
Automating Product-Line Variant Selection for Mobile Devices

Jules White and Douglas C. Schmidt
Vanderbilt University
Nashville, TN, USA

{jules, schmidt}@dre.vanderbilt.edu

Egon Wuchner and Andrey Nechypurenko
Siemens AG, Corporate Technology (SE 2)

Munich, Germany
{egon.wuchner, andrey.nechypurenko}@siemens.com

Abstract

Product-line architectures (PLAs) designed for mobile
devices create a unique challenge for automated product
variant selection engines since variants must be derived
on-the-fly as devices are discovered. Current automation
techniques do not incorporate device resource consumption
constraints into variant selection and do not address how a
PLA can be designed to improve automated variant selec-
tion speed. This paper presents a tool called Scatter whose
input is (1) the requirements of PLA construction and (2)
the resources available on a discovered mobile device and
whose output is the optimal variant that can be deployed
to the device. Scatter provides automatic variant selection
based on configuration and resource constraints and also
ensures that variant selection is optimal with regard to a
configurable cost function. The paper presents our results
from experiments with Scatter and how PLA design deci-
sions affect a constraint-based variant selection engine’s
solving speed.

1 Introduction

The increasing popularity and abundance of mobile and
embedded devices is bringing the promise of pervasive
computing closer to reality. A recent trend in mobile de-
vices that makes pervasive computing more realistic is the
proliferation of services that allow mobile devices to down-
load software on-demand. Mobile phones, for example, can
now access web-based applications, such as google mail, or
download custom applications from services, such as Veri-
zon’s “Get It Now.” Google delivers both a web-based in-
terface to google mail and an application that can be down-
loaded to a mobile phone.

In a pervasive computing environment, the ability to
download software on-demand will play a critical role in de-
livering custom services to users where and when they are
needed. For example, when a mobile device enters a retail
store, software for browsing back room inventory, display-

ing store circulars, and purchasing items can be downloaded
by the mobile device. When exiting the store, the device
may be carried onto a train, in which case applications for
placing food orders, checking train schedules, and reserving
further tickets could be downloaded by the mobile device.

Product-line architectures (PLAs) [5] are a promising ap-
proach to help developers manage the complexity of the
variability between mobile devices [2, 29, 20]. PLAs [5] en-
able the development of a group of software packages that
can be retargeted for different requirement sets by leverag-
ing common capabilities, patterns, and architectural styles.
The design of a PLA is typically guided by scope, common-
ality, and variability (SCV) analysis [8]. SCV captures key
characteristics of software product-lines, including their (1)
scope, which defines the domains and context of the PLA,
(2) commonalities, which describe the attributes that recur
across all members of the family of products, and (3)vari-
abilities, which describe the attributes unique to the differ-
ent members of the family of products.

Using a PLA, developers can create software architec-
tures that can be rapidly retargeted to the capabilities of dif-
ferent mobile devices. In a pervasive environment, however,
the retargeting of a software application to produce a valid
variant for a device must happen online. When a device
enters a particular context, such as a retail store, the appli-
cation provider service must very quickly deduce and create
a variant for the device. With the large array of device types
and rapid development speed of new devices and capabil-
ities, the system will not be able to know about all device
typesa priori. As devices enter a context, their unique ca-
pabilities must be discovered and dealt with efficiently and
correctly.

Current techniques for automating variant construction
from component-based models or feature models, such as
those presented in [3, 15, 19, 22, 24], do not sufficiently
address various challenges of designing and implementing
an automated approach to selecting a product variant for
a mobile device. One common capability lacking in each
of these approaches is the ability to consider resource con-
sumption constraints, such as the total available memory



consumed by the features selected for the variant must be
less than 256 kilobytes. Resource constraints are impor-
tant for mobile devices since resources are typically lim-
ited. Some resources, such as cellular network bandwidth,
also have a measurable cost associated with them and must
be conserved.

Another missing detail of these approaches is the archi-
tecture for how a device discovery service would be used to
characterize a device’s non-functional properties (such as
OS, total RAM, etc.) so that a variant can be selected for
them. A variant selection engine for mobile devices must
have a way to interface with a discovery mechanism. Fi-
nally, to provide fast feature selection engines (which aids
dynamic software delivery for mobile devices) more re-
search is needed on how PLA design decisions impact the
speed of different automation techniques.

