
A Capacity Planning Process for Performance and Availability Assurance of
Multi-Tiered Web Applications

Nilabja Roy, Aniruddha Gokhale and Larry Dowdy
∗Dept. of EECS, Vanderbilt University, Nashville, TN 37235,USA

Email: nilabjar@dre.vanderbilt.edu,{a.gokhale,larry.dowdy}@vanderbilt.edu

Abstract—
For service providers of multi-tiered applications, such as

web portals, assuring high performance and availability to
their customers without impacting revenue requires effective
and careful capacity planning that aims at minimizing the
number of resources, and utilizing them efficiently while
simultaneously supporting a large customer base and meeting
their service level agreements. This paper presents a novel,
hybrid capacity planning process that results from a systematic
blending of 1) analytical modeling, where traditional modeling
techniques are enhanced to overcome their limitations in
providing accurate performance estimates; 2) profile-based
techniques, which determine performance profiles of individual
software components for use in resource allocation and balanc-
ing resource usage; and 3) allocation heuristics that allocate
software components on minimum number of resources.

Our results show that using our technique, performance
(i.e., bounded response time) can be assured while reducing
operating costs by using 25% less resources and increasing
revenues by handling 20% more clients compared to traditional
approaches.

Keywords-Multi-tier applications, performance estimation,
service deployment.

I. I NTRODUCTION

Multi-tiered internet-based applications such as web por-
tals (e.g., eBay, Priceline, Amazon and Facebook) provide a
variety of services that support a large number of concurrent
users. A common requirement across all these multi-tiered
applications is providing high assurance of performance
(e.g., response time) and service availability to their users.
Without such assurances, service providers of these applica-
tions stand to lose their user base, and hence their revenues.

High assurance of performance and availability to users in
return for fees are typically specified as service level agree-
ments (SLAs) between the user and the service provider. A
straightforward approach to addressing the high assurance
challenge and honor SLAs is for the service providers to
provision a large number of resources. However, such an
approach often leads to less than desired utilization of
resources, and significantly higher procurement and oper-
ational costs for the service provider that impacts revenues.

This work has been supported in part by NSF SHF/CNS Award
#0915976. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

Addressing the high assurance problem without unduly
affecting revenues reduces to addressing the capacity plan-
ning problem that can honor the SLAs across the user
base (which often is on the rise in case of social net-
working portals). The capacity planning problem requires
service providers to effectively deploy and configure their
services (which themselves are made up of a collection of
interacting software components) on minimum number of
system resources including the CPUs, networks, databases,
and storage devices, among others.

Effective capacity planning requires an accurate under-
standing of application behavior. One approach is to develop
analytical models of the application that can estimate the
resource requirements and performance of the application.
It is important, however, that the analytical model be very
accurate since it dictates the performance assurance of the
multi-tiered application.

For example, if the model is optimistic, (i.e., it estimates
the average response time lower than the actual), then the
capacity planning will result in lesser resources causing re-
source overloads and a violation of assurance of performance
and availability. On the other hand if the model is pessimistic
(i.e., it estimates response times as higher than the actual),
then the users will have assured performance but the system
will use up more resources than actually needed, which is
detrimental to the service provider.

Prior work based on analytical techniques and profiling
to build models of multi-tiered web portals [1]–[5] exists
but these efforts have not accounted for increased system
activity, such as page-faults which occurs with increased
load, which is a frequent phenomenon. The emerging trend
towards multiple processors/cores has also not been consid-
ered by most of these works. Finally, resource allocation [6],
[7], which is a key issue in capacity planning, has previously
been investigated at the granularity of an entire tier-level,
however, this coarse level of granularity is insufficient in
minimizing the number of and efficiently using resources
in the context of modern multi-tiered systems that services
made up of finer-grained software components.

In our previous preliminary work [8], we have identified
key impediments to accurate analytic modeling of various
scenarios commonly occurring in most web portals. Through
this study, we concluded that since each application has its

own traits, they can be well-understood only with detailed
profiling. Moreover, detailed profiling when combined with
analytical modeling holds promise in developing more ac-
curate system models, which in turn helps with effective
capacity planning, and higher assurance of performance and
availability properties.

This paper builds upon the promising directions shown
in our preliminary work [8]. It develops and presents a
two-stage, design-time, capacity planning process that sys-
tematically combines the strengths of analytical modeling,
profiling, and allocation heuristics in a novel framework
called MAQ-PRO (Modeling and Analysis using Queuing,
Placement and Replication Optimizations). The MAQ-PRO
process hinges on a component-based structure of multi-
tiered applications. This fine level of granularity is justified
since applications and services are increasingly becoming
component-based. Moreover, it provides significant flexibil-
ity in deploying the services.

In the first stage, a profile-driven analytical model of the
system is developed that can accurately estimate system
performance even at high loads (which is a key factor that
must be considered). The second stage uses this model as
input to a replication and allocation algorithm that computes
a deployment plan for the software components, which
minimizes and efficiently utilizes resources.

To showcase our approach, we use a running example of
a real-world, representative, multi-tiered system calledRice
University Bidding System (RUBiS) [9]. It is a prototype of
an auction site that mimics eBay.

The rest of the paper is organized as follows: Section II
presents the two-stage process provided by the MAQ-PRO
framework; Section III presents an empirical validation of
the replication and placement algorithm for the RUBis web
portal case study; Section IV compares our work with related
work; and Section V presents concluding remarks.

