another. A high-level QoS behavior (such as end-to-end
latency) might consist of a single design-time qosket, but
requires multiple run-time qosket components in order to
implement it. We have therefore combined aspect-
oriented and object-oriented designs, weaving the con-
tracts and other QuO mechanisms where they are needed
[34].

3 Resource Management for DRE Multime-
dia Applications

This section describes the priority- and reservation-
based OS and network resource management mechanisms
we integrated and evaluated within our QoS management
framework for multimedia applications based on QuO and
TAO. These OS and network mechanisms are necessary
conditions for establishing end-to-end QoS, but they are
not sufficient by themselves. To achieve end-to-end QoS,
therefore, we use a middleware-mediated QoS manage-
ment framework to control and coordinate these individ-
ual resource management mechanisms, augmented with

5

additional adaptation mechanisms for making dynamic
adjustments and modulating the application's footprint for
using resources as discussed in this section.

3.1 Mechanisms for Prioritized and Reserved
Management of Computing and Network-
ing Resources

Achieving end-to-end QoS for multimedia applica-
tions requires management and control of the processing
resources on endsystems in a distributed system and the
network resources that connect them. A number of
mechanisms for managing these individual resources are
emerging, including the mechanisms described below that
(1) prioritize competing network traffic using standard
Internet technologies and (2) reserve pre-specified
amounts of processor time on endsystem computers. In
addition to outlining these mechanisms, we describe how
we have experimented with – and augmented with com-
plementary mechanisms – various combinations to find
the most effective solutions to end-to-end management in
the context of our UAV video distribution application
described in Section 2.

Priority-based OS resource management. The
management of CPU resources in most operating systems
has traditionally been handled by assigning priorities to
tasks in the system (usually threads or processes) and ap-
plying scheduling algorithms to assign each task a share
of CPU time. CORBA (as well as other standards-based
COTS middleware) historically lacked features that lever-
age these priority-based OS resource management capa-
bilities, which made it hard to ensure and coordinate pre-
dictable platform processing behavior via middleware. To
remedy this omission, the Real-time CORBA 1.0 specifi-
cation [12] defines standard features that support end-to-
end predictability for operations in fixed-priority CORBA
applications, thereby enabling fine granularity allocation,
scheduling, and control of key endsystem OS resources.

The TAO implementation supports the Real-time
CORBA interfaces and QoS policies. As a result, applica-
tions that use TAO have standard ways to configure (1)
processor resources via end-to-end priority preservation
mechanisms, thread pools, intra-process mutexes, and a
global scheduling service, (2) networking resources via
protocol properties and explicit bindings, and (3) memory
resources by bounding request buffering and thread pool
size. Our earlier work (www.dist-
systems.bbn.com/papers) describes how these priority-
based OS resource management mechanisms have been
applied to avionics mission computing systems via TAO.

Reservation-based OS resource management. An
alternative to priority-based OS resource management is
to reserve sufficient resources a priori for estimated ap-
plication needs. TimeSys has applied this approach to
resource management by implementing a CPU reservation
feature for their TimeSys Linux real-time OS. An applica-
tion – or a middleware proxy for the application – running
on top of the TimeSys OS can specify its QoS require-
ments for timeliness, and their underlying resource kernel

[17] will manage the OS resources so that these require-
ments can be met. For CPU resources, TimeSys Linux
allows applications to specify their timeliness require-
ments by specifying parameters for compute time and
period. If the resource kernel can allocate resources that
meet these requirements, it grants an application a re-
serve, which guarantees that for every period, the applica-
tion will have the requested amount of CPU compute time
and will not be preempted.

Although TimeSys Linux provides mechanisms for
reserving OS CPU resources, the QuO and TAO middle-
ware are ultimately responsible for determining who gets
the reserved capacity, how much, and for how long. These
policy decisions are performed by the middleware since it
retains the end-to-end perspective to set the OS resources
appropriately. We have worked with the University of
Utah to develop a CORBA-based CPU reservation man-
ager [7] that (1) is the local agent for setting up reserva-
tions on an endsystem and (2) translates various represen-
tations of reservation specification into the style sup-
ported by TimeSys Linux. Section 5.2, especially meas-
urement 2, reports the results of applying reservation-
based OS resource management within our multimedia
application context described in Section 2.

Priority-based network resource management.
The Internet Engineering Task Force (IETF) Differenti-
ated Services (DiffServ) architecture provides different
types or levels of service for IP network traffic. Individual
traffic flows can be made more resistant to packet drop-
ping (and hence get preferential delivery) by setting the
value of each IP packet’s DiffServ field appropriately. An
IP header has an eight bit DiffServ field that encodes
router-level QoS into (1) six bits of DiffServ Codepoint
(DSCP), which enables 64 service categories of per-hop
behavior, and (2) two bits of explicit congestion notifica-
tion. The middleware is responsible for adding the appro-
priate QoS management DSCP encoding to the data
packet headers to specify the appropriate type of service
within the multi-application environment. DiffServ-
enabled routers then use the DSCP to distinguish among
varieties of network traffic.

