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Abstract

The rapid advent of Large Language Models (LLMs),
such as ChatGPT and Claude, is revolutionizing various
fields, from education and healthcare to the engineer-
ing of reliable software systems. These LLMs operate
through "prompts," which are natural language inputs
that users employ to query and leverage the models’
capabilities. Given the novelty of LLMs, the understand-
ing of how to effectively use prompts remains largely
anecdotal, based on isolated use cases. This fragmented
approach limits the reliability and utility of LLMs, espe-
cially when they are applied in mission-critical software
environments. To harness the full potential of LLMs
in such crucial contexts, therefore, we need a system-
atic, disciplined approach to "prompt engineering" that
guides interactions with and evaluations of these LLMs.

This paper provides several contributions to research
on LLMs for reliable software systems. First, it pro-
vides a holistic perspective on the emerging discipline
of prompt engineering. Second, it discusses the impor-
tance of codifying "prompt patterns" to provide a sound
foundation for prompt engineering. Third, it provides
examples of prompt patterns that improve human inter-
action with LLMs in the context of software engineering,
as well as other domains. We conclude by summarizing
ways in which prompt patterns play an essential role in
providing the foundation for prompt engineering.

1 Introduction
Large language models (LLMs) [1, 2] with conversational
interfaces, such as ChatGPT [3], are generating and reasoning
about art, music, essays and computer programs. Startups
using LLMs are attracting significant funding [4] and existing
software is being enhanced using LLMs. The rapid uptake of
these tools underscores the transformational—and disruptive—
impact LLMs are having on society, research, and education.
However, little disciplined knowledge about chat-adapted
LLMs, their capabilities, and their limitations exist.

LLMs provide new computational models with unique pro-
gramming and interaction paradigms and greatly expanded
capabilities. Anyone with an Internet connection and web
browser can instantly access vast intelligent computational
abilities, such as explaining complex topics; reasoning about

diverse data sets; designing, implementing, and testing com-
puter software; and simulating complex systems. LLMs are
programmed through prompts, which are natural language
instructions provided to the LLM [5], such as asking it to an-
swer a question or write an essay. These common examples of
prompts, however, do not reveal the much more sophisticated
computational abilities LLMs possess.

Harnessing the potential of LLMs in productive and ethi-
cal ways requires a systematic focus on prompt engineering,
which is an emerging discipline that studies interactions with—
and programming of—emerging LLM computational systems
to solve complex problems via natural language interfaces.
We contend that an essential component of this discipline are
Prompt Patterns [6], which are similar to software patterns [7],
but focus on capturing reusable solutions to problems faced
when interacting with LLMs. Such patterns elevate the study
of LLM interactions from individual ad hoc examples, to
a more reliable and repeatable engineering discipline that
formalizes and codifies fundamental prompt structures, their
capabilities, and their ramifications.

This paper presents portions of our ongoing efforts to codify
a catalog of domain-independent patterns to show the need
for more research on prompt patterns and prompt engineer-
ing. We present these patterns in the context of engineering
software-reliant systems, but they are applicable in many
other domains.

The remainder of this paper is organized as follows: Section 2
gives an overview of the emerging discipline of prompt engi-
neering; Section 3 describes portions of a catalog of prompt
patterns that we are codifying; and Section 4 presents con-
cluding remarks and lessons learned from our work on prompt
patterns for prompt engineering thus far.

2 Towards a Discipline of Prompt Engi-
neering

This section gives an overview of prompt engineering, focus-
ing on its definition, value for both computer science (CS) and
non-CS professionals, and the need for a holistic approach.
For CS professionals we emphasize prompt engineering’s role
in enhancing AI interactions and accelerating prototyping,
whereas for non-CS professionals it serves as a gateway to
computational problem-solving without requiring traditional
programming skills. Lastly, we advocate for considering the
same type of quality attributes for prompt engineering as we
do for software engineering.
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2.1 What is Prompt Engineering?
Prompt engineering is the science and art of designing, format-
ting, and optimizing conversational prompts to better guide
the discourse with AI or machine learning models. It involves
crafting of stimuli or instructions to evoke specific responses
from AI systems. With the increased use of AI platforms that
respond to user queries, establishing a discipline of prompt
engineering has become increasingly important.