II. MAQ-PRO CAPACITY PLANNING PROCESS

Our goal for this paper is to provide performance and
availability assurances to the users of multi-tiered applica-
tions, such as web portals, without unduly affecting revenues
for the service provider. Providing these assurances depends
primarily1 on how many resources are provisioned and
how they are utilized. Again cost minimization dictates
utilizing minimum number of resources. Thus solving the
high assurance problem in this case reduces to solving the
capacity planning problem for multi-tiered applications.

Formally, we state the capacity planning problem as
follows: Suppose the multi-tiered application consists ofa
set ofk services {S1, S2, ...Sk}. Each service is composed
of software components, where a componentCij is thejth

component in theith service. The target workload is given
by either the arrival rate,λ, for each service {λ1.....λk}, or

1We do not consider network delays in this paper.

the concurrent number,M , of customers {M1,M2,Mk}.
The SLA gives an upper bound on the response times of
each of thek services {RTsla,1...RTsla,k}. The objective
is to find the minimum number of nodes to deploy the
application on such that the SLA requirements of users are
honored (thereby providing high assurance of performance
and availability) while ensuring that resource usage is bal-
anced.

We have developed a two stage framework called MAQ-
PRO shown in Figure 1 to solve the capacity planning
problem. Two stages were deemed necessary since deploy-
ment of components belonging to the services comprises
of node allocation and balancing resource usage, which in
turn depends on obtaining an estimate on the performance
bounds of individual components. This dependency led us
to separate the process of performance estimation from that
of deployment planning resulting in a two-stage process
architecture where information from one stage is seamlessly
handed over to the next.

Step 2:

Analyze

Application

Scenario

Step 3:

Base

Performance

Model

Step 4:

Component

Placement

Heuristic

Application

Specific Analytical

Model

Deployment

Plan

SLA

Bound

Target

Workload

Step 1:

Component

Profiles

Figure 1. The MAQ-PRO Process for Capacity Planning

We envision capacity planners using the techniques de-
veloped for Stage 1 to profile individual components and
determining their resource requirements. Thereafter, differ-
ent application scenarios can be analyzed, and using a
base performance model, an application-specific analytical
model can be developed that can accurately estimate the
performance requirements of the system. In Stage 2, planners
will use this analytical model as input to a component
placement heuristic we developed that will result in a de-
ployment plan which ensures minimum and balanced use of
resources, which in turn provides assurances of performance
and availability to the users.

We will now describe the two stage MAQ-PRO process
using RUBiS as the guiding example. We consider three
types of user sessions (visitor, buyer, and seller) provided
by RUBiS, and a client-browser emulator that emulates
behavior of users.

A. Stage 1: Estimating System Performance via Modeling

Recall from Section I that contemporary analytical tech-
niques are limited in their ability to accurately estimate
performance of a given system in the presence of high
system activity (Limitation 1) and also while operating on
multiprocessor/core architectures (Limitation 2). Next we
describe how Stage 1 of the MAQ-PRO process addresses
these limitations in the context of RUBiS. Capacity planners
should adopt a similar approach for their application mix.

1) Overcoming Limitation 1: Modeling Increased Sys-
tem Activity: In our previous work [8] we showed how a
queuing model used in related research [1]–[4] does not
provide accurate response time estimates when the client
population increases. High client population increases the
number of threads (i.e., concurrency) and thus increases
system activity, which is typically not accounted for in the
model. Figure 2a shows this behavior when a single service
of RUBiS is run. All our experiments are conducted in
ISISLab www.isislab.vanderbilt.edu/. Each machine has two
2.8 GHz Xeon CPUs, 1GB of ram and 40GB HDD.

Similar behavior is also seen when multiple services run,
as shown in Figure 2b. Here we reproduce only the service
"SearchByCategory" which has higher response times. The
other services also incur similar estimation errors.

4000

6000

8000

10000

12000

p
o

n
s

e
 T

im
e

 (
m

s
)

Empirical

Analytical

0

2000

250 500 750 1000

R
e

s
p

Clients

(a) Single Service

300

400

500

600

700

p
o

n
se

 T
im

e
 (

m
se

cs
) Empirical

Analytical

0

100

200

250 400 650 750 900

R
e

sp

Clients

(b) Multiple Service

Figure 2. Comparison of Analytical vs Empirical Data

We overcome this limitation by treating each device,e.g.,
CPU and disk, where system activity is manifested – as a
load-dependent device [10]. We use the termservice demand
to denote the amount of time each transaction takes to
execute on a resource. Thus, a load dependent device is one
whose service demand varies with load. Service demands
can be measured using the service demand law [10]. The
service demand law is given asDi = Ui/X whereDi is
the service demand on theith device,Ui is the utilization of
the ith device, andX is the total number of transactions/sec
or throughput of the system. The load-dependent service
demand can thus be obtained for different client population
by measuring the device utilization and the throughput of the
services while client size is varied. The measured values are
then used with the above law to obtain the service demand.

We empirically profiled each service hosted by the RUBiS
web portal by varying the client size from an initial small
value to a large value. Here we assume that individual

components (services) of a large, multi-tiered system are
available for unit testing and profiling. We measured the
processor usage and the number of successful calls for each
client population size. The service demand law is then used
to compute the service demand for each client size.

The load-dependent service demand for the RUBiS
SearchItemsByRegion service is shown in Figure 3.
The figure illustrates that the service demand varies with
client population. The corresponding processor utilization
are shown in parenthesis on the X axis. The dashed line
plots the number of context switches that occur per second
for different processor utilizations. Context switching is a
measure of the amount of system activity.

As seen in Figure 3, the service demand remains steady at
low utilization (≤ 10) and then follows a near linear increase
till around 80% utilization or 350 clients. The linear rise
can be attributed to the increase in system activity as clients
increase. Since each client represents a thread in RUBiS,
consequently, an increase in the number of clients increases
the number of threads.