To address these gaps in online mobile software variant
selection engines, we have developed a tool calledScat-
ter that first captures the requirements of a PLA and the
resources of a mobile device and then quickly constructs
a custom variant from a PLA for the device. This paper
presents the architecture and functionality of Scatter and
provides the following contributions to research on custom
application deployment in pervasive environments:

• We describe Scatter’s graphical requirement and re-
source specification mechanisms and show how they
facilitate the capture and analysis of a wide variety of
requirement types

• We discuss how Scatter transforms requirement speci-
fications into a format that can be operated on by a con-
straint solver and how we extend existing constraint-
based automation approaches [3] to include resource
constraints

• We describe the automated variant selection engine,
based on a Constraint Logic Programming Finite Do-
main (CLP(FD)) solver [12, 25] and show how it
can rapidly produce both correct and optimal variants
based on the requirements

• We present data from experiments that show how
PLA constraints impact variant selection time for a
constraint-based variant selection engine.

• We describe PLA design rules that we have gleaned
from our experiments that help to improve variant se-
lection time when using a constraint-based approach.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the challenges of selecting product variants
for mobile devices; Section 3 presents the problems of cap-
turing the requirements and resources for deploying PLA
variants to mobile devices and discusses how Scatter ad-
dresses them; Section 4 shows how Scatter automatically

transforms PLA requirements and mobile device resources
into a model that can be operated on by the CLP(FD) based
variant selector; Section 5 analyzes the performance results
of applying Scatter to variant selection for an example PLA;
Section 6 compares our approach with related work; and
Section 7 presents lessons learned and concluding remarks.

2 Challenges of Automated Variant Selection
for Mobile Devices

The following are three key challenges associated with
creating an automated variant selector in a pervasive envi-
ronment:

• Unknown device signatures. Although devices may
share common communication protocols and resource de-
scription schemas, a variant selection service will not know
all device signatures at design time. To provide on-demand
variant selection when a new device is encountered, the se-
lection mechanism must be fast. Moreover, devices may
possess different signatures. On the one extreme, a laptop
may be carried onto a train with a relatively powerful In-
tel Core Duo processor and a gigabyte or more of RAM.
On the other extreme, a Treo mobile phone may be discov-
ered with a 312mhz XScale processor and 64mb of RAM. A
variant selector must be able to handle these diverse device
descriptions.

• Variant cost optimization. Each variant may have a
cost associated with it. There may be many valid variants
that can be deployed and the variant selector must possess
the ability to choose the best variant based on a cost for-
mula. For example, if the variant selected is deployed to a
device across a GPRS connection that is billed for the total
data transferred, it is crucial that this cost/benefit tradeoff be
analyzed when determining which variant to deploy. If one
variant minimizes the amount of data transferred over thou-
sands or hundreds of thousands of devices deployments, it
can provide significant cost savings.

• Limited selection time. A variant selection may need
to occur rapidly. On a train, for instance, a variant selec-
tion engine may have tens of minutes or hours before the
device exits (although the traveler may become irritated if
variant selection takes this long). In a retail store, con-
versely, if customers cannot get a variant of a sales appli-
cation quickly, they may become frustrated and leave. To
provide a truly seamless pervasive environment, automated
variant selection must happen rapidly. When combined with
the challenge of not knowing device signaturesa priori and
the need for optimization, achieving quick selection times
is even harder.

2



3 Capturing PLA and Mobile Device Re-
quirements

Traditional processes of identifying valid PLA variants
involve software developers manually determining the soft-
ware components that must be in a variant, the components
to configure, and how to compose and deploy the compo-
nents. In addition to being infeasible in a pervasive envi-
ronment (where the target device signatures are not known
ahead of time and variant selection must be done on de-
mand), such manual approaches are tedious and error-prone
and are a significant source of system downtime [10]. Man-
ual approaches also do not scale well and become impracti-
cal with the large solution spaces typical of PLAs.

One way to overcome the speed and correctness deficien-
cies of manual variant selection is to capture a formal model
of the PLA’s commonality and variability so that automa-
tion can take place. In addition to capturing the composition
rules for building variants, a model is needed to analyze the
non-functional requirements of a variant to avoid selecting
variants that are compositionally correct, but whose func-
tional requirements fail due to being deployed on incom-
patible or insufficient infrastructure. Figure 1 shows the cy-
cle of device discovery, variant selection based on require-
ments, and variant deployment on a train.

Figure 1: Selecting a Train Ticket Reservation Service for a
Device

For example, a ticket reservation service for a train may
require 1 megabyte of memory and 256 kilobits of data
transfer over a General Packet Radio Service (GPRS) con-
nection. If the reservation service is deployed to a device
with insufficient free memory, it will not function properly

even if it adheres to the PLA compositional rules. To prop-
erly configure and select a variant dynamically, therefore,
both compositional and non-functional requirements must
be considered and matched against the target device.