The scope of prompt engineering encompasses a wide range
of domains, including AI chatbots, AI customer service
agents, voice-first applications, and other AI interaction inter-
faces. It plays a crucial role in tuning the model performance,
enhancing the quality of interaction, and achieving user satis-
faction. It spans both understanding the technical capabilities
of AI models and the nuances of human communication.

Users of AI models need to understand the strength and weak-
nesses of AI models they interact with and should hone their
creative capability to formulate prompts that evoke the de-
sired response. Prompt engineering thus provides a bridge
between the increasingly sophistication of AI models and the
need for human-like interactions that appeal to users.

2.2 The Value of Prompt Engineering for Com-
puter Science (CS) Professionals

For CS professionals, prompt engineering offers advantages
that extend beyond the basics of code generation and code
summarization. Programmers are generally proficient in
coding and well-versed in the syntax and semantics of con-
ventional programming languages, such as Java, C/C++, or
Python. However, prompt engineering introduces a new
paradigm that enables rapid prototyping and concept test-
ing without the need to write code manually. It thus serves
as a complementary tool that can expedite iterative and incre-
mental development processes, enabling software engineers
to rapidly sketch out algorithms, models, or systems using
natural language. This capability accelerates the transition
from idea to implementation, thereby saving time and effort.

Prompt engineering can also enhance software quality and
coding practices, e.g., by serving as a ’first-pass filter’ to
evaluate the feasibility of algorithms or system architectures
before delving into implementation details. Articulating com-
plex computational problems in natural language can enable
developers to identify potential pitfalls or inefficiencies more
rapidly. Emphasizing clarity in initial stages of the software
development life-cycle allows a broader range of stakeholders
(including architects, systems engineers, produce managers,
and end-users) to create more robust, efficient, and maintain-
able software-reliant systems over the life-cycle by avoiding
costly mistakes and architectural flaws that are cumbersome
and costly to rectify later.

Prompt engineering can be an effective tool for collabora-
tive work within the CS community. Prompts can be col-
lected into libraries of "prompt templates", thereby simpli-
fying the sharing of algorithms, ideas, and problem-solving
approaches without needing to understand the detailed intri-
cacies of software repositories. Since prompts are often more
easily understood and modified by a range of (non-developer)
stakeholders, they facilitate more inclusive and interactive

development environments. For example, team members can
propose modifications, tune parameters, or even reimplement
subsystems without the steep learning curve often associated
with understanding lower-level programs.

Prompt engineering also benefits educators and mentors
within the field of computer science. Educators can use it to
introduce complex computational concepts to students in a
more intuitive and accessible manner. Similarly, it can enable
more advanced students or junior developers to transition
from conceptual understanding to practical application. By
offering a natural language-based approach to problem articu-
lation and solution, prompt engineering acts as an educational
accelerator, easing the path from theory to practice.

2.3 The Value of Prompt Engineering for Non-CS
Professionals

Prompt engineering can be viewed as a form of "program-
ming" via natural language, which helps to democratize
the application of computational problem-solving across a
range of disciplines and professions. When used effectively,
this approach can bypass conventional barriers set by the
need to learn conventional programming languages, such
as Java, C/C++, or Python. Mastering these structured pro-
gramming language traditionally involved understanding their
syntax and semantics, which can incur a daunting and time-
consuming learning curve for non-CS professionals.

Moreover, the primary interest professionals in fields like
chemistry, biology, physics, the social sciences, and the hu-
manities often lies not in becoming programming experts, but
rather in leveraging computational resources to advance their
research or solve domain-specific problems. In such contexts,
prompt engineering helps to shift the focus from mastering
coding to mastering problem-solving. Using natural language
as the medium reduces barriers to entry, thereby allowing
a broader audience to employ computational tools in their
respective domains more effectively.

The potential impact of shifting from conventional program-
ming to problem-solving with LLMs is significant. Computa-
tion today is often limited to those with specialized training
in CS or programming. With prompt engineering, however,
experts in diverse fields ranging from analysis of ancient doc-
uments to radiology can harness the power of computational
methods to drive innovation and discovery. In particular, they
can articulate complex problems using familiar terminology
and get computational assistance without the learning curve
associated with conventional programming.

Prompt engineering is particularly relevant in interdisciplinary
work, where insights from multiple fields are crucial. In
these contexts, it serves as a bridge that facilitates a more
holistic approach to problem-solving, unifying various areas
of expertise under the umbrella of computational capability.