This behavior is better understood from the number of
context switches as utilization and clients increases. There
is negligible context switching for low number of clients
but increases linearly with clients until350 clients when it
becomes steady. At350 clients, the service demand also
stabilizes because the device (e.g., CPU) utilizations are
close to saturation (greater than 90%) and there is not much
scope for any increase in system activity. We have observed
similar behavior in the other services of RUBiS.

3000

4000

5000

6000

7000

8000

9000

30

40

50

60

70

80

90

o
n
te
x
t
S
w
it
ch
/S
e
c

e
 D
e
m
a
n
d

 (
m
se
c)

Service Demand Variation With Load

Service Demand

Context Switches/sec

0

1000

2000

0

10

20 C

S
e
rv
ic
e

Clients

Figure 3. Service Demand of SearchItemsByRegion

Based on these insights, the service demand is modeled
as a load-dependent function of processor utilization which
is piecewise linear. To empirically obtain accurate service
demand functions, the Polyfit tool provided in the Mat-
lab Curve Fitting Toolkit is used. The resulting function
which represents the load-dependent service demand for the
SearchByRegion service is given by:

SDsr(U) =















48 for U < 8

0.4264× U + 45.1062 for 8 <= U <= 85

81.62 for U > 85
(1)

and the function representing the service demand for the
SearchByCategory service is given by:

SDsc(U) =















28 for U ≤ 5

0.0457× U + 24.94 for 5 <= U <= 84

52.06 for N ≥ 84
(2)

The coefficient of determination,R2, value for the linear
fit in the above equations are0.99 and 0.99, respectively,
indicating they reflect very good fits. Capacity planners
using MAQ-PRO should adopt a similar approach to obtain
accurate functions for service demands of individual services
belonging to their applications.

2) Overcoming Limitation 2: Modeling Multiprocessor
Effects: Due to the increasing availability and use of multi-
processors and multi-cores for multi-tiered applications,
such as web portals, existing closed queuing network mod-
els [1], [4], [11] must now incorporate support for multiple
servers. Although existing closed queuing networks can be
solved efficiently using the mean value analysis (MVA)
algorithm, accounting for multiple-server models requires
computing the probability mass function of the queue sizes
for each server. The mass function can then be used within
MVA to calculate the total expected waiting time that a
customer experiences on a server. This approach, however,
significantly increases the complexity of the MVA solution.

To address this challenge, we leverage recent results [12]
in which a simple approximate method is presented that
extends MVA to analyze multiple-servers. In this related
work, the authors introduce the notion of acorrection factor,
which estimates the waiting time. When a transaction is
executed on multi-processor machines, the waiting time for
each transaction on the processor is taken to be the product
of a constant factor, the service demand, and the average
number of waiting clients as captured by the following
formula:

R(N) = SD(N) + c× SD(N)× n (3)

where R(N) is the response time of a transaction when
there are a total ofN customers in the system,SD is
the service demand of the job,n is the average number
of customers waiting on the device, andc is the correction
factor to compute the waiting time.

The value of the service demandSD can be found
using the profile-based curve fitting approach explained in
Section II-A1. The average number of customers waiting
on the CPU,n, is obtained by using standard system
monitoring tools. The response time for each transaction,
R(N), can be obtained from the application logs or by time-
stamping client calls. The only unknown in Equation 3 is the
correction factor,c, which can be obtained by solving the
equation.

Computing the correction factor, however, is not an easy
task since it may be dependent on a number of factors,
such as the domain of the operation, and the service time
characteristics for the underlying hardware. Therefore, the
correction factor will vary with each scenario. We now
describe how we found the correction factor for the RUBiS
example. Capacity planners using the MAQ-PRO process
should adopt a similar approach for their applications.

We ran a number of experiments for different classes of
services supported by RUBiS with different client population
sizes and the variablen was monitored.R(N) was obtained
from the RUBiS logs. The load-dependent service demands,
SD(N), were obtained from Equations 1 and 2. The cor-
rection factor was then computed using Equation 3, which
is presented in Table I for two different services in RUBiS
for a 4 processor machine.

Table I presents the experimental values and the computa-
tion for the correction factor with different client population
for the two main services in RUBiS. The inverse of the
correction factor is given in the rightmost column of the
table. It is termed asCI. It can be seen that the correction
factor varies with clients or processor utilization.

Based on the earlier data, we surmised that the correc-
tion factor may vary with the number of processors in
the machine. To support our believe, we configured the
machine to use different number of processors and repeated
the experiment with 1 and 2 processors, respectively. Fig-
ure 4 shows the value ofCI with clients for the service
"SearchByCategory". Similar results were obtained for other
services but are not shown due to space constraints.

It is clear that the value ofCI has a very high value with
less load but slowly converges to a steady value at high
load. The steady value seems to be equal to the number
of processors in the system. It can also be seen that the
variation in the factor increases with increase in processors.
Higher values ofCI (i.e., lower value of the correction
factor) improves the response time as seen from Equestion 3.
This observation indicates that the correction factor could
also be indicative of the inherent optimizations such as
caching that occur in the system. This hypothesis needs
further investigations and will become part of our future
work.