Capturing and relating composition and non-functional
requirements to a mobile device is hard. The remainder of
this section describes key challenges of building a composi-
tional and non-functional requirements model of a PLA and
outlines how our Scatter tool addresses them.

3.1 Scatter Overview

The Scatter tool helps automate variant selection for mo-
bile devices by providing:

1. A graphical modeling tool that defines a domain-
specific modeling language (DSML) for specifying
variant composition rules via a visio-like interface, as
shown in Figure 2. Scatter allows developers to visu-
ally model (1) the components of their PLA, (2) the
dependencies and composition rules of components,
and (3) the non-functional requirements of each com-
ponent.

2. A compiler that converts the graphical models from the
Scatter modeling tool into a both a Prolog knowledge
base and a Constraint Satisfaction Problem (CSP) [12,
25] that can be operated on using a Prolog constraint
solver. Scatter’s formulation of the CSP is an extension
of the model presented in [3], that includes resource
constraints between components or features.

3. A remoting mechanism that allows a device discovery
service to communicate discovered devices to Scatter’s
variant selection engine. The remoting mechanism al-
lows the discovery service to report back key device
non-functional properties, such as OS, memory, and
CPU speed.

4. A variant selection engine, based on a Prolog con-
straint solver, that can automatically select a correct
and optimal variant for a device. The Scatter selection
engine feeds the device specification, provided by a
discovery service, and Prolog knowledge base created
by the Scatter compiler, to the constraint solver. The
selection engine then translates the results from the
constraint solving back into configuration decisions for
the variant.

Scatter is implemented using the open-source Generic
Eclipse Modeling System (GEMS) [27, 28], which is part
of the Eclipse Generative Modeling Technologies (GMT)
project. GEMS provides a convenient way to define the
metamodel,i.e., the visual syntax of the modeling language.
Based on the metamodel, GEMS automatically generates
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a graphical editor that enforces the grammar specified in
the metamodel. Scatter extends our previous work using
Role-based Object Constraints (ROCs) and Model Intelli-
gence [21, 26]. Models created in Scatter are transformed
via the ROCs infrastructure into formats that can be oper-
ated on by a constraint solver.

3.2 Scatter Graphical PLA Models

To facilitate the analysis of the variant solution space
requires a formal grammar to describe the structure, com-
monality, and variability (SCV) analysis of the PLA and its
valid configurations. This customization grammar can then
be used to automatically generate and explore the variant
solution space. Scatter provides a visual modeling tool for
capturing the SCV of a PLA, as seen in Figure 2. This view
allows developers to formalize which components are avail-
able in the PLA, what applications can be constructed, and
how each application is composed. The components can
be used as an abstraction to describe a PLA both on sys-
tem structure [17] or using feature modeling [3, 13]. In our
approach, configurations of components or features can be
modeled as variabilities using Scatter’s SCV model.

To capture a formal definition of the PLA, the compo-
nents on which it is based must be modeled. TheCom-
ponentelement is the basic building block in the Scatter
DSML that represents an indivisible unit of functionality,
such as a Java class or specific feature. For instance, the
various food ordering applications areComponentsin our
train example.

Figure 2: Scatter PLA Composition and Non-functional Re-
quirements

Dependencies between components can be created by
specifying a composition predicate (Required, Exclusive
OR, Cardinality, or Exclusion) and theComponentsto

which the predicate should be applied. For our train exam-
ple, theFoodServicecomponent is connected to the Exclu-
sive OR predicate, which can be connected to thefirst class
andcoach class menucomponents. This composition indi-
cates that theFoodServicecomponent can be deployed with
exactly one of these menus. The same composition rule
could also be specified using theCardinalty predicate by
specifying that 1..1 of thefirst classandcoach class menu
components can be deployed with theFoodServicecompo-
nent.

Componentdependencies can be constructed hierarchi-
cally from other components with dependencies to capture
the compositional variability in a PLA. Components can
also have composition rules with predicates that refer to ar-
bitrary other components in the model. This mechanism is
identical to the concept of feature references [9]. To specify
the compositional variability in the PLA, developers build
ComponentandPredicategraphs that show the dependen-
cies and composition rules of the applications and their con-
stituent pieces.

By capturing PLA compositional variability, developers
can formally specify how valid variants are composed. With
a formal specification of the variant construction rules, Scat-
ter can then automatically explore the variant solution space
to discover all valid compositional variants of the PLA for
a given device, as discussed in Section 4.