2.4 Towards a Holistic View of Prompt Engineering
The notion that prompt engineering is merely a passing
trend [8], soon to be eclipsed by increasingly sophisticated
LLMs, is a simplistic and short-sighted perspective. This
view reduces prompt engineering to a set of "tricks" designed
to navigate the current limitations of LLMs. However, this
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view overlooks the inherent complexities and nuances of nat-
ural language, which necessitates a systematic approach to
interaction. Unlike traditional programming languages, nat-
ural language lacks rigorously defined semantics, requiring
a disciplined method like prompt engineering to ensure the
effective use of LLMs in software-reliant systems.

Far from being a stopgap measure, prompt engineering should
be integrated holistically into all phases of the software de-
velopment life-cycle. In traditional software development,
professionals address a broad range of considerations beyond
just coding, including requirements specification, configura-
tion management, testing, and version control. In much the
same way, the discipline of prompt engineering must also
address these considerations, especially in mission-critical
systems where failure is not an option.

A focus on quality attributes across the life-cycle is essential
for the broader application of LLMs in robust, long-lived
software-reliant systems. Current uses of LLMs are often
localized and tactical, not integrated into systems intended to
endure for decades. As LLMs evolve, prompts that were once
reliable may no longer function as intended. The same dili-
gence applied to traditional software engineering—centered
on maintainability, reliability, and compatibility—must there-
fore be applied to the domain of prompt engineering.

Failing to adopt a comprehensive view of prompt engineering
risks limiting the application of LLMs to trivial or short-term
projects. To unlock the full potential of these advanced mod-
els in shaping future software-reliant systems, therefore, a
focus on quality attributes and a holistic methodology are not
just advantageous, they are essential. This dependency under-
scores the need for a more mature and systematic discipline
of prompt engineering that goes beyond mere prompt crafting
and becomes an integral part of modern software engineering
in the age of LLMs.

3 Towards a Catalog of Prompt Patterns
This section builds upon and briefly summarizes our prior
work on prompt patterns [6]. Prompt patterns use a similar
format to classic software patterns, with slight modifications
to match the context of output generation with LLMs.

Organizing a catalog of prompt patterns into easily digestible
categories helps users interact with and program LLMs more
effectively. Table 1 outlines the classification of the patterns
we implemented and tested with ChatGPT discussed in this
paper. As shown in this table, there are four categories of

Table 1: Classifying Prompt Patterns

Pattern Category Prompt Pattern
Software Requirements Requirements Elicitation

Facilitator
Unambiguous Require-
ments Interpreter

Interaction Game Play
Prompt Improvement Question Refinement
Error Identification Reflection

prompt patterns in the classification framework presented

in this paper: Software Requirements, Interaction, Prompt
Improvement, and Error Identification. The Software Require-
ments patterns are a specialized subset, as discussed next.
3.1 Patterns as an Abstraction for Derivation of

New Patterns
A benefit of patterns is that they can serve as an abstraction
for specialization and adaptation to different domains. In
prior work [6] we codified the Flipped Interaction pattern,
which directs the LLM to ask the user questions until it obtains
enough information to achieve a particular goal. The structure
of this pattern is as follows:

Contextual Statements
I would like you to ask me questions to achieve X
You should ask questions until this condition is met or
to achieve this goal (alternatively, forever)
(Optional) ask me the questions one at a time, two at a
time, etc.

The Flipped Interaction pattern forms a broader abstraction
that can be tailored and specialized to address different aspects
of requirements gathering in software engineering, thereby
leading to the creation of other, more context-specific pat-
terns. Software engineering requirements’ needs often call
for such specialized patterns, which extend the parent pattern
by integrating new attributes and focusing on specific tasks,
such as requirements elicitation, requirements ambiguity res-
olution, requirements discrepancy analysis, and requirements
traceability. Similar to how a super class in object-oriented
programming can be inherited and specialized to cover dif-
ferent uses-cases, prompt patterns can act as abstractions for
derivations of new prompt patterns. In this case, Flipped
Interaction acts as a super pattern for flipped interactions
focusing on requirements elicitation and management.