Service Name Clients Service Demand (msec) AvgWaiting Response Time Corr. Factor CI
SearchItemsByReg 100 51.71 2.00 54 0.022 45.16

150 57.12 2.00 62 0.043 23.40
200 64.29 3.00 77 0.066 15.17
250 71.4 5.00 103 0.089 11.29
300 78.3 10.00 222 0.183 5.45
350 80.78 40.00 909 0.256 3.90
400 81.12 86.00 1968 0.27 3.69
500 81.62 185 4232 0.275 3.64

SearchItemsByCat 100 51 2 54 0.029 34.00
150 31.25 2 34 0.044 22.73
200 33.45 2 37 0.053 18.85
250 35.6 2 40 0.062 16.18
300 38.38 3 47 0.075 13.36
350 41.28 4 58 0.101 9.88
400 43.16 5 73 0.138 7.23
450 46.14 8 116 0.189 5.28
500 50.88 34 513 0.267 3.74

Table I
Correction Factors for Various Services

15

20

25

30

35

40

45

50

C
I
V
a
lu
e

CI Value Changes with Client Size

4

2

0

5

10

15

50 100 150 200 250 300 350 400

Clients

4 Processor 2 Processor 1 ! Processor

1

Figure 4. Inverse of Correction Factor (CI)

The value ofCI for each client population is averaged
over all the services. It is then approximated against proces-
sor utilization. A piecewise linear function is developed to
expressCI as a function of utilization which is calculated
using polyfit function in Matlab and is given by

CI(U) =















−0.5632× U + 38.75 for U <= 58

−0.1434× U + 15.71 for 58 < U < 85

3.69 for U ≥ 85
(4)

Equation 4 is then used from within MVA algorithm to
compute the response time in each iteration.

3) Modifying Mean Value Analysis Algorithm: We de-
velop a multi-class closed queuing model for RUBiS as
shown in Figure 5 for a scenario comprising two machines.
One machine acts as the joint web server and business tier
server while the other operates as the database server. A
queue is modeled for each of the resources in the machines,
i.e., CPU and disk. Each service is modeled as a job class.

.

.

.

Client

Terminals

CPU

Disk Disk

Web Server/

Business Tier
DB Server

CPU

Figure 5. Queuing Model of RUBiS Scenario
An approximate MVA algorithm can be used to solve this

model and calculate performance values, such as response
time, number of jobs in the system, and device utilizations
for closed systems [10]. We developed an approximation to
the original MVA algorithm as shown in Algorithm 1. Some
details in the initialization phase are not shown due to space
constraints.

The algorithm operates in an iterative manner increasing
the number of clients from a starting value of1 to the final
valueN . In each iteration, it computes the number of clients
on each device, response time, utilization and throughput of
each job type. It continues this iteration until the error in
the number of clients in each device reduces below a given
minimum.

Algorithm 1: Modified Mean Value Analysis
Input :
R Number of Job Classes
K Number of Devices
Di,r Service Demand forrth job class onith device
Nr Number of clients forrth class

1 begin
2 // Run initial MVA with lowest service demand
3 while Error > ε do
4 // Initialization
5 for r ← 1 to R do
6 for i← 1 to K do
7 Di,r = SDi,r(Ur) // Call function for Service

Demand with device utilization as parameter
8 Ri,r = Di,r × (1 + CI(Ur)× nr)

9 Xr = Nr

Zr+

∑

K

i=1
Ri,r

10 // Error = Maximum Difference in Utilization between
successive iterations

The boldface parts shown are the places where the original
MVA algorithm is modified to include the functions for
service demand and correction factor. The functionSDi,r

represents the service demand function forith job class in
therth device while functionCI(Ur) is the function 4. Both
these need a utilization value which needs to be provided for
the first iteration. For this reason, initially the first iteration
is run using the lowest value of service demand for each
service as given by Equations 1, 2 and the value ofCI
equal to the number of processors in the system.

B. Stage 2: Minimizing and Balancing Resource Usage in
Component Placement

Having developed accurate analytical models for the
multi-tiered applications in Stage 1, the next task is to
determine the number of resources needed to host the
components of the different services with a goal towards
minimizing the number of resources.

To address the next problem, it is important to understand
client behavior. For example, different kinds of client actions
and the services they use will determine the overall workload
on the multi-tiered application. Some services may impose
more load compared to the others depending on which ones
are heavily used by the user population. Accordingly it may
become necessary to deploy multiple instances of the soft-
ware components that implement the highly loaded services
so that the total load can be balanced between different
instances. An important question stems from determining
which components need to be replicated for load balancing.
This question must be accounted for while minimizing the
total number of resources needed for all the components.

To highlight the need for load balancing, we reproduce
Figure 6 from our earlier work [11] in which processor
utilizations of two servers in RUBiS are shown. In the
machineDB_SRV, only one component called component
SearchItemsByCat takes up 70% of processor time
when the number of clients reaches around 1,300. At the
same time, the other machine shown by LineBT_SRV

CPU Utilization of RUBiS Servers

0

10

20

30

40

50

60

70

80

250 500 750 1000 1250

Clients

%
 C

P
U

 U
ti

li
z
a
ti

o
n

DB_SRV

BT_SRV

Figure 6. CPU Utilization

is loaded only upto 40%. Thus, there is an imbalance in
resource usage.

Resource allocation algorithms developed in prior re-
search [6], [7], [11] cannot improve this situation since the
single instance of componentSearchItemsByCat takes
up significant CPU. To overcome this limitation, a promising
solution is to add a new instance ofSearchItemsByCat
component and distribute the load between the two ma-
chines. Consequently, one of the components could then
be placed ontoBT_SRV so that the overall earlier load of
70 + 40 = 110 can be balanced across the two servers (55
each). Such an allocation will make it possible to handle
more clients since now the utilization of both servers can be
increased to around70.

This evidence suggests that by replicating individual
components and controlling the distribution of load on a
component, we can control the number of resources required
and utilized by the component. In the remainder of this
section, we will refer to the percentage resource required by
a component as the size of the component. The challenge
now is to determine the size of each component that will
help in balancing the load and minimizing resources, which
is a non-trivial problem [13].