3.3 Non-functional Requirements Cap-
ture

One challenge when building a tool to model a PLA’s
non-functional requirements is providing a mechanism that
not only allows modelers to express a wide variety of con-
straint types, but also captures them in a form that can be op-
erated on by a constraint solver. At one end of the spectrum
are textual specifications, such as “this component should
only be deployed to devices located in the first-class cabin
running Palm OS.” Although these specifications are intu-
itive to produce and understand, they are imprecise in mean-
ing and require manual translation to the format expected by
a constraint solver.

At the other end of the spectrum are the native formats,
such as matrices representing systems of linear equations
or constraint networks, used by constraint solvers to spec-
ify requirements, such as required OS. These native con-
straint solver formats are easy to operate on with a con-
straint solver. It is hard, however, to map these formats back
to the variant selection for mobile devices, which makes it
hard for application developers and quality engineers to use.

Scatter provides a graphical modeling tool to address this
challenge and allow developers to express requirements.
To specify non-functional requirements, users drag-and-
drop requirements from the palette onto components. The
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child requirement elements of a component specify the non-
functional requirements that must be satisfied by a device’s
resources. Each requirement has aName, Type, andValue
attribute associated with it:

• The Namespecifies the name of the resource on the
device that it is restricting.

• TheTypespecifies the type of requirement, either ’>’,
’<’, ’ =’, ’ =<’, ’ >=’, or ’−’.

• The Value indicates the target amount of the resource
to which constraint is being applied.

For example, if a JVM with a version greater than 1.2 is
needed, the requirement would have the Name ’JVMVer-
sion’, Type ’>’, and Value ’1.2’. For a Resource constraint,
such as the amount of memory consumed by a software
component, the ’−’ Type is used,e.g., if a component con-
sumed 200kb of memory, the constraint would be Name
’RAM’, Type ’ −’, and Value ’200’.

Scatter’s approach strikes a careful balance between ex-
pressivity and formalness outlined above by blending both
the flexibility and intuitiveness of a textual approach with
the concrete meaning of a constraint solver format. The
Name can be any string and thus modelers can create mean-
ing by providing very descriptive names. The Type provides
a clear definition of how the constraint is compared to the
resources available on a candidate device. The Type also
indicates exactly which constraint solver must be used to
analyze the constraint.

All types, except the ’-’ type, are local constraints gov-
erning the placement of one component and are solved by
an inferencing engine. These constraints are considered lo-
cal because their satisfaction is independent of the satisfac-
tion of constraints for other components. For example, if a
component requires a specific OS, that constraint does not
restrict which other components it can be deployed with. If
a component consumes a certain amount of memory, how-
ever, its placement on a device will restrict the other com-
ponents that can be placed with it.

A key challenge in a pervasive environment is that vari-
ant selection must take into account requirements based on
business and context data. For example, on a train, the first-
class and coach-class cabins may offer different meal ser-
vices. In coach, travelers may be able to pre-order food via
a mobile phone application, but still must physically go and
pickup the food. In first-class, however, train staff may be
required to deliver food orders to a traveler’s seat.

For first class, therefore, a variant that provides a compo-
nent for notifying the ordering system of where the traveler
is sitting may be required while it would not be required
in coach. Cabins may also offer different meal selections
or meal prices, in which case the variant selection must
account for the location-based rules when selecting which

menu to deliver with the ordering service. This train variant
selection scenario is shown in Figure 3.

Figure 3: Cabin Class Constraints for Train Menu Variant
Selection

At one extreme, a tool can limit the types of constraints
that can be solved to a small subset that is considered most
important. At the other extreme, a tool can allow developers
to capture any type of constraint, but provide no guarantee
of having a way of deducing a variant that satisfies them.
Capturing a wide variety of these types of non-functional
business and location-based constraints is hard.

Scatter employs a strategy that focuses on allowing the
datasources to change while the types of constraints remain
constant. This strategy allows it to capture and solve a wide
variety of constraint types. For example, a modeler could
specify the constraints:

JVMVersion > 1.2
WifiCapable = true
CabinClass = first
CPU - 100
RAM - 200
DisplayHResolution > 128
DisplayVResolution > 64

This specification mixes multiple different types of do-
main constraints. A segment of a Scatter requirements
model showing these constraints is seen in Figure 4.
The JVMVersionconstraint relates to the software stack
on the device,CPU and RAM are resource consump-
tion constraints,WifiCapableand DisplayXResolutionare
hardware capability constraints, andCabinClassis a busi-
ness/location based constraint.