Sections 3.2 and 3.3 introduce patterns derived from the
Flipped Interaction pattern that address more specific ar-
eas within requirements elicitation and management, thereby
transforming the interaction’s goal to achieve more specificity.
Section 3.2 describes the Requirements Elicitation Facili-
tator pattern, which refines requirements through focused
interaction, and Section 3.3 describes the Unambiguous Re-
quirements Interpreter pattern, which reduces ambiguity in
requirements through targeted questioning.
3.2 Requirements Elicitation Facilitator
3.2.1 Intent & Context
The Requirements Elicitation Facilitator pattern enables an
LLM to cooperatively ask questions or propose scenarios,
which motivate users to bring forward their implicit require-
ment expectations. The objective is to get sufficient insight
into the subjective nature of their requirements and fill up
possible communication gaps. This pattern is particularly
beneficial when dealing with broad context applications.

In a context whereby many details are implicit or merely
touched upon, using the Requirements Elicitation Facilitator
pattern will guide an LLM into a systematic dialogue with
the users, thereby aiding in the step-wise refinement of the
requirements. The discussion focuses on ensuring clarity of
notions, resolving contradictions if any, and communicating
the intended functionalities/schema.
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3.2.2 Motivation
The process of requirements elicitation is often tedious and
time-consuming and filled with uncertainties. The process
involves, among many other things, capturing a description of
what the system should do, the desired behavior in different
states, and operational constraints. This process is iterative,
requiring involvement from different stakeholders and signifi-
cant conversation to ensure that all parties are fully expressing
their needs and vision for the system. Language model-driven
approaches can facilitate this process by helping to direct the
questioning and discussion to gather, analyze, and validate
the requirements, thereby saving effort and time. This process
is one of the most critical stages in software development,
since it forms the basis on which the proposed system is built.

3.2.3 Structure & Key Ideas
Typical contextual statements for this pattern include the fol-
lowing:

Contextual Statements
I am creating the requirements for a software system Y
using requirement format Z.
(Optionally) I am working on requirements for aspect Q
of the system.
Ask me questions to help generate requirements for the
system.
After each question, 1) based on my answer, generate
the requirement in format Z and then 2) ask me the next
question.
Keep asking me questions until stop condition V.
Ask me the first question.

3.2.4 Example Implementation
Examples of prompts that use the Requirements Elicitation
Facilitator pattern might include:

“I am creating the requirements for a web applica-
tion that allows users to share ChatGPT prompts
using user stories as the format. Ask me questions
to help generate requirements for the system. After
each question, 1) based on my answer, generate the
requirement as a user story and then 2) ask me the
next question. Keep asking me questions until I tell
you to stop. Ask me the first question.“

“I am creating the requirements for a web applica-
tion to help users refine their ChatGPT prompts by
suggesting improved versions. Ask me questions
to help generate requirements for the system. After
each question, 1) based on my answer, generate the
requirement as a user story and then 2) ask me the
next question. Keep asking me questions until you
have enough information to generate a skeleton of
the application in Python with Django. Ask me the
first question.“

3.2.5 Discussion
The Requirements Elicitation Facilitator pattern can be
viewed as a specialized derivation of the Flipped Interaction
pattern where the interaction’s goal is specifically to refine
the understanding of system requirements. This derived pat-
tern employs additional attributes to the LLM’s interrogation

by focusing on vital aspects of requirements elicitation such
as defining the system functionalities, clearing notions, and
resolving contradictions. It prescribes a strategic interaction
leading to clearer and finely-tuned requirements.

An important aspect of this pattern is defining the ’stop condi-
tion’ clearly. In situations where the limitations or contexts
are not explicitly mentioned, an LLM may take a ’shot in the
dark’ approach and may prompt you with questions that may
or may not be relevant, rendering the interaction less effective.
In the second example above, the stop condition explicitly
focuses on generating a skeleton application, which can aid
the LLM in directing questioning. Another possibility is to
include a summary of the requirements captured to help avoid
asking duplicate questions.

However, providing more control over the questions and feed-
back can create a more interactive and engaging experience
for users who are looking for a more robust and compre-
hensive requirements elicitation. It can help bridge the gap
between high-level visions and concrete requirements, clari-
fying misconceptions and better aligning all stakeholders.

3.3 Unambiguous Requirements Interpreter
3.3.1 Intent & Context
The Unambiguous Requirements Interpreter pattern provides
an LLM with a subset of requirements that will fit within its
context window and instructs it to ask specific questions to
users about ambiguous requirements and help them rephrase
these requirements in a more explicit and clear way. This pat-
tern encourages users to clarify any potential misunderstand-
ing related to the requirements, hence reducing ambiguity
related issues. The pattern should be applied in an interactive
session where all participants in a team see the questions that
are asked and feedback generated by the LLM.