The problem becomes more acute when trying to deter-
mine component placement at design-time, which require
models that can accurately estimate the component size as
well as performance of the overall application for a particular
placement. We leverage Stage 1 of the MAQ-PRO process
to obtain accurate estimates for each component.

We present our technique for determining the replication
requirements and placement decisions for software compo-
nents in the context of the different services offered by
RUBiS. Capacity planners using MAQ-PRO should adopt
similar stategy for their applications.

The lower bound on the total number of machines required
for a web portal like RUBiS can be calculated from the
expected processing power required in the following way:

#ofmachines = dLd/me <= OPT, (5)

whereLd is the total processing power required (sum of
the cpu requirement of all the components) andm is the
capacity of a single machine.OPT is the optimal number
of bins required to fit the given items.

The problem of allocating the different components onto
the nodes is similar to a bin-packing problem [14]. The
machines are assumed to be bins while the components
are items, where the items need to be placed onto the
bins. It is well-known that the bin-packing problem is
NP hard [13]. Thus, popular heuristics like first-fit, best-
fit or worst-fit [14] packing strategies must be employed
to determine the allocation. It has been shown that these
heuristics provide solutions which require(1.22∗OPT +1)
bins [14].

Our previous work [15] did an extensive study on the
effectiveness of the different bin-packing heuristics under
various conditions. We found that the size of items used in
packing made a significant difference to the results generated
by the heuristics as shown in Table II. Here all quantities
are mentioned in terms of percentages,i.e., percentage of
a single bin size. So an item size of20% means that the
resource requirement of a component is20% of the total
CPU time. The table shows the probability of finding an
allocation of the given items onto the bins with different
values of slack (difference between total bin capacity and
total of all packed item sizes) and for different item size
ranges.

Item Size % Slack
0 - 5 5 - 10 10 - 15 15 - 20

0 - 30 34.84 97.96 99.97 100
0 - 50 10.57 65.49 96.14 99.67
0 - 70 26.44 65.68 93.02 99.14
0 - 100 100 94.93 99.34 99.64

Table II
Success Rate of Heuristics on Solvable Problems:Courtesy [15]

For example, the entry of the third column and first row
is 97.96%. This means that if there are items sized between
0 and30% (row value) of bin size and slack between5 to
10% (column) of bin size, then the chance of finding an
allocation is97.96%. This also means that if the item sizes
are kept between0% and30%, then the heuristics can find an
allocation using up to around10% more space than the total
item sizes. Thus, the expected number of machines required
would bed1.1×Ld/me which is less than(1.22∗OPT+1)
as per Equation 5.

The above insights are used in the component replication
and allocation algorithm developed for this paper. Our
algorithm requires that component sizes be kept within
30% which means the component resource requirement is
kept within 30% of total processor time. We satisfy this
requirement by figuring out the number of clients that drive
the utilization of the processor to30% due to that component
and allowing only these many clients to make calls on a
single component instance. Such an approach can easily be
implemented by a sentry at the server level that monitors
the incoming user requests. Algorithm 2 describes the com-
ponent replication and placement algorithm. It performs a
number of functions as follows:

• Capacity Planning: It computes the number of nodes
required for a target number of customers while mini-
mizing the number required.
• Load Balancing via Replication: It computes the
number of replicas of each component needed to dis-
tributed loads on the components and achieve balanced
resource usage.
• Component Placement: It computes the mapping of
the different components onto the nodes.

Algorithm 2 uses two subroutines,Placement andMVA.
Placement places the components onto the machines by
using the worst-case bin packing heuristic since it is known
to balance load. MVA is the Mean Value Analysis algorithm
that uses the enhanced analytical models developed in Stage
1 to accurately estimate performance characteristics of a
closed queuing network. It returns the response time of the
different transaction classes along with the utilization of each
component and each machine.

Algorithm 2: Replication & Allocation
begin

// Initially, use 2 machines in a tiered deployment
1

2 // All business logic components in first machine
3

4 // Database in second machine, Default Deployment Plan DP
5

6 P = 2 // Initially 2 machines
7 N = init_clients
8 (RT,SU,U) = MVA (DP, N) // Compute Initial Component

Utilizations
9 (DP) = Placement (SU, P)// Find a placement of the

components
10

11 while N < Target do
12 (RT,SU,U) = MVA (DP, N)
13 if ∃i : SUi > 30 then
14 Replicate (i);// Create New instance of Component i
15

16 // Place new component on same machine as i
17 (RT, SU, U) = MVA (DP, N) // Calculate new

response time
18 (DP) = Placement (SU, P)// Update Deployment

Plan
19 if ∃i : RTi > RTSLA then
20 // add new machine
21 P = P + 1
22 (DP) = Placement (SU, P)// find new placement
23 N += incr // Increase Clients for next iteration

Initially, the algorithm starts with a default set of com-
ponents needed for each service, uses a tiered deployment,
and assumes a low number of clients, say,100 (Line 7).
A 3-tiered deployment typically uses one machine per tier
but Algorithm 2 starts with2 machines to attempt to fit
the application in lesser machines. The components of each
type are placed in the respective machines. The algorithm
starts by estimating the performance characteristics of the
application and placing the different components onto the
given machines (Lines 8 & 9).

Next, the algorithm enters an iterative loop (Line 11)
increasing the number of clients with each iteration until the
target number of clients is reached. At every iteration MVA
is used to estimate the performance requirement (Line 12).