We have enhanced TAO and QuO to leverage Diff-
Serv capabilities. First, TAO provides an efficient and
flexible way of setting the DSCP by extending its Real-
time CORBA protocol properties on the GIOP request and
response packets so that priority can propagate to requests
as they transit the network and OS resources. Based on
various factors (such as resource availability, application
conditions, and operational requirements), the QuO mid-
dleware can change these priorities dynamically by mark-
ing application streams with appropriate DSCPs to ensure
appropriate priority handling against lower priority com-
peting traffic. Second, TAO provides a mechanism to map
Real-time CORBA priorities to DiffServ network priori-
ties. The TAO ORB provides a priority-mapping manager
that QuO uses to install a custom mapping to override the
default mapping. Section 5.2, especially measurement 1,
reports on empirical evaluation of the results of applying

6

priority-based network resource management (in combi-
nation with reserved CPU management) to our multime-
dia application described in Section 2.

Reservation-based network resource management.
Setting DSCPs as discussed above makes traffic flows
less likely to be dropped due to network congestion in
routers. There is no way in the DiffServ model, however,
to guarantee a level of service to a traffic flow unless it is
the single highest priority traffic at each intermediate step.
As with the OS-level resource reservations discussed ear-
lier, it is also desirable to request resources from the net-
work to help guarantee properties (such as latency or
bandwidth of network traffic) across some competing
flows by reserving appropriate capacity in advance.

To address these issues, the IETF developed the Re-
source Reservation Protocol (RSVP), also commonly re-
ferred to as IntServ (for Integrated Services), which is a
new reserved capacity mechanism to augment IP.
Whereas the DiffServ mechanisms outlined earlier merely
classify and prioritize packets for different service levels,
IntServ reservations allocate and coordinate router behav-
ior along a communication path flow to ensure the re-
served end-to-end bandwidth. Earlier experiments [8]
measured and evaluated the effects of reservation-based
network resource management mechanisms applied to
multimedia applications via the CORBA A/V Streaming
Service [4] provided with TAO.

3.2 A QoS Management Framework for Mul-
timedia Applications

The OS and network resource management mecha-
nisms described in Section 3.1 can be used in various
combinations that reflect tradeoffs of integrated method-
ology, current practice, widespread availability, or maxi-
mum performance/cost advantage. Although it may be
desirable in some circumstances to have a single method-
ology (i.e., priority-based or reservation-based) apply
throughout, other combinations can be useful in practice.
Likewise, managing an individual resource (e.g., CPU or
network connection) will not enable predictable multime-
dia application performance if the other complementary
DRE system resources along an end-to-end path are con-
strained, unmanaged, or even managed in an uncoordi-
nated manner. Instead, these resources must be managed
in combination to achieve appropriate end-to-end and
aggregate results.

To enable more effective coordination and control of
individual and aggregate end-to-end resources, we have
created elements of a QoS management framework for
multimedia applications by integrating the TAO and QuO
middleware described in Section 1.2 with the mechanisms
described in Section 3.1 that manage lower level OS and
network resources. The primary focus of the resource
management control strategies described in Section 3.1 is
to ensure that more important application tasks get the
resources they need to complete their actions at the ex-
pense of – or isolated from – other less important tasks. In
many cases, however, this is not sufficient to achieve

managed QoS objectives, either because there may still be
insufficient resources available or because it may be more
appropriate to share resources using gradations of service
levels that could operate simultaneously, each with dimin-
ished resources.

To complement the resource control strategies, our
QoS management framework supports adaptive strategies
that seek to change the resource consumption of an indi-
vidual DRE application dynamically. Our QoS manage-
ment framework therefore offers a set of aspect languages
to program the adaptive strategies separately from the
core functionality of the application [23] and an encapsu-
lation model for packaging adaptive behaviors so that
they can be instantiated and reused throughout an applica-
tion and maintained separately across applications.

By intelligently modifying the approach to the appli-
cation’s core functionality (e.g., by using alternative algo-
rithms, changing heuristics, or being more selective about
degrees of fidelity for various aspects of a computation),
we can change the way an application performs its task
(and indirectly shape/reduce the amount and timing re-
sources needed to perform that task) to dynamically adapt
to the current load, resource availability, or operating
conditions prevalent at the time. Section 4 describes the
key adaptive strategy used by our UAV video distribution
application, each of which have been implemented as
qoskets and QoS aspects provided by QuO.

4 Maintaining Real-time QoS Under Reduced
Resource Availability in the Multimedia
Application

This section describes how we augmented and ap-
plied the QoS management control aspects described in
Section 3 with application-level adaptation to complement
resource control by shaping the interactions between
components so they can continue to meet the QoS re-
quirements under diminished resources available to appli-
cations.

4.1 Using Adaptation to Meet Multimedia Ap-
plication QoS Requirements

A bottleneck may occur in our multimedia applica-
tion because at some point along the video transport path
there are not enough resources to send the entire video to
the viewers in real time. For example, the distributor
endsystem may not have enough CPU power available to
dispatch video frames to all viewers at that rate or failures
could cause there to be insufficient bandwidth in the net-
work path to one or more viewers. A bottleneck can also
occur when one or more of the competing UAVs has (or
gains) priority access to significant fractions of the avail-
able resources, while the rest must operate within the di-
minished resources available. When such a bottleneck is
detected, we use adaptation techniques (e.g. rate changing
and filtering) to mitigate the damage to our QoS objec-
tives. Depending on user requirements, it is possible to
omit some frames of the video entirely, yet still retain an
end-user video that displays the motion of the scene in

real time without the total fidelity of continuously dis-
played motion achieved at frame rates of 24 frames or
more per second.

