
1

Cataloging Prompt Patterns to Enhance the
Discipline of Prompt Engineering

Douglas C. Schmidt, Jesse Spencer-Smith, Quchen Fu, and Jules White
Dept. of Computer Science, Vanderbilt University; email: {douglas.c.schmidt, jesse.spencer-smith, quchen.fu,
jules.white}@vanderbilt.edu

Abstract

The rapid advent of Large language models (LLMs),
such as ChatGPT, are disrupting a number of domains,
ranging from education to medicine and software en-
gineering. LLMs rely on "prompts", which are natural
language statements given to the LLM to query and
program its capabilities. This paper provides several
contributions to research on LLMs. First, discusses the
importance of codifying "prompt patterns" to enable
prompt engineering, which is a more disciplined and
repeatable means of interacting with and evaluating
LLMs. Second, it provides examples of prompt patterns
that improve human interaction with LLMs in the con-
text of software engineering, as well as other domains.
We contend that prompt patterns play an essential role
in providing the foundation for prompt engineering.

Keywords: prompt engineering, large language models,
software patterns, prompt patterns.

1 Introduction
Large language models (LLMs) [1, 2] with conversatational
interfaces, such as ChatGPT [3], are generating and reasoning
about art, music, essays and computer programs. Startups
using LLMs are attracting billions in funding and existing
software is being enhanced using LLMs. The rapid uptake
of these tools underscores the transformational impact LLMs
are having on society, research, and education. However,
little disciplined knowledge about chat-adapted LLMs, their
capabilities, and their limitations exist.

LLMs provide new computational models with unique pro-
gramming and interaction paradigms and greatly expanded
capabilities. Anyone with an Internet connection and web
browser can instantly access vast intelligent computational
abilities, such as explaining complex topics; reasoning about
diverse data sets; designing, implementing, and testing com-
puter software; and simulating complex systems. LLMs are
programmed through prompts, which are natural language
instructions provided to the LLM [?], such as asking it to an-
swer a question or write an essay. These common examples of
prompts, however, do not reveal the much more sophisticated
computational abilities LLMs possess.

Harnessing the potential of LLMs in productive and ethi-
cal ways requires a systematic focus on prompt engineer-
ing, which is an emerging discipline that studies interactions

with—and programming of—emerging LLM computational
systems to solve complex problems via natural language in-
terfaces. We contend that an essential component of this
discipline are Prompt Patterns [4], which are similar to soft-
ware patterns [?, 5], but focus on capturing reusable solutions
to problems faced when interacting with LLMs. Such patterns
elevate the study of LLM interactions from individual ad hoc
examples, to a robust and repeatable engineering discipline
that formalizes and codifies fundamental prompt structures,
their capabilities, and their ramifications.

This paper presents portions of our ongoing efforts to codify
a catalog of domain-independent reusable patterns to show
the need for more research on prompt patterns and prompt
engineering. We present these patterns in the context of
software engineering, but they are applicable in many other
domains.

2 Towards a Catalog of Prompt Patterns
We build upon and briefly summarize our prior work on
prompt patterns [4]. Prompt patterns use a similar format to
classic software patterns, with slight modifications to match
the context of output generation with LLMs.

Organizing a catalog of prompt patterns into easily digestable
categories helps users interact with and program LLMs more
effectively. Table 1 outlines the classification of the patterns
we implemented and tested with ChatGPT discussed in this
paper. As shown in this table, there are three categories of

Table 1: Classifying Prompt Patterns

Pattern Category Prompt Pattern
Prompt Improvement Question Refinement
Error Identification Reflection
Interaction Game Play

prompt patterns in the classification framework we use for
this paper: Prompt Improvement, Error Identification, and
Interaction, which are described in detail at [4].

2.1 The Game Play Pattern
2.1.1 Intent and Context
The intent of this pattern is to create a "game" around a given
topic. The pattern can be combined with the Visualization
Generator pattern [4] to add imagery to the game. The game
is centered around a specific topic and the LLM will guide
the game play. This pattern is particularly effective when



2 Towards a Disc ip l ine of Prompt Engineer ing

the rules of the game are relatively limited in scope, but the
content for the game is wider in scope. Users can specify a
limited set of rules and the LLM can then automate generation
of bodies of content for game play.

2.1.2 Motivation
You want an LLM to generate scenarios or questions involving
specific topic(s) and require users to apply problem solving
or other skills to accomplish a task related to the scenario.
Generating all game content manually is too time consuming,
however, so you would like the LLM to apply its knowledge
of the topic to guide the generation of content.