If any component reaches30% utilization (Line 13), then
another instance of the component is created and initially
placed in the same machine as the original. Then MVA is
invoked to estimate performance and the components are
again placed onto the nodes. Similarly, if at any point the
response time of any transaction reaches the SLA bound
(Line 19), then another machine is added to the required
node set and the placement heuristic is invoked.

This iterative process continues until the target number of
clients is reached. Since the heuristic is one of the popular
bin packing heuristics and the components are kept within
a maximum of30% resource utilization, it is ensured that
near-minimum number of resources will be used.

III. E VALUATING THE MAQ-PRO FRAMEWORK

This section presents results that evaluate the two stage
MAQ-PRO framework. The results are presented in the
context of the RUBiS example along two dimensions: the
accuracy of the analytical models to estimate performance,
and the effectiveness of the resource allocation algorithmto
minimize the resources required while supporting increased
number of clients, as well as balancing the utilization –
which collectively are an indirect measure of high assurance
in terms of performance and service availability to users.

A. Stage I Model Validation

Our objective in validating the enhanced model resulting
from Stage I seeks to understand how close the estimated
response time from our enhanced models are to that of
the empirically measured values. The model is used to
predict the performance of the application when multiple
service types are run. RUBiS has10 service types for a
typical browsing scenario consisting of item searches, user
searches, viewing user comments, viewing bid history etc.
Our objective is to check how well our model predicts the
response time of each of the service types and the processor
utilization of the machine when all such services are running.

Figure 7a shows the response time estimated by our model
for one service, "SearchByRegion". The estimation of the
other services are also similar. It can be seen that our
enhanced model is in close agreement with the empirical
measurements till the number of clients equal to900. Be-
yond that number, the error in our model increases slightly
but still is close to the actual result.

Figure 7b compares the CPU utilization predicted by the
model versus the empirically measured CPU utilization. It
can be seen that the model is in agreement with the empirical
data for all client population size.

B. Effectiveness of the Stage II Placement Algorithm

We now present results measuring the effectiveness of
the MAQ-PRO Stage 2 placement algorithm. The evaluation
tests the merits as follows:
1. Minimizing and Efficiently Utilizing Resources:

1000

1500

2000

2500

p
o
n
se

 T
im

e
 (
m
se
c)

Actual

Model

0

500

250 400 650 750 900 1000

R
e
sp

Clients

(a) SearchByRegion Response Time

30

40

50

60

70

80

90

100

U
ti
li
za
ti
o
n

 i
n

 P
e
rc
e
n
t

CPU Utilization Comparison

0

10

20

30

250 400 650 750 900 1000

C
P
U

 U

Clients

CPU Util Actual CPU Util Model

(b) CPU Utilization

Figure 7. Validation of Model Estimation

In a traditional tiered deployment, each tier is considered
atomic and hence all its functionality must be deployed
together. In contrast, for a component-based system where
services are implemented by assembling and deploying
software components, it is possible to replicate and distribute
individual components over the available resources. We
argue that this flexibility can make better usage of resources
compared to a traditional tiered architecture.

Figure 8 presents a number of scenarios in which the algo-
rithm was evaluated. It compares the number of machines
required to support a given number of clients for a range
of client populations. Each client has a think time of mean
7 seconds with exponential distribution. The service times
of the requests are also distributed exponentially. Even if
the service times are non-exponential in the real world, the
above models will give good results due to the robustness of
closed non-product-form queuing networks. By robustness,
it is meant that a major change in system parameters will
bring about tolerable changes in computed parameters [16].

2

3

4

5

6

7

u
m

b
e

r
o

f
N

o
d

e
s

Node Usage by MAQ-PRO

MAQ

3-Tier

0

1

N
u

Clients

Figure 8. Node Usage in Tiered and MAQ-PRO Deployments

For every value of client population considered, the re-
sponse time of the client requests remained within the SLA-
prescribed bound of1 second. It can be seen that for a
majority of the cases our algorithm finds an allocation of
the components that uses a reduced number of machines
compared to the traditional tiered deployment.

Node Utilization
Deployment Response Time (msec) Node 1 Node 2 Node 3 Node 4

Tiered 270 51.06 79.08 17.47 78.86
MAQ-PRO 353.5 87.32 57.41 65.04

Table III
Response Time and Utilization

Table III shows the response times and the utilizations of
the different processors for one such scenario with a total

client population of2, 000. A tiered deployment requires4
machines to serve2, 000 clients, while MAQ-PRO requires
only 3 machines – an improvement of 25%. The table clearly
shows that in the tiered deployment, Node3 is mostly idle
(17.47%utilized). MAQ-PRO identifies idle resources and
intelligently places components resulting in a minimum of
idle resources.

Figure 9 shows the resulting allocation of the different
components in the deployment of RUBis web portal using
MAQ-PRO Stage II. Using multiple instances of components
and distributing them in an intelligent way helps in effective
utilization of available resources.

Search By

Category

Business Tier

Components

Search By Region

Node 1 Node 2 Node 3

Figure 9. Allocation of Components for 2,000 Client
Figure 10 presents the coefficient of variance (CV) of the

CPU usages for the three machines used in this experiment.
It can be seen that the CV for the tiered deployment is much
higher than the MAQ-PRO deployment. This signifies that
the MAQ-PRO deployment uses the processors in a more
balanced manner than the tiered deployment reinforcing
our claim that MAQ-PRO effectively utilizes resources.
The outcome is the ability of MAQ-PRO to handle more
incoming load while preventing a single node to become
the bottleneck as long as possible.