The restrictions imposed by the specification format are
only on the types of comparisons that can be done and not
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Figure 4: Capturing Mixed Non-functional Requirement
Types in Scatter

on the data that the comparison is based upon. This freedom
in constraint specification allows Scatter’s variant selection
to incorporate a large array of datatypes that a device dis-
covery service could provide. This setup allows other ser-
vices to pre-process the data used by the variant selector and
thus allow it to operate on very complex data sets.

For example, context processors based on GPS or RFID
can calculate a device’s position or type and correlate cabin
class. Business-rule engines can calculate customer pri-
orities and provide business analysis. Scatter’s architec-
ture thus holds constant the complex portions of variant
selection—the constraint solvers—while still allowing the
incorporation of new datatypes from a discovery service.
For scenarios where other types of constraints are needed,
Scatter provides mechanisms for plugging in new types and
solvers.

3.4 Discovery and Device Signatures

The non-functional properties of a device, such as
JVMVersionandCabinClass, can be used by the variant
selection engine to select a variant only if values are pro-
vided for them. The values for these variables can be ob-
tained from a mobile device discovery service, as shown in
Figure 5.

Scatter exposes a SOAP-based web service and a
CORBA remoting mechanism for remotely communicating
device characterizations as they are discovered. The prop-
erties of a device are reported back to Scatter as key/value
pairs. The keys match the names of the non-functional prop-
erties constrained by the non-functional requirements in the
Scatter graphical model. As discussed in Section 4, these
constraints and key/value pairs are used by the variant selec-

Figure 5: Scatter Integration with a Discovery Service

tion engine to filter the list of variants that can be deployed
to a device.

4 Scatter Variant Selection Engine

Scatter provides an automated variant selector that lever-
ages Prolog’s inferencing engine and the Java Choco
CLP(FD) constraint solver [1]. The Scatter solver uses a
layered solving approach to help reduce the combinatorial
complexity of satisfying the resource constraints. Scatter
prunes the solution space using the PLA composition rules
and the local non-functional requirements so that only vari-
ants that can run on the target infrastructure are considered.
The resource constraints are a form of bin-packing an NP-
Hard problem [6]. This layered pruning helps improve se-
lection speed and enables more efficient solving. As shown
in the Section 5, this layered pruning can significantly im-
prove variant selection performance.

4.1 Layered Solution Space Pruning

Initially, the variant solution space contains many mil-
lions or more possible component compositions. Solving
the resource constraints is thus time consuming. To op-
timize this search, Scatter first prunes the solution space
by eliminating components that cannot be deployed to the
device because their non-functional requirements, such a
JVMVersion or CabinClass, are not met. After pruning
away these components, Scatter evaluates the PLA compo-
sition rules to see if any components can no longer be de-
ployed because one of their dependencies has been pruned
in the previous step. After pruning the solution space using
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the PLA composition rules, the resource requirements are
considered. After solving the resource constraints, Scatter
is left with a drastically reduced number of deployment so-
lutions to select from. At this point, if there is more than one
valid variant remaining, Scatter uses a branch and bound al-
gorithm to iteratively try and optimize a developer-supplied
cost function by searching the remaining valid solutions.

The first two phases of the solution space pruning use
a constraint solver based on standard Prolog inferencing.
A rule is specified that only allows a component to be de-
ployed to a device, if for every local non-functional require-
ment on the component, a resource is present that satisfies
the requirement. For example, if aComponentrequires a
JVMVersion greater than 1.2, the targetDevicemust con-
tain aResourcenamed JVMVersion with a value greater that
1.2 or the component is pruned from the solution space and
not considered.

4.2 Using CLP(FD) to Solve Resource
Constraints

After performing this initial pruning of the solution
space, the resource and PLA composition constraints are
turned into an input for a CLP(FD) solver. The transforma-
tion is an extension of the model proposed in [3] to include
resource consumption constraints. The model is also ex-
tended to allow for feature references.

A Constraint Satisfaction Problem (CSP) is a problem
that involves finding a labeling (a set of values) for a set of
variables that adheres to a set of labeling rules (constraints).
For example, with the constraint "X < Y", X = 3,Y = 4 is
a correct labeling of the values forX andY. Typically, the
more variables and constraints that are involved in a CSP,
the more complex it is to find a correct labeling of the vari-
ables.

Selecting a a product variant can be reduced to a CSP.
Scatter constructs a set of variablesDC0 . . .DCn, with do-
main [0,1], to indicate whether or not the ith component is
present in a variant. A variant therefore becomes a binary
string where theith position represents if theith component
(or feature) is present. Satisfying the CSP for variant se-
lection is devising a labeling ofDC0 . . .DCn such that the
composition rules of the feature model are adhered to.

Resource consumption constraints are created
by ensuring that the sum of the resource de-
mands of binary