To perform data filtering in the UAV prototype, we
employ the technique of reducing the transmitted frame
rate, e.g., from the distributor to the viewer or between the
video source and the distributor. In one important mode of
operation, the frame rate must not be reduced in such a
way as to create a “slow motion effect,” i.e., a vehicle that
crossed the field of view of the video source camera in
say, 2.5 seconds, should still cross the viewer in 2.5 sec-
onds. A video source attempts to transmit data at the stan-
dard rate of 30 fps, which is received at that rate (when
system resources permit), but an adaptive behavior can be
interposed that sends out a smaller number of frames rep-
resenting the action that occurs during each second. The
subset to be sent is selected by dropping some frames
from the video, and also sending out the remaining frames
at a reduced rate.

The implementation of data filtering to reduce the
volume of video data is dependent on the video encoding
format. MPEG-encoded video results in sequences of 15
frames, each of which consist of an independent I-frame,
as well as 10 derived B-frames and 4 derived P-frames
(see Figure 3, and [1] for a synopsis of MPEG encoding
of video). One second of video at the full rate of 30 fps
requires two sequences of these frames. The best frame-
dropping strategies drop B-frames when only a few
frames needed to be dropped. There are 20 B-frames in
each second of video, so this technique can bring the
sending rate down to a still effective 10 frames per sec-
ond. To drop more frames, P-frames can then be dropped.
I-frames can be dropped only if intervals of 1 second or
more between images are acceptable, which in our appli-
cation it was not.

For practical implementation reasons we chose to
drop frames entirely in such a way that the remaining
frames were to be displayed at a constant rate. This strat-
egy provided us with three significantly different levels of
QoS among which to adapt the application, as determined
by the frame rate: (1) 30 fps, which is done by transmit-
ting the video intact to provide the highest level of QoS,
(2) 10 fps, which is done by dropping all B-frames from
the video and transmitting all the I- and P-frames, which
preserves most perception of motion in the video scene,
and (3) 2 fps, which is done by dropping all P- and B-
frames from the video and transmitting all I-frames,
which loses the finer details of motion and some very

short-lived actions. We then adaptively switch among
these three frame rates by assigning each frame rate to a
different region of a QuO contract, and setting the frame-
dropping strategy at any given time according to the cur-
rent region (and indirectly the currently available re-
sources). Below 2 fps, the application would go dormant,
until appropriate conditions were restored, because these
were below the threshold of operator usability.

4.2 Analysis of Bandwidth Reduction from
Frame Filtering

In the video used in our experiments, I-frames aver-
aged approximately 13,800 bytes, P-frames approxi-
mately 5,000 bytes, and B-frames approximately 2,900
bytes. The approximate size in bits of two average MPEG
encoded sequences is therefore (2(13,800) + 8(5,000) +
20(2,900)) * 8 = 1,004,800, i.e., near the capacity of a 1.5
Mbit link, which is the bandwidth requirement of sending
one second of the video at the full rate of 30 fps. If we
drop the rate to 10 frames per second by eliminating the
B-frames, the bandwidth required, in bits per second, falls
to approximately (2(13,800) + 8(5,000)) * 8 = 540,800
and if we drop the rate to 2 fps by eliminating the P-
frames as well, the required bandwidth in bits per second
falls to approximately 2(13,800) * 8 = 220,800, i.e., re-
ducing the frame rate from 30 to 10 (a 67% reduction)
reduces the bit rate by 46%, and reducing the frame rate
from 30 to 2 (a 93 % reduction) reduces the bit rate by
78%.

The reductions of bandwidth and other system re-
source demands outlined above are substantial, so it is not
hard to find system conditions under which the full band-
width is not supportable, but one of the reduced-
bandwidth adaptations is. The reduction in bit rate is not
proportional to the reduction in frame rate because the
frames that are dropped first are precisely those frames
that have the greatest dependency on other frames (and
the fewest frames depending on them), and consequently
the encoded sizes of these dropped frames are relatively
smaller. Conversely, reduction in the perceived value of
the reduced-frame-rate display to a human viewer also is
not proportional to the reduction in frame rate, judging
from the reactions of system operators who watched dem-
onstrations of the application adapting.

I B B P B B P B B P B B P B B
2 0 1 5 3 4 8 6 7 11 9 10 14 12 13

Sequence header
GOP header GOP header

Fig. 3. Sequence of Frames in MPEG File

5 Empirical Results of End-to-end Resource
Management Experiments

This section presents and analyzes the results of ex-
periments that cover end-to-end management capabilities
stemming from the integration of the individual resource
management techniques discussed in Section 3.1 within
our middleware-mediated QoS management framework
described in Section 3.2. These experiments evaluate the
ability of multiple resource management technologies
coordinated via middleware to effectively and predictably
maintain end-to-end QoS as systems scale to include more
participants and more competing load. Our earlier work
showed the ability of individual technologies to (1) man-

7

8

age QoS end-to-end when competing load was concen-
trated exclusively on either the processing nodes or the
network and (2) fail to manage end-to-end QoS when the
type of competing load was unconstrained. These results
indicated the need to conduct experiments using inte-
grated and coordinated multiple types of resource man-
agement (e.g., CPU and network management) provided
by our QoS management framework to evaluate its ability
to sustain managed QoS in the presence of a more realis-
tic combined resource load.