0.15

0.2

0.25

0.3

0.35

0.4

0.45

f
V

a
ri

a
ti

o
n

 C
P

U

z
a

ti
o

n

Tiered

MAQ

0

0.05

0.1

500 1000 1500 2000

C
o

e
ff

ic
ie

n
t

o
f

U
ti

li
z

Clients

Figure 10. Coefficent of Variation of Node Usage

2. Handling Increasing Number of Clients:
Our MAQ-PRO algorithm also enables increasing the

number of clients handled using the same fixed number
of machines compared to a tiered architecture. This can
be achieved with a slight variation of Algorithm 2 where
the number of nodes are fixed initially to some value. The
algorithm terminates as soon as the response time reaches
the SLA bound (which means that performance is assured).

Using the result of three nodes obtained in the previous
result, we conducted additional experiments. The allocation
decisions made by MAQ-PRO are used to place the compo-
nents on the machines and the number of clients is gradually
increased till their response times reach a SLA bound of 1
sec. In comparison, the tiered deployment is also used to
host the same number of clients.

Figure 11 shows the response time for both the tiered
deployment and the MAQ-PRO deployment. It can be seen
that the tiered deployment reaches a response time of 1 sec
at around 1,800 clients while the MAQ-PRO deployment
reaches a response time of 1 sec at around 2,150 clients.
This result shows an improvement of 350 clients or around
20% thereby providing an opportunity for service providers
to increase their revenues.

800

1000

1200

1400

1600

1800

2000

o
n

s
e

 T
im

e
 (

m
s

e
c

)

Response Time of MAQ-PRO vs Tiered

0

200

400

600

500 1000 1500 2000 2300

R
e

s
p

o

Clients MAQ-PRO Tiered

Figure 11. Response Time Comparison

IV. RELATED WORK

This section compares MAQ-PRO against related work
along two dimensions.
Analytical and Profile based Techniques:A large body
of work on analytical techniques to model and estimate the
performance of multi-tiered internet applications exists. For
example, [1]–[4], [17] use closed queuing networks to model
multi-tiered internet applications. These efforts typically
model an entire tier as a queue. Such models are also usually
service-aware, which allows system management decisions
involving components and services to be executed.

In contrast, MAQ-PRO models the applications at the
granularity of a software component. The finer granular-
ity helps our heuristics to place components onto nodes
so that resource wastage is minimized. In addition, load
dependent service demands are used to model increased
system activity at high utilization levels. MAQ-PRO also
presents a method to model blocking effects due to database
optimizations [8]. This method ensures that the queuing
models remain tractable while simultaneously improving the
accuracy of performance predictions.

Stewart et. al. [5] propose a profile-driven performance
model for cluster based multi-component online services.
They use their model to perform system management and
implement component placement across nodes in the cluster.
MAQ-PRO complements this work by modeling system
activity, multiple processors/cores, and database optimiza-
tions. It also uses a formalized queuing model to predict
performance.
Application Placement Techniques:Karve et al. [6] and
Kimbrel et. al. [7] present a framework for dynamic place-
ment of clustered web applications. Their approach consid-
ers multiple resources, some being load-dependent while
others are load-independent. An optimization problem is

solved which attempts to alter the component placement at
run-time when some external event occurs. Components are
migrated to respond to external demands.

Carrera et al. [18] design a similar system but they
also provide utility functions of applications mapping CPU
resource allocation to the performance of an application
relative to its objective. Tang et al. [19] propose a place-
ment algorithm. MAQ-PRO models from Stage 1 can be
used with their algorithm. Urgaonkar et. al. [20] identify
resource needs of application capsules (components) by
profiling them.They also propose an algorithm for mapping
the application capsules onto the platforms (nodes).

MAQ-PRO differs from these approaches in terms of
its workload and performance models, and also in terms
of the replication management strategy. MAQ-PRO defines
a queuing model and enhances it to consider application-
and hardware-specific factors which influence the perfor-
mance of the applications. The queuing model captures the
interference due to multiple components being co-located
together. Since MAQ-PRO is a strategizable framework, the
placement algorithms in [6], [7], [19], [20] can be plugged
in.

None of the prior works above (except [1]) enforces
explicit performance bounds. MAQ-PRO maintains perfor-
mance bounds through the use of SLAs. The placement
of the components is thus attempted to maximize capacity
while ensuring that the performance remains within specified
SLA bounds.

V. CONCLUDING REMARKS

This paper presented the MAQ-PRO process which is
a two stage framework comprising techniques to develop
profile-based analytical models, and an algorithm for compo-
nent replication and allocation for multi-tiered, component-
based applications. The goal of the MAQ-PRO process
is high assurance of performance and service availability
to users, while minimizing operating costs and potentially
improving revenues to the service provider.

MAQ-PRO advocates a profiling method by which tra-
ditional queuing models can be enhanced and made more
accurate. The novel ideas include the use of load-dependent
service demands of individual services on the processor
and correction factor for easily estimating multi-processor
activity. MAQ-PRO also provides a component replication
and allocation algorithm which makes use of the above
analytical model in minimizing the number of resources used
and balancing their usage while meeting the target number
of clients and their SLA bounds. It is shown that by keeping
the resource utilization of each component within a certain
threshold such as30% of CPU time, the resources can be
utilized better.

We have used a running example of the RUBiS web
portal to discuss the two stages of MAQ-PRO and discussed

the steps any capacity planner should undertake when ap-
plying MAQ-PRO to their applications. In the context of
RUBiS, MAQ-PRO was shown to have saved25% resources
while supporting20% more load when compared to using
traditional modeling techniques all while providing high
performance and availability assurances to users.