3.3.2 Motivation
A key challenge in software projects is that ambiguous re-
quirements can lead to the development of software with
different functionality than was desired by the stakeholders.
Ambiguity can lead to miscommunication and invalid assump-
tions, which commonly creates delays, cost overruns, and
software project failures. Clear requirements are even more
important for geographically distributed teams that may not
have enough face-to-face discussion to have a shared mental
picture of the project goals.

LLMs can help offer a potential solution to this by clarifying
any ambiguous requirements using systematized questioning
and solution-based dialogue, particularly when used jointly
be teams in a discussion. A well-defined prompt pattern
can aid in identifying potentially ambiguous requirements
and extracting the implicit assumptions behind an ambiguous
requirement, reducing the chance of misunderstanding and
helping reduce misinterpretation.

3.3.3 Structure & Key Ideas
Typical contextual statements for this pattern include the fol-
lowing:
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Contextual Statements
A subset of the requirements for my system, each
phrased using format X, is below.
Requirements...
First, list two requirements that are potentially contradic-
tory based on their current wording and list them.
Next, explain why these two requirements might be con-
tradictory based on the current wording.
Then, ask me about the intent of the two requirements
until you have enough information to propose a refined
version of each requirement that eliminates potential
ambiguity and conflict.

3.3.4 Example Implementation
An example of a prompt that uses this pattern:

“A subset of the requirements for my system, each
phrased as user stories, is below.
———— <list of user stories> ————
First, list two requirements that are potentially con-
tradictory based on their current wording and list
them. Next, explain why these two requirements
might be contradictory based on the current word-
ing. Then, ask me about the intent of the two re-
quirements until you have enough information to
propose a refined version of each requirement that
eliminates potential ambiguity and conflict. ”

3.3.5 Discussion
The Unambiguous Requirements Interpreter pattern can also
be viewed as a specialized derivation of the Flipped Inter-
action pattern where the goal is to reduce ambiguity in the
requirements present. This pattern represents another effec-
tive example of how we borrow the fundamental construct of
the Flipped Interaction pattern to target a more specific goal.
As before, additional attributes are introduced to the line of
questioning to explicitly target ambiguous requirements and
make them more explicit and clear.

One crucial aspect of this pattern is having stakeholders go
through the questioning together until the ambiguity is elim-
inated. The most important part is to have the LLM direct
team-based discussion around the requirements. The lan-
guage model should continuously ask the team relevant ques-
tions until it receives explicit answers that cannot be inter-
preted differently by different stakeholders.

Although this approach can effectively deal with ambiguous
requirements in many situations, there are scenarios where
it might struggle. For instance, when dealing with complex
technical requirements, the language model may not be able
to ask pertinent questions due to the lack of intrinsic knowl-
edge. Thus, while this pattern can provide significant benefits,
care must be taken to ensure that it is suitable for the partic-
ular domain and provided with sufficient context to provide
relevant questioning.
3.4 The Game Play Pattern
3.4.1 Intent and Context
The Game Play pattern creates a "game" centered around a
specific topic, where the LLM guides the game play. This
pattern is particularly effective when the rules of the game
are relatively limited in scope, but the content for the game is

wider in scope. Users can specify a limited set of rules and
the LLM can then automate generation of bodies of content
for game play.

3.4.2 Motivation
You want an LLM to generate scenarios or questions involving
specific topic(s) and require users to apply problem solving
or other skills to accomplish a task related to the scenario.
Generating all game content manually is too time consuming,
however, so you would like the LLM to apply its knowledge
of the topic to guide the generation of content.

3.4.3 Structure and Key Ideas
Typical contextual statements for this pattern include the fol-
lowing:

Contextual Statements
Create a game for me around X
One or more fundamental rules of the game

The first statement, instructs the LLM to create a game and
provides the important scoping of the game to a topic area.
This pattern allows users to create games by describing the
rules of the game, without having to determine the content
of the game. The more specific the topic, typically the more
novel and interesting the game play.

The second statement introduces the game rules to the LLM,
which must fit within the capabilities of the LLM. Textual
games that rely on input and output text sequences work best.
A key attribute of this pattern is that the input text can be
rich and expressive, which can lead to interesting interfaces
for the game. For example, users might express actions in
the game as scripts dictating a sequence of complex actions,
such as “get a listing of all network activity and check it for
anomalies”, which go beyond the scope of multiple choice
or short answer inputs. Each rule should be provided as a
separate statement regarding some aspect of the game.