5.1 Experimental Design and Hard-
ware/Software Testbed

To test the hypothesis that middleware-coordinated
CPU and network management working together can
maintain end-to-end QoS in systems with constrained and
loaded processors and links, we conducted a set of ex-
periments that ran up to 14 simultaneous simulated UAVs
sending imagery to the simulated ground control stations
(distributors) and control centers (receivers) described in
Section 2. The number of image streams was enough to
overload the networks transporting the imagery and con-
trol information, and to overload the processors executing
the image processing systems. We measured the ability of
the resource management mechanisms to control resource
allocations sufficiently for an image stream designated as
most critical (the experimental case) to consistently sus-
tain the resources needed to complete the application re-
quirements (i.e., detecting and reporting identified targets
in imagery data), as contrasted with other competing im-
age streams not marked as critical (the control cases).

In this series of experiments, each of the 14 senders
transmitted a sequence of images at a constant rate of 2
fps, in accordance with the application architecture de-
picted in Figure 1 in Section 2. For a single image stream,
a sender process sends images to a distributor and the
distributor transmits these images to a receiver. The re-
ceiver transmits images to an automated target recogni-
tion (ATR) program. If the ATR identifies a target in the
image stream, it sends a notification to a QuO contract
monitoring the imaging components, which in turn propa-
gates the alert via the TAO Real-time Event Channel [27]
to a consumer. When this consumer receives the alert, it
performs a round-trip time calculation designed to meas-
ure the overall time that elapsed from (1) when an image
with a target in it was sent from the sender to (2) the time
when an alert notification reached the ATR Event Channel
client. This time represents the desired end-to-end capa-
bility for which we are trying to maintain a predictable
QoS footprint under heavy load.

In this experiment, there was contention for both net-
work and CPU resources due to the number of processes
involved in simultaneously trying to deliver and identify
objects in the 14 image streams. Our coordinated network
and CPU QoS management framework capability was
configured to attempt to sustain the end-to-end perform-
ance of a designated image stream (which in these ex-
periments was arbitrarily selected to be the 7th stream, out

of 14). This coordinated QoS management capability un-
der test combined DiffServ network prioritization and
CPU reservations. For stream 7, we applied DiffServ net-
work prioritization (over other competing, non-prioritized
traffic) using QoS management setup to introduce this
behavior between the sender and distributor, and between
the distributor and the receiver. In addition, we applied
the CPU reservation behavior to the ATR for stream num-
ber 7 (only), using a middleware-mediated CPU broker
developed at the University of Utah [7].

The CORBA object in the ATR that received the
frames was encapsulated by a QuO delegate responsible
for determining the magnitude of the CPU reservation
requested from the CPU broker. The policy used in this
experiment adjusted the CPU reservation request to the
highest value seen in processing the five previous frames.
This adaptive policy works well in general since it can
quickly adapt to spikes in usage without overprovisioning
for long periods of time. For this experiment, we used a
“strict priority” contention policy that favors high-priority
processes when making reservations. Under that policy,
the designated high priority UAV stream would be
granted its reservation request regardless of the requests
of the other activities.

Experiments were performed on hardware and soft-
ware provided by the University of Utah’s Emulab test-
bed. The hardware configuration for each node in our
experiments included (a) 850 MHz Intel Pentium III proc-
essor, (b) 512MB PC133 ECC SDRAM, (c) 4 Intel
EtherExpress Pro 10/100Mbps Ethernet ports (Experi-
mental network), (d) 1 Intel EtherExpress Pro
10/100Mbps Ethernet port (Control network), and (e) 40
GB IBM 60GXP 7200 RPM ATA/100 IDE hard disk The
machines’ experimental network interfaces are connected
to a Cisco 6509 high-end switch and automatically in-
cluded in “virtual LANs” to simulate the network topol-
ogy for our experiments (not shown). This network topol-
ogy was designed to allow multiple UAV sender programs
to transmit imagery data to multiple distributor programs,
which in turn would transmit this data to receiver pro-
grams. The software configuration for our experiments
included (a) Red Hat Linux 7.3, (b) TimeSys v3.1 (se-
lected nodes), (c) FreeBSD 4.8 on "router" nodes, modi-
fied to support QoS for network traffic using the (ALTQ)
extensions, (d) TAO v.1.3.3, (e) QuO v.3.0.11, and (e)
CPU Broker v1.

5.2 Managed End-to-end Behavior Observa-
tions

We now report the results of the testbed configura-
tions described above, using observed/measured values
that indicate how our integrated middleware-mediated
QoS management framework can be used effectively to
sustain adequately predictable QoS results under heavy
competing load using realistic application scenarios.

Measurement 1: Number of frames received at re-
ceiver. For this measurement, the number of images re-
ceived at each of the competing receivers was recorded.

9

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Stream number

Nu
m

be
r o

f A
TR

 A
le

rts
 R

ec
ei

ve
d

Fig 5. ATR Alerts Successfully Detected; Stream 7 uses a

CPU Reservation and Diffserv Priority

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Stream number

La
te

nc
y

of
 fr

am
es

 a
t R

ec
ei

ve
r

(m
ill

is
ec

on
ds

)

Fig 6. Latency of Images; Stream 7 uses a CPU Reserva-

tion and Diffserv Priority

Stream 7 (only) was prioritized for its network traffic us-
ing DiffServ and used CPU Reservations to ensure ade-
quate processing resources. Figure 4 shows that UAV#7
received all of its frames (as did unmanaged UAV's
#2,4,5), while some of the rest received most of their
frames (#8,9,11), and most (#1,3,6,10,12,13,14) received
hardly any service at all, as measured by the number of
frames that arrived during the experimentation interval.
Since frames are received prior to the CPU intensive
processing of the ATR, this measure is dominated largely
by controlling network behavior.