Our results indicate that the process to enhance traditional
queuing models with profiling based measurements helped
us to derive more accurate models. Since our approach is
profile-based, the empirical results depend upon the software
design, business logic, and underlying hardware. Thus the
models developed for RUBis may not apply directly to
other projects. On the other hand such software behavior
is common across many applications and our profiling tech-
niques can be repeated on the concerned platform/projects
to measure the required variables, and derive enhanced
analytical models.

Our future work will investigate the impact
of resource failures and include fault tolerance.
The MAQ-PRO data and algorithm is available at
http://www.dre.vanderbilt.edu/ nilabjar/MAQ-PRO.

REFERENCES

[1] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi, “An Analytical Model for Multi-tier Internet
Services and its Applications,”SIGMETRICS Perform. Eval.
Rev., vol. 33, no. 1, pp. 291–302, 2005.

[2] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, “Dynamic
provisioning of multi-tier internet applications,” inAutonomic
Computing, 2005. ICAC 2005. Proceedings. Second Interna-
tional Conference on, 2005, pp. 217–228.

[3] Q. Zhang, L. Cherkasova, G. Mathews, W. Greene, and
E. Smirni, “R-capriccio: a capacity planning and anomaly
detection tool for enterprise services with live workloads,” in
Middleware ’07: Proceedings of the ACM/IFIP/USENIX 2007
International Conference on Middleware. New York, NY,
USA: Springer-Verlag New York, Inc., 2007, pp. 244–265.

[4] Q. Zhang, L. Cherkasova, N. Mi, and E. Smirni, “A
regression-based analytic model for capacity planning of
multi-tier applications,”Cluster Computing, vol. 11, no. 3,
pp. 197–211, 2008.

[5] C. Stewart and K. Shen, “Performance modeling and system
management for multi-component online services,” inPro-
ceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2 table of contents.
USENIX Association Berkeley, CA, USA, 2005, pp. 71–84.

[6] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Stein-
der, M. Sviridenko, and A. Tantawi, “Dynamic placement
for clustered web applications,” inProceedings of the 15th
international conference on World Wide Web. ACM New
York, NY, USA, 2006, pp. 595–604.

[7] T. Kimbrel, M. Steinder, M. Sviridenko, and A. Tantawi,
“Dynamic Application Placement Under Service and Memory
Constraints,” inExperimental And Efficient Algorithms: 4th
International Workshop, WEA 2005, Santorini Island, Greece,
May 10-13, 2005: Proceedings. Springer, 2005, p. 391.

[8] A. G. Nilabja Roy and L. Dowdy, “A Novel Capacity Plan-
ning Process for Performance Assurance of Multi-Tiered Web
Applications,” inTo Appear in the Poster Proceedings of the
18th Annual Meeting of the IEEE International Symposium
on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS ’10). Miami Beach,
FL, USA: IEEE, Aug. 2010.

[9] C. Amza, A. Ch, A. Cox, S. Elnikety, R. Gil, K. Rajamani,
and W. Zwaenepoel, “Specification and Implementation of
Dynamic Web Site Benchmarks,” in5th IEEE Workshop on
Workload Characterization, 2002, pp. 3–13.

[10] D. A. Menasce, L. W. Dowdy, and V. A. F. Almeida,Perfor-
mance by Design: Computer Capacity Planning By Example.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2004.

[11] N. Roy, Y. Xue, A. Gokhale, L. Dowdy, and D. C. Schmidt,
“A Component Assignment Framework for Improved Capac-
ity and Assured Performance in Web Portals,” inProceedings
of the 11th International Symposium on Distributed Objects,
Middleware, and Applications (DOA’09), Nov. 2009, pp. 671–
689.

[12] R. Suri, S. Sahu, and M. Vernon, “Approximate Mean Value
Analysis for Closed Queuing Networks with Multiple-Server
Stations,” inProceedings of the 2007 Industrial Engineering
Research Conference. Citeseer, 2007.

[13] B. Urgaonkar, A. Rosenberg, P. Shenoy, and A. Zomaya, “Ap-
plication Placement on a Cluster of Servers,”International
Journal of Foundations of Computer Science, vol. 18, no. 5,
pp. 1023–1041, 2007.

[14] E. Coffman Jr, M. Garey, and D. Johnson, “Approximation
algorithms for bin packing: a survey,” 1996.

[15] N. Roy, J. S. Kinnebrew, N. Shankaran, G. Biswas, and
D. C. Schmidt, “Toward Effective Multi-capacity Resource
Allocation in Distributed Real-time and Embedded Sys-
tems,” in Proceedings of the 11th International Symposium
on Object/Component/Service-oriented Real-time Distributed
Computing). Orlando, Florida: IEEE, May 2008.

[16] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi,Queueing
networks and Markov chains: modeling and performance
evaluation with computer science applications. Wiley-
Interscience New York, NY, USA, 1998.

[17] G. Pacifici, W. Segmuller, M. Spreitzer, M. Steinder,
A. Tantawi, and A. Youssef, “Managing the response time
for multi-tiered web applications,”IBM TJ Watson Research
Center, Yorktown, NY, Tech. Rep. RC23651, 2005.

[18] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguade,
“Utility-based placement of dynamic web applications with
fairness goals,” inNetwork Operations and Management
Symposium, 2008. NOMS 2008. IEEE, April 2008, pp. 9–16.

[19] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A
scalable application placement controller for enterprisedata
centers,” inProceedings of the 16th international conference
on World Wide Web. ACM, 2007, p. 340.

[20] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbook-
ing and application profiling in a shared Internet hosting plat-
form,” ACM Transactions on Internet Technologies (TOIT),
vol. 9, no. 1, pp. 1–45, 2009.