2.1.3 Structure and Key Ideas
Fundamental contextual statements:

Contextual Statements
Create a game for me around X
One or more fundamental rules of the game

The first statement, instructs the LLM to create a game and
provides the important scoping of the game to a topic area.
This pattern allows users to create games by describing the
rules of the game, without having to determine the content
of the game. The more specific the topic, typically the more
novel and interesting the game play.

The second statement introduces the game rules to the LLM,
which must fit within the capabilities of the LLM. Textual
games that rely on input and output text sequences work best.
A key attribute of this pattern is that the input text can be
rich and expressive, which can lead to interesting interfaces
for the game. For example, users might express actions in
the game as scripts dictating a sequence of complex actions,
such as “get a listing of all network activity and check it for
anomalies”, which go beyond the scope of multiple choice
or short answer inputs. Each rule should be provided as a
separate statement regarding some aspect of the game.

2.1.4 Example Implementation
A sample cybersecurity game prompt is shown below:

“We will play a cybersecurity game where you pre-
tend to be a Linux terminal for a computer compro-
mised by an attacker. When I type in a command,
you will output the corresponding text the Linux
terminal would produce. I will use commands to try
and figure out how the system was compromised.
The attack should have done one or more of the
following things: (1) launched new processes, (2)
changed files, (3) opened new ports to receive com-
munication, (4) created new outbound connections,
(5) changed passwords, (6) created new user ac-
counts, or (7) read and stolen information. To start
the game, print a scenario of what happened that
led to my investigation and make the description
have clues I can use to get started.”

This cybersecurity game prompt combines a number of pat-
terns, including Game Play and Persona. The Linux terminal
persona that is chosen for the game has been discussed in
many Internet posts [?]. This game further customizes the dis-
cussed Linux persona to act as a Linux terminal of a computer

compromised by a cyberattack. ChatGPT responds to Linux
commands with appropriate terminal outputs and synthesizes
a faux file system that has clues to a cyberattack.

Sample output from this game with ChatGPT after typing
in “ls -alt”, the Linux command to generate a list of files in
the current directory is shown below (permissions have been
removed for formatting reasons):

total 56
5 user user 4096 Feb 16 14:31 .
1 user user 18881 Feb 16 14:31 .bash_history

43 user user 4096 Feb 16 14:30 ..
1 user user 1178 Aug 15 2022 .bashrc
1 user user 220 Aug 15 2022 .bash_logout
3 user user 4096 Feb 16 14:25 .gnupg
1 user user 4041 Feb 15 17:52 README.md
2 user user 4096 Feb 1 11:35 project

When the user then typed the command “cat .bash_history”,
to display the contents of the log file showing the commands
run by the user, ChatGPT responded with:

cd /var/www/html
sudo rm -rf *
sudo wget https://example.com/backdoor.php
sudo chmod 777 backdoor.php
exit
ls -alt
ps -ef
netstat -tulnp

In the output above, ChatGPT generated a faux log file with
realistic commands for deleting the data being served by the
web server in /var/www/html and replacing the content
with a backdoor into the system.
2.1.5 Consequences
This pattern can be combined with the Persona, Infinite Gener-
ation, and Visualization Generator patterns [4]. For example,
the cybersecurity game uses the Persona pattern so the LLM
can masquerade as a Linux terminal. For a network secu-
rity game, the Visualization Generator can be employed to
visualize the network topology and traffic flows.
2.2 The Reflection Pattern
Intent and Context The goal of this pattern is to ask an
LLM to explain the rationale behind given answers to the user
automatically. The pattern allows users to better assess the
output’s validity, as well as inform users how an LLM arrived
at a particular answer. The Reflection pattern can clarify any
points of confusion, uncover underlying assumptions, and
reveal gaps in knowledge or understanding.

Motivation LLMs can (and often do) make mistakes. More-
over, users may not understand why an LLM produces partic-
ular output and how to adapt their prompt to solve a problem
with the output. By asking LLM to explain the rationale of
its answers automatically, however, users can gain a better
understanding of how the LLM processes the input, what
assumptions it makes, and what data it draws upon.

LLMs may sometime provide incomplete, incorrect, or am-
biguous answers. Reflection is an aid to help address these



Douglas C. Schmidt , Jesse Spencer-Smi th , Quchen Fu, Ju les Whi te 3

shortcomings and ensure the information provided by LLM is
as accurate. This pattern also helps users debug their prompts
and determine why they are not getting results that meet ex-
pectations. The Reflection pattern is particularly effective for
exploring topics that (1) can be confused with other topics
or (2) may have nuanced interpretations, so it is essential to
know the precise interpretation used by an LLM.