Measurement 2: Number of ATR alert control
messages received. For this measurement, the number of
ATR Alert control messages, which were received by the
ATR Event Channel client program, was recorded. Stream
7 was prioritized with DiffServ and CPU Reservations.
These alert messages are sent only after identification of
an object of interest by the CPU intensive ATR. Figure 5
shows that only stream #7 successfully identified all of its
target objects (as evidenced by receiving all of its alerts).
All of the other (unmanaged) streams missed completing
the identification cycle (or couldn't get their identifying
signal to the collector) at least some of the time, with
most (#1,3,5,6,8-14) missing almost all of the identifica-
tion opportunities. The key factor here is the use of CPU
reservation to ensure timely processing of the CPU inten-
sive activity.

Measurement 3: Receiver frame latency. This
measurement recorded the time that elapsed when an im-
age was transmitted from the sender to the receiver.
Stream 7 was prioritized with DiffServ and CPU Reserva-
tions. Figure 6 charts the average latency for frames re-
ceived (a lower number is better for this chart, in contrast
with the previous). This figure shows streams #1,4,6 with
average latency per frame delivered lower than for the
prioritized stream 7.

Only streams #2,4,5,7,8,9,11, however, had a signifi-
cant number of successful frame deliveries (from figure 4)
so the lower latency for streams #1,6 can be discounted
because of the relatively few successful deliveries. Stream

#4 had (as yet inexplicably) a lower average latency for
delivered frames despite being unmanaged, but stream #7,
with controlled resource management working in its favor
had a significantly lower standard deviation. This result
stems from the more controlled outcome expected by ap-
plying course grain resource management strategies to
ensure outcome.

5.3 Analysis of End-to-end Resource Manage-
ment Control Experiments

Out of the 14 image competing streams, half of them
did not even come close to receiving and processing even
a non-trivial fraction of their intended workload, as shown
in Figure 4. The DiffServ prioritized stream processed its
intended workload with no observed packet loss. The
most significant observations of this experiment were:

0
200

400
600

800
1000

1200
1400

1600
1800

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Stream number

N
um

be
r

of
 fr

am
es

 r
ec

ei
ve

d
at

R

ec
ei

ve
r

Fig. 4. Number of Frames Received; Stream 7 uses a CPU
Reservation and Diffserv Priority

• In this and all subsequent runs of the experiment, the
prioritized stream (the seventh stream) always
reached the receiver endsystem with no observed
packet loss. The behavior of non-prioritized streams
was not reproducible over multiple runs of the ex-
periment, i.e., sometimes these streams reached the
receiver endsystem and sometimes they did not.
Which ones did and did not would vary from trial to
trial. Non-prioritized streams also had higher rates of

10

packet loss than the prioritized stream.
• The number of ATR Alert control messages for the

prioritized and CPU reserved stream was signifi-
cantly higher than for any of the other streams. Nine
out of the fourteen streams (64%) did not produce
ATR Alert control messages indicating successful ob-
ject identification, and requiring successful and
timely upstream delivery and processing. Stream 7
produced 150 alerts, which reached the ATR Event
Channel consumer, which was 21% better than the
next best stream (Stream 2) that produced 124 alerts.
The prioritized stream performed much better than
the non-prioritized streams for two reasons: (1) Diff-
Serv prioritizing stream 7 reduced the packet loss
compared to other streams, so images with targets in
them were more likely to reach the ATR for process-
ing and (2) reserving CPU resources for ATR 7 sig-
nificantly improved the ability of this ATR to process
images and identify targets in a timely fashion despite
competing load.
The most significant conclusion drawn from the em-

pirical results described above is that by using a multi-
layer middleware-mediated QoS framework that inte-
grates resource management mechanisms (such as Diff-
Serv network priorities and TimeSys Linux CPU reserva-
tions), the end-to-end path of a critical, multi-host appli-
cation exhibits (1) higher performance (delivery of all
object identification alerts) and (2) better predictability
(consistently, timely delivery of video images and no ob-
served packet loss) than other less critical applications
competing for limited network and CPU resources. The
ability to selectively control these end to end behaviors
throughout different parts of an overall system and
through different areas of technical focus is a giant leap
forward in itself. In addition, it represents an important
building block in the long-term R&D pursuit of QoS
managed adaptive behavior for DRE systems through a
common framework, where design time analysis is com-
bined with runtime adaptive mechanisms and policies that
manipulate this system level control, while at the same
time integrating system-centric adaptation with applica-
tion-centric adaptation.

6 Related Work
This section reviews related work in enhancing mid-

dleware platforms so they can support adaptive DRE QoS
properties and application QoS aspects.

Adaptive middleware mechanisms. In their dy-
namicTAO project, Kon and Campbell [15] apply adap-
tive middleware techniques to extend TAO so it can be
reconfigured at runtime by dynamically linking selected
modules, according to the features required by the appli-
cations. As with our prior efforts on TAO and QuO, Kon
and Campbell provide mechanisms to realize QoS provi-
sion in the middleware level. The work described in this
paper goes further, however, by integrating QoS provi-
sioning mechanisms at the middleware, OS, and network
levels.