3.4.4 Example Implementation
A sample cybersecurity game prompt is shown below:

“We will play a cybersecurity game where you pre-
tend to be a Linux terminal for a computer compro-
mised by an attacker. When I type in a command,
you will output the corresponding text the Linux
terminal would produce. I will use commands to try
and figure out how the system was compromised.
The attack should have done one or more of the
following things: (1) launched new processes, (2)
changed files, (3) opened new ports to receive com-
munication, (4) created new outbound connections,
(5) changed passwords, (6) created new user ac-
counts, or (7) read and stolen information. To start
the game, print a scenario of what happened that
led to my investigation and make the description
have clues I can use to get started.”

This cybersecurity game prompt combines a number of pat-
terns, including Game Play and Persona. The Linux terminal
persona that is chosen for the game has been discussed in
many Internet posts [9]. This game further customizes the dis-
cussed Linux persona to act as a Linux terminal of a computer
compromised by a cyberattack. ChatGPT responds to Linux
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commands with appropriate terminal outputs and synthesizes
a faux file system that has clues to a cyberattack.

Sample output from this game with ChatGPT-4 after typing in
“ls -alt”, the Linux command to generate a list of files in the
current directory is shown below (some columns have been
removed to enhance formatting):

total 56
5 user 4096 Feb 16 14:31 .

43 user 4096 Feb 16 14:30 ..
1 user 18881 Feb 16 14:31 .bash_history
1 user 1178 Aug 15 2022 .bashrc
1 user 220 Aug 15 2022 .bash_logout
3 user 4096 Feb 16 14:25 .gnupg
1 user 4041 Feb 15 17:52 README.md
2 user 4096 Feb 1 11:35 project

When the user then typed the command “cat .bash_history”,
to display the contents of the log file showing the commands
run by the user, ChatGPT responded with:

cd /var/www/html
sudo rm -rf *
sudo wget https://example.com/backdoor.php
sudo chmod 777 backdoor.php
exit
ls -alt
ps -ef
netstat -tulnp

In the output above, ChatGPT generated a faux log file with
realistic commands for deleting the data being served by the
web server in /var/www/html and replacing the content
with a backdoor into the system.

3.4.5 Discussion
This pattern can be combined with the Persona, Infinite Gener-
ation, and Visualization Generator patterns [6]. For example,
the cybersecurity game uses the Persona pattern so the LLM
can masquerade as a Linux terminal. For a network secu-
rity game, the Visualization Generator can be employed to
visualize the network topology and traffic flows.

3.5 The Reflection Pattern
3.5.1 Intent and Context
The Reflection pattern asks an LLM to explain the rationale
behind given answers to the user automatically. This pattern
allows users to better assess the output’s validity, as well as
inform users how an LLM arrived at a particular answer. It
can also clarify any points of confusion, uncover underlying
assumptions, and reveal gaps in knowledge or understanding.

3.5.2 Motivation
LLMs can (and often do) make mistakes. Moreover, users
may not understand why an LLM produces particular output
and how to adapt their prompt to solve a problem with the
output. By asking LLM to explain the rationale of its answers
automatically, however, users can gain a better understanding
of how the LLM processes the input, what assumptions it
makes, and what data it draws upon.

LLMs may sometime provide incomplete, incorrect, or am-
biguous answers. Reflection is an aid to help address these

shortcomings and ensure the information provided by LLM is
as accurate. This pattern also helps users debug their prompts
and determine why they are not getting results that meet ex-
pectations. The Reflection pattern is particularly effective for
exploring topics that (1) can be confused with other topics
or (2) may have nuanced interpretations, so it is essential to
know the precise interpretation used by an LLM.

3.5.3 Structure and Key Ideas
Typical contextual statements for this pattern include the fol-
lowing:

Contextual Statements
Whenever you generate an answer
Explain the reasoning and assumptions of your answer
(Optional) ...so that I can improve my question

The first statement is requesting that, after generating an an-
swer, the LLM should explain the reasoning and assumptions
behind the answer. This statement helps the user understand
how the LLM arrived at the answer and can help build trust
in the model’s responses. The prompt includes the statement
that the purpose of the explanation is for the user to refine
their question. This additional statement gives the LLM the
context needed to better tailor its explanations to the specific
purpose of assisting the user produce follow-on questions.