Structure and Key Ideas Fundamental contextual state-
ments:

Contextual Statements
Whenever you generate an answer
Explain the reasoning and assumptions behind your an-
swer
(Optional) ...so that I can improve my question

The first statement is requesting that, after generating an an-
swer, the LLM should explain the reasoning and assumptions
behind the answer. This statement helps the user understand
how the LLM arrived at the answer and can help build trust
in the model’s responses. The prompt includes the statement
that the purpose of the explanation is for the user to refine
their question. This additional statement gives the LLM the
context needed to better tailor its explanations to the specific
purpose of assisting the user produce follow-on questions.

Example Implementation This example tailors the prompt
to the domain of providing answers related to code:

"When you provide an answer, please explain the
reasoning and assumptions behind your selection
of software frameworks. If possible, use specific
examples or evidence with associated code samples
to support your answer of why the framework is
the best selection for the task. Moreover, please
address any potential ambiguities or limitations in
your answer, in order to provide a more complete
and accurate response."

The pattern is further customized to instruct the LLM that it
should justify its selection of software frameworks, but not
necessarily other aspects of the answer. In addition, the user
dictates that code samples should be used to help explain the
motivation for selecting the specific software framework.

Consequences One consequence of the Reflection pattern is
that it may be ineffective for users who do not understand the
topic area being discussed. For example, a highly technical
question by a non-technical user may result in a complex
rationale for an answer the user cannot fathom. As with other
prompt patterns, the output may include errors or inaccurate
assumptions included in the explanation of the rationale that
the user may not be able to spot. This pattern can be combined
with the Fact Check List [4] to help address this issue.

2.3 The Question Refinement Pattern
2.3.1 Intent and Context
This pattern engages the LLM in the prompt engineering
process. The intent of this pattern is to ensure an LLM always
suggests potentially better or more refined questions users

could ask instead of their original question. By applying this
pattern, the LLM can aid users in finding the right questions
to ask to arrive at accurate answers. In addition, an LLM may
help users find the information or achieve their goal in fewer
interactions than if users employed conventional "trial and
error" prompting.
2.3.2 Motivation
If user asks questions, they may not be experts in the domain
and may not know the best way to phrase the question or
be aware of additional information helpful in phrasing the
question. LLMs will often state limitations on the answer
they provide or request additional information to help them
produce a more accurate answer. An LLM may also state
assumptions it made in providing the answer. The motivation
is that this additional information or set of assumptions could
be used to generate a better prompt. Rather than requiring
the user to digest and rephrase their prompt with the addi-
tional information, the LLM can directly refine the prompt to
incorporate the additional information.
2.3.3 Structure and Key Ideas
Fundamental contextual statements:

Contextual Statements
Within scope X, suggest a better version of the question
to use instead
(Optional) prompt me if I would like to use the better
version instead

The first contextual statement in the prompt asks the LLM
to suggest a better version of a question within a specific
scope. This scoping ensure that (1) not all questions are auto-
matically reworded or (2) they are refined with a given goal.
The second contextual statement is meant for automation and
allows users to apply the refined question without copy/past-
ing or manually enter it. This prompt can be further refined
by combining it with the Reflection pattern discussed above,
which allows the LLM to explain why it believes the refined
question is an improvement.
2.3.4 Example Implementation

“From now on, whenever I ask a question about a
software artifact’s security, suggest a better version
of the question to use that incorporates information
specific to security risks in the language or frame-
work that I am using instead and ask me if I would
like to use your question instead.”

In the context of the example above, the LLM will use the
Question Refinement pattern to improve security-related ques-
tions by asking for or using specific details about the software
artifact and the language or framework used to build it. For
instance, if a developer of a Python web application with
FastAPI asks ChatGPT “How do I handle user authentication
in my web application?”, the LLM will refine the question
by taking into account that the web application is written
in Python with FastAPI. The LLM then provides a revised
question that is more specific to the language and framework,
such as “What are the best practices for handling user au-
thentication securely in a FastAPI web application to mitigate
common security risks, such as cross-site scripting (XSS),
cross-site request forgery (CSRF), and session hijacking?”



4 Towards a Disc ip l ine of Prompt Engineer ing

The additional detail in the revised question is likely to not
only make the user aware of issues they need to consider,
but lead to a better answer from the LLM. For software engi-
neering tasks, this pattern could also incorporate information
regarding potential bugs, modularity, or other code quality
considerations. Another approach would be to refine ques-
tions so the generated code cleanly separates concerns or
minimizes use of external libraries, such as:

Whenever I ask a question about how to write some
code, suggest a better version of my question that
asks how to write the code in a way that minimizes
my dependencies on external libraries.