The Distributed Multimedia Research Group at Lan-
caster University has developed a prototype of advanced
reflective middleware called Adapt [18]. This middleware
model concentrates on dynamic composition of objects
through open bindings [6], which (1) allows object im-
plementations to be configured dynamically, (2) deter-
mines various aspects of object implementations, such as
adding or removing methods from an object, and (3) ex-
plicitly establishes transport connections between objects
that can be used for streaming multimedia data. The
Adapt project model also facilitates QoS properties man-
agement and monitoring. Compared to the Adapt project,
our efforts concentrate on applying QoS provisioning
techniques to implement and improve the implementation
of an existing middleware standard (CORBA), whereas
the Adapt project defines and implements the meta-space
of a new middleware framework at a higher level.

Aspect-oriented techniques can be applied to specify
middleware QoS behaviors and configure the supporting
mechanisms for these QoS behaviors. In particular, the
container architecture in component-based middleware,
such as Enterprise Javabeans (EJB) and the CORBA
Component Model (CCM), provides the vehicle for ap-
plying meta-programming techniques that provide QoS
assurance control in component middleware. Conan et al
[20] use containers together with aspect-oriented software
development techniques to plug in different non-
functional behaviors. This project is similar to QuO dele-
gates in that mechanisms are provided to inject aspects
into applications statically at the middleware level. QuO
goes further, however, since it also supports dynamic QoS
provisioning via its qosket mechanisms [21].

de Miguel [22] extends other work on QoS-enabled
containers by enhancing an EJB container to support a
QoSContext interface that allows the exchange of QoS-
related information with component instances. To take
advantage of the QoS-container, a component must im-
plement QoSBean and QoSNegotiation interfaces. A key
difference between de Miguel's approach and ours is the
QuO delegates and contracts enable the QoS negotiation
protocols to be performed transparently to the component
implementations.

Control-theoretic approaches to adaptive middle-
ware. A number of control-theoretic approaches are now
being applied to DRE systems to overcome limitations
with traditional scheduling approaches that do not handle
dynamic changes in resource availability and therefore
result in a rigidly scheduled system that adapts poorly to
change. A survey of these techniques is presented in [28].

Feedback control scheduling (FCS) [29] is designed
to address the challenges of applications with stringent
end-to-end QoS executing in open DRE systems. These
algorithms provide robust and analytical performance
assurances despite uncertainties in resource availability
and/or demand. FC-U and FC-M [30] applies this ap-
proach to manage processor utilization. CAMRIT [31]
applies control-theoretic approaches to ensure transmis-
sion deadlines of images over an unpredictable network

11

link and also presents analytic performance assurance that
the transmission deadlines are met.

A hierarchical control scheme that integrates resource
reservation mechanisms [32] with application-specific
QoS adaptation is proposed in [33]. This control scheme
features a two-tier hierarchical structure: (1) a global QoS
manager is responsible for allocating computational re-
sources to various applications in the system and (2) ap-
plication-specific QoS managers/adapters modify applica-
tion execution to use the allocated resources efficiently
and maximize application QoS.

Although these approaches are similar to the work we
report in this paper, these algorithms/mechanisms perform
resource management of only one type of system re-
source, i.e., either computing power or network band-
width. In contrast, our QoS management framework per-
forms resource management of both network and comput-
ing resources, which is crucial for real-world DRE sys-
tems. We have also recently used the two-tier hierarchical
management approach similar to that cited above as an
extension to our multi-resource QoS management frame-
work, for dynamic mission management applications [35].

7 Concluding Remarks
Developing DRE systems that can maintain the best

possible application performance in the face of changes in
available resources is an important R&D challenge. This
paper describes the design and performance of a QoS
management framework that adaptively controls the end-
to-end behavior of multimedia applications by applying
resource management techniques for processing and
communication tasks. This framework integrates QoS-
enabled middleware (TAO and QuO), multimedia mid-
dleware services (the CORBA Audio/Video Streaming
Service), real-time operating systems (Real-time Linux)
and QoS-enabled networking protocols (IntServ and Diff-
Serv) to develop robust multimedia applications that can
adapt to changes in resource availability to meet their
QoS requirements.

Creating a stove-piped one-of-a-kind application
would have been an unsatisfying solution, although that
has been the state-of-the-practice until recently. We there-
fore designed our solution based upon advanced software
engineering principles, such as separation of concerns and
aspect-oriented programming. We have incorporated these
concepts as key design principles underlying our middle-
ware framework and have used them to develop represen-
tative applications.

Over the past several years we have enhanced, ap-
plied, and evaluated these middleware-mediated QoS
management technologies in the context of an open ex-
perimentation platform (OEP) that embodied complex
challenge problems associated with multimedia applica-
tions – in particular a UAV video distribution application
suite. The relevant QoS management activities associated
with this OEP include trading off sensor/image quality
and timeliness and coordinating resource usage among

competing applications to satisfy changing mission re-
quirements under dynamic (and potentially hostile) envi-
ronmental conditions. Our experiments used a combina-
tion of CPU reservation along with network priority for
end-to-end control of resources management policy to
effect the controlled QoS behavior reported for our UAV
video distribution application. Our empirical results
showed how integrating resource management techniques
can be effective in sustaining predictable QoS results un-
der heavy competing load.

The work reported here also formed the basis for sub-
sequent exploration and evaluation in the context of a live
flight, multiple UAV exercise at White Sands Missile
Range in April 2005, which integrated and managed the
interactions among widely dispersed air, ground, fixed
and mobile assets performing dynamic mission planning
for time-sensitive activities [25]. That work combined the
middleware-mediated managed resource approach with
the adaptation approach used to dynamically shape appli-
cation behavior, and combined elements of design time
analytic approaches with runtime adaptive behavior ap-
proaches [26]. Based on experience and experiments with
those real applications in their natural operating contexts,
we conclude that the approaches and techniques outlined
in this paper are both feasible and effective in managing
QoS demands in realistic and changing deployment envi-
ronments.