3.5.4 Example Implementation
This example tailors the prompt to the domain of providing
answers related to code:

"When you answer, explain the reasoning and as-
sumptions of your software framework selections
using specific examples or evidence with associ-
ated code samples to support your answer of why a
framework is the best selection for the task. More-
over, address any potential ambiguities or limita-
tions in your answer, in order to provide a more
complete and accurate response."

The pattern is further customized to instruct the LLM that it
should justify its selection of software frameworks, but not
necessarily other aspects of the answer. In addition, the user
dictates that code samples should be used to help explain the
motivation for selecting the specific software framework.

3.5.5 Discussion
The Reflection pattern may be ineffective for users who do
not understand the topic area being discussed. For example, a
highly technical question by a non-technical user may result
in a complex rationale for an answer the user cannot fathom.
As with other prompt patterns, the output may include errors
or inaccurate assumptions included in the explanation of the
rationale that the user may not be able to spot. This pattern
can be combined with the Fact Check List [6] to help address
this issue.

3.6 The Question Refinement Pattern
3.6.1 Intent and Context
The Question Refinement pattern engages the LLM in the
prompt engineering process to ensure an LLM always sug-
gests potentially better or more refined questions users could
ask instead of their original question. By applying this pat-
tern, the LLM can aid users in finding the right questions to
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ask to arrive at accurate answers. In addition, an LLM may
help users find the information or achieve their goal in fewer
interactions than if users employed conventional "trial and
error" prompting.

3.6.2 Motivation
If user asks questions, they may not be experts in the domain
and may not know the best way to phrase the question or
be aware of additional information helpful in phrasing the
question. LLMs will often state limitations on the answer
they provide or request additional information to help them
produce a more accurate answer. An LLM may also state
assumptions it made in providing the answer. The motivation
is that this additional information or set of assumptions could
be used to generate a better prompt. Rather than requiring
the user to digest and rephrase their prompt with the addi-
tional information, the LLM can directly refine the prompt to
incorporate the additional information.

3.6.3 Structure and Key Ideas
Typical contextual statements for this pattern include the fol-
lowing:

Contextual Statements
Within scope X, suggest a better version of the question
to use instead
(Optional) prompt me if I would like to use the better
version instead

The first contextual statement in the prompt asks the LLM
to suggest a better version of a question within a specific
scope. This scoping ensure that (1) not all questions are auto-
matically reworded or (2) they are refined with a given goal.
The second contextual statement is meant for automation and
allows users to apply the refined question without copy/past-
ing or manually enter it. This prompt can be further refined
by combining it with the Reflection pattern discussed above,
which allows the LLM to explain why it believes the refined
question is an improvement.

3.6.4 Example Implementation
“From now on, whenever I ask a question about a
software artifact’s security, suggest a better version
of the question to use that incorporates information
specific to security risks in the language or frame-
work that I am using instead and ask me if I would
like to use your question instead.”

In the context of the example above, the LLM will use the
Question Refinement pattern to improve security-related ques-
tions by asking for or using specific details about the software
artifact and the language or framework used to build it. For
instance, if a developer of a Python web application with
FastAPI asks ChatGPT “How do I handle user authentication
in my web application?”, the LLM will refine the question
by taking into account that the web application is written
in Python with FastAPI. The LLM then provides a revised
question that is more specific to the language and framework,
such as “What are the best practices for handling user au-
thentication securely in a FastAPI web application to mitigate
common security risks, such as cross-site scripting (XSS),
cross-site request forgery (CSRF), and session hijacking?”

The additional detail in the revised question is likely to not
only make the user aware of issues they need to consider,
but lead to a better answer from the LLM. For software engi-
neering tasks, this pattern could also incorporate information
regarding potential bugs, modularity, or other code quality
considerations. Another approach would be to refine ques-
tions so the generated code cleanly separates concerns or
minimizes use of external libraries, such as:

Whenever I ask a question about how to write some
code, suggest a better version of my question that
asks how to write the code in a way that minimizes
my dependencies on external libraries.

3.6.5 Discussion
The Question Refinement pattern helps bridge the gap be-
tween the user’s knowledge and the LLM’s understanding,
thereby yielding more efficient and accurate interactions. One
risk of this pattern is its tendency to rapidly narrow the ques-
tioning by the user into a specific area that guides the user
down a more limited path of inquiry than necessary. Such
narrowing may cause users to miss important "bigger picture"
information. One solution is to provide additional scope to
the pattern prompt, such as “do not scope my questions to
specific programming languages or frameworks.”