2.3.5 Consequences
The Question Refinement pattern helps bridge the gap be-
tween the user’s knowledge and the LLM’s understanding,
thereby yielding more efficient and accurate interactions. One
risk of this pattern is its tendency to rapidly narrow the ques-
tioning by the user into a specific area that guides the user
down a more limited path of inquiry than necessary. Such
narrowing may cause users to miss important "bigger picture"
information. One solution is to provide additional scope to
the pattern prompt, such as “do not scope my questions to
specific programming languages or frameworks.”

Combining the Question Refinement pattern with other pat-
terns also helps overcome arbitrary narrowing or limited tar-
geting of refined questions. In particular, combining this pat-
tern with the Cognitive Verifier pattern [?] enables an LLM to
produce a series of follow-up questions that refine the original
question. For example, in the following prompt the Ques-
tion Refinement and Cognitive Verifier patterns are applied to
ensure better questions are posed to the LLM:

“From now on, whenever I ask a question, ask four
additional questions that would help you produce
a better version of my original question. Then,
use my answers to suggest a better version of my
original question.”

As with many prompt patterns that allow an LLM to generate
new questions using its knowledge, the LLM may introduce
unfamiliar terms or concepts to the user into the question.
One way to address this issue is to include a statement that
the LLM should explain any unfamiliar terms it introduces
into the question. A further enhancement of this idea is to
combine the Question Refinement pattern with the Persona
pattern so the LLM flags terms and generates definitions that
assume a particular level of knowledge, such as this example:

“From now on, whenever I ask a question, ask four
additional questions that would help you produce
a better version of my original question. Then,
use my answers to suggest a better version of my
original question. After the follow-up questions,
temporarily act as a user with no knowledge of
AWS and define any terms that I need to know to
accurately answer the questions.”

LLMs can produce factual inaccuracies, just like humans. A
risk of this pattern is that inaccuracies are introduced into
refined questions. This risk may be mitigated, however, by

combining the Fact Check List pattern [4] to enable users to
identify possible inaccuracies and the Reflection pattern to
explain the reasoning behind question refinement.

3 Concluding Remarks
Current discussions of LLM prompts and prompt engineering
are based largely on individual ad hoc use cases, i.e., i.e.
the same basic prompt examples are replicated in different
variations and evaluated as if they are new ideas, such as
these examples [6, 7] replicating the Persona Pattern outlined
in our prior work. The limitations with the current state-
of-the-practice are thus akin to discussing the specifics of
individual software programs without identifying key design
and architectural patterns these systems are based on.

In contrast, our focus on prompt patterns elevates the study
of LLMs to view them more appropriately as a new computer
architecture with an instruction set based on natural language.
Prompt patterns define the instruction set, where as individual
prompt examples are one-off programs. By documenting the
instruction set for this radically new computing architecture
via patterns we can reason about LLM technologies more
effectively and teach others to tap into these capabilities more
reliably and ethically.

References
[1] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman,

S. Arora, S. von Arx, M. S. Bernstein, J. Bohg,
A. Bosselut, E. Brunskill, et al., “On the opportunities
and risks of foundation models,” arXiv preprint
arXiv:2108.07258, 2021.

[2] C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang,
C. Ji, Q. Yan, L. He, et al., “A comprehensive survey on
pretrained foundation models: A history from bert to
chatgpt,” arXiv preprint arXiv:2302.09419, 2023.

[3] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su,
B. Wilie, H. Lovenia, Z. Ji, T. Yu, W. Chung, et al., “A
multitask, multilingual, multimodal evaluation of chatgpt
on reasoning, hallucination, and interactivity,” arXiv
preprint arXiv:2302.04023, 2023.

[4] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea,
H. Gilbert, A. Elnashar, J. Spencer-Smith, and D. C.
Schmidt, “A prompt pattern catalog to enhance prompt
engineering with chatgpt,” arXiv preprint
arXiv:2302.11382, 2023.

[5] E. Gamma, R. Johnson, R. Helm, R. E. Johnson, and
J. Vlissides, Design patterns: elements of reusable
object-oriented software. Pearson Deutschland GmbH,
1995.

[6] f, “Awesome chatgpt prompts.”
https://github.com/f/awesome-chatgpt-prompts,
accessed 2023. GitHub repository.

[7] H. Face, “Awesome chatgpt prompts dataset.”
https://huggingface.co/datasets/fka/awesome-chatgpt-
prompts, accessed 2023. Hugging Face Dataset.