The UAV video dissemination application illustrates
the challenges associated with dimensions of scale. Mov-
ing from managing QoS in an application to managing
end-to-end QoS in a streaming video application is hard
enough. Adding the complexity of multiple competing
streams over shared and constrained resources increases
the complexity. The scale of the problem space does not
end there, however, since the complexity continues to
scale if the number of UAVs can change at runtime, and if
the runtime conditions (including possible mission
modes) can change. We have had success in managing
end-to-end QoS for multiple, competing streams, as de-
scribed in this paper. Up to now, however, we have done
so only for fixed (or bounded) numbers of UAVs and for a
fixed set of mission modes which are known a priori. Al-
lowing these two dimensions to scale unconstrained adds
a new set of challenges for us to address. Our future work
focuses on a more comprehensive analysis of the trade-
offs, effectiveness, and widespread availability of mid-
dleware-mediated OS and network resource management.

References
[1] D. Le Gall. MPEG: a Video Compression Standard

for Multimedia Applications. Communications of the
ACM, April 1991.

[2] J. Zinky, D. Bakken, and R. Schantz, “Architectural
Support for Quality of Service for CORBA Objects”,
Theory and Practice of Object Systems, vol. 3, num.
1, 1997.

[3] D. Schmidt, David Levine, and S. Mungee, “The
Design and Performance of the TAO Real-Time Ob-

12

ject Request Broker”, Computer Communications
21(4), April 1999.

[4] S. Mungee, N. Surendran, Y. Krishnamurthy, and D.
Schmidt, “The Design and Performance of a CORBA
Audio/Video Streaming Service,” Design and Man-
agement of Multimedia Information Systems: Oppor-
tunities and Challenges, Idea Publishing Group,
2000.

[5] R. Schantz and D. Schmidt, “Middleware for Distrib-
uted Systems: Evolving the Common Structure for
Network-centric Applications,” Encyclopedia of
Software Engineering, Wiley and Sons, 2002.

[6] T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, P.
Robin, “Supporting Adaptive Multimedia Applica-
tions through Open Bindings,” International Confer-
ence on Configurable Distributed Systems, Maryland,
1998.

[7] Eric Eide, Tim Stack, John Regehr, and Jay Lepreau
“Dynamic CPU Management for Real-Time, Middle-
ware-Based Systems,” 10th IEEE Real-Time and
Embedded Technology and Applications Sympo-
sium, May 25 - May 28, 2004, Toronto, Canada.

[8] R. Schantz, J. Loyall, C. Rodrigues, D. Schmidt, Y.
Krishnamurthy, and I. Pyarali, “Flexible and Adap-
tive QoS Control for Distributed Real-time and Em-
bedded Middleware,” The ACM/IFIP/USENIX In-
ternational Middleware Conference, June 2003, Rio
de Janeiro, Brazil.

[9] C. D. Gill, J. M. Gossett, D. Corman, J. P. Loyall, R.
E. Schantz, M. Atighetchi, and D. C. Schmidt, “Inte-
grated Adaptive QoS Management in Middleware:
An Empirical Case Study,” Proceedings of the 10th
IEEE Real-time Technology and Application Sympo-
sium (RTAS '04), Toronto, CA, May 2004.

[10] F. Kon, F. Costa, G. Blair, and R. Campbell, “The
Case for Reflective Middleware,” CACM, June 2002.

[11] Object Management Group, "Control and Manage-
ment of Audio/Video Streams, OMG RFP Submis-
sion (Revised), OMG Technical Document 98-10-
05", Oct 1998, Framingham. MA.

[12] Object Management Group, “Realtime CORBA Joint
Revised Submission”, OMG Document orbos/99-02-
12, March 1999.

[13] Object Management Group, Real –Time CORBA
2.0: Dynamic Scheduling Specification, OMG Final
Adopted Specification, September 2001.

[14] TimeSys Corporation. TimeSys Linux R/T User’s
Manual, 2.0 edition, 2001.

[15] IETF, An Architecture for Differentiated Services,
www.ietf.org/rfc/rfc2475.txt.

[16] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D.
Zappala, “RSVP: A New Resource ReSerVation Pro-
tocol,” IEEE Network, September 1993.

[17] Timesys Corporation. Predictable Performance for
Dynamic Load and Overload, Version 1.0.
www.timesys.com/files/whitepapers/Predictable_Per-
formance_1_0.pdf, 2002.

[18] G. Blair, G. Coulson, P. Robin, M. Papathomas, “An
Architecture for Next Generation Middleware,” Pro-
ceedings of the IFIP International Conference on Dis-
tributed Systems Platforms and Open Distributed
SysProcessing, London, England, 1998.

[19] J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr,
R Vanegas, and K. Anderson. “QoS Aspect Lan-
guages and Their Runtime Integration.” Lecture
Notes in Computer Science, Vol. 1511, Springer-
Verlag. Proceedings of the Fourth Workshop on Lan-
guages, Compilers, and Run-time Systems for Scal-
able Computers (LCR98), May 1998, Pittsburgh, PA.