Combining the Question Refinement pattern with other pat-
terns also helps overcome arbitrary narrowing or limited tar-
geting of refined questions. In particular, combining this
pattern with the Cognitive Verifier pattern [10] enables an
LLM to produce a series of follow-up questions that refine
the original question. For example, in the following prompt
the Question Refinement and Cognitive Verifier patterns are
applied to ensure better questions are posed to the LLM:

“From now on, whenever I ask a question, ask four
additional questions that would help you produce
a better version of my original question. Then,
use my answers to suggest a better version of my
original question.”

As with many prompt patterns that allow an LLM to generate
new questions using its knowledge, the LLM may introduce
unfamiliar terms or concepts to the user. One way to address
this issue is to include a statement that the LLM should ex-
plain any unfamiliar terms it introduces into the question. A
further enhancement of this idea is to combine the Question
Refinement pattern with the Persona pattern so the LLM flags
terms and generates definitions that assume a particular level
of knowledge, such as this example:

“From now on, whenever I ask a question, ask four
additional questions that would help you produce
a better version of my original question. Then,
use my answers to suggest a better version of my
original question. After the follow-up questions,
temporarily act as a user with no knowledge of
AWS and define any terms that I need to know to
accurately answer the questions.”

LLMs can produce factual inaccuracies, just like humans. A
risk of this pattern is that inaccuracies are introduced into
refined questions. This risk may be mitigated, however, by
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combining the Fact Check List pattern [6] to enable users to
identify possible inaccuracies and the Reflection pattern to
explain the reasoning behind question refinement.

4 Concluding Remarks
Prompt engineering is an emerging discipline that shifts the
emphasis from programming with conventional structured
languages (such as Python, Java, and C++) to problem-solving
using natural language to interact with AI models, such as
large language models (LLMs) like ChatGPT-4 and Claude.
In this context, "programming" tasks are expressed as prompts
that guide the behavior of AI models, thereby encouraging the
exploration of creative and innovative strategies over applying
traditional programming methods and tools.

Our work applying LLMs in engineering software-reliant
systems has yielded the following lessons learned:

• It is essential to move beyond ad hoc prompt practices
– Current discussions of LLM prompts and prompt engi-
neering are based largely on individual ad hoc use cases,
i.e., i.e. the same basic prompt examples are replicated
in different variations and evaluated as if they are new
ideas, such as these examples [11] replicating the Per-
sona Pattern outlined in our prior work. The limitations
with the current state-of-the-practice are thus akin to
discussing the specifics of individual software programs
without identifying key design and architectural patterns
these systems are based on.

• Codifying prompt patterns provides a sound foun-
dation for prompt engineering - The focus on prompt
patterns elevates the study of LLMs to view them more
appropriately as a new computer architecture with an in-
struction set based on natural language. Prompt patterns
define the instruction set, where as individual prompt
examples are one-off programs. By documenting the
instruction set for this radically new computing architec-
ture via patterns we can reason about LLM technologies
more effectively and teach others to tap into these capa-
bilities more effectively.

• Importance of archetypal solutions – Prompt patterns
provide foundational elements for prompt engineering
by serving as proven solutions to recurrent problems
and accelerating problem-solving across various stages
of the software life-cycle. Moreover, these patterns fa-
cilitate knowledge transfer among collaborative teams,
enriching the discipline of prompt engineering.

• Prompt patterns can enhance reuse of effective LLM
interactions – The process of deriving specialized pat-
terns from the Flipped Interaction pattern mirrors the
abstraction process in object-oriented programming. Just
as specialized subclasses with distinct attributes can be
derived from a superclass and create more specific sub-
classes we utilize the more general Flipped Interaction
pattern and tailor it to suit our specific needs, adding
attributes that target specific objectives in the context of
requirements elicitation and management. Such usage of
abstraction enhances the reusability and effectiveness of
LLM prompts, highlighting the usefulness of the concept
of patterns in the domain of LLMs.

This shift towards prompt patterns not only refines the effec-
tiveness of LLMs but also ensures that they can be harnessed
more reliably and ethically to develop and assure software-
reliant systems. The prompt patterns presented in this paper
were refined and tested using ChatGPT-3.5 and ChatGPT-4.
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