[20] D. Conan, E. Putrycz, N. Farcet, M. DeMiguel, “In-
tegration of Non-Functional Properties in Contain-
ers,” Proc. of the 6th International Workshop on
Component-Oriented Programming, Budapest, Hun-
gary, 2001.

[21] R. Schantz, J. Loyall, M. Atighetchi, P. Pal, “Packag-
ing Quality of Service Control Behaviors for Reuse,”
Proceedings of the 5th IEEE International Sympo-
sium on Object-oriented Real-time distributed Com-
put-ing (ISORC 2002), April 29 - May 1, 2002,
Washington, DC.

[22] M. deMiguel, “QoS-Aware Component Frame-
works,” Proceedings of the 10th International Work-
shop on QoS (IWQoS), Miama Beach, Florida, May
2002.

[23] Gary Duzan, Joseph Loyall, Richard Schantz, Rich-
ard Shapiro, and John Zinky, “Building Adaptive
Distributed Applications with Middleware and As-
pects,” International Conference on Aspect-Oriented
Software Development (AOSD ’04), Lancaster, UK,
March 22-26, 2004.

[24] Nanbor Wang, Douglas C. Schmidt, Aniruddha Gok-
hale, Christopher D. Gill, Balachandran Natarajan,
Craig Rodrigues, Joseph Loyall, and Richard E.
Schantz, “Total Quality of Service Provisioning in
Middleware and Applications,” The Journal of Mi-
croprocessors and Microsystems, Elsevier, vol. 26,
number 9-10, January 2003.

[25] Joseph Loyall, Richard Schantz, David Corman,
James Paunicka, Sylvester Fernandez. “A Distributed
Real-time Embedded Application for Surveillance,
Detection, and Tracking of Time Critical Targets,”
Real-time and Embedded Technology and Applica-
tions Symposium (RTAS), San Francisco, CA, March
7-10 2005.

 [26] Joseph Loyall, Jianming Ye, Sandeep Neema and
Nagabhushan Mahadevan, “Model-Based Design of
End-to-End Quality of Service in a Multi-UAV Sur-
veilance and Target Tracking Application,” Second
RTAS Workshop on Model-Driven Embedded Sys-
tems (MoDES ’04), Torinto, Canada, May 25-28,
2004.

[27] Douglas C. Schmidt and Carlos O'Ryan, “Patterns
and Performance of Distributed Real-time and Em-
bedded Publisher/Subscriber Architectures,” Journal
of Systems and Software, Special Issue on Software

13

Architecture -- Engineering Quality Attributes, Octo-
ber 2002.

[28] T. F. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and
Y. Lu, “Feedback Performance Control in Software
Services,” IEEE: Control Systems, 23(3), June 2003.

[29] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole,
“Analysis of a Reservation-based Feedback Sched-
uler,” In IEEE Realtime Systems Symposium, Dec.
2002.

[30] C. Lu, X. Wang, and C. Gill, “Feedback Control
Realtime Scheduling in ORB Middleware,” In Pro-
ceedings of the 9th IEEE Real-time and Embedded
Technology and Applications Symposium (RTAS),
Washington, DC, May 2003. IEEE.

 [31] X.Wang, H.-M. Huang, V. Subramonian, C. Lu, and
C. Gill, “CAMRIT: Control-based Adaptive Middle-
ware for Realtime Image Transmission,” In Proc. of
the 10th IEEE Realtime and Embedded Tech. and
Applications Symp. (RTAS), Toronto, Canada, May
2004.

[32] T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, and
L. Abeni. Adaptive Reservations in a Linux Envi-
ronment. In IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, pages 238–245,
2004.

 [33] L. Abeni and G. C. Buttazzo. Hierarchical QoS
Management for Time Sensitive Applications. In
IEEE Real Time Technology and Applications Sym-
posium, 2001.

[34] Praveen K. Sharma, Joseph P. Loyall, George T.
Heineman, Richard E. Schantz, Richard Shapiro,
Gary Duzan. Component-Based Dynamic QoS Adap-
tations in Distributed Real-Time and Embedded Sys-
tems. International Symposium on Distributed Ob-
jects and Applications (DOA), Agia Napa, Cyprus,
October 25-29, 2004.

[35] Prakash Manghwani, Joseph Loyall, Praveen
Sharma, Matthew Gillen, and Jianming Ye. End-to-
End Quality of Service Management for Distributed
Real-time Embedded Applications. The Thirteenth
International Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS 2005), Denver, Colo-
rado, April 4-5, 2005.

	1
	Abstract
	1 Introduction
	1.1 Emerging Trends and Challenges
	1.2 Towards Adaptive Middleware for DRE Sys tems

	2 Applying Managed QoS to DRE Systems: the Multimedia Application Case Study
	3 Resource Management for DRE Multimedia Applications
	3.1 Mechanisms for Prioritized and Reserved Man agement of Computing and Networking Resources
	3.2 A QoS Management Framework for Multimedia Applications

	4 Maintaining Real-time QoS Under Reduced Resource Availability in the Multimedia Appli cation
	4.1 Using Adaptation to Meet Multimedia Applica tion QoS Requirements
	4.2 Analysis of Bandwidth Reduction from Frame Filtering

	5 Empirical Results of End-to-end Resource Man agement Experiments
	5.1 Experimental Design and Hardware/Software Testbed
	5.2 Managed End-to-end Behavior Observations
	5.3 Analysis of End-to-end Resource Management Control Experiments

	6 Related Work
	7 Concluding Remarks
	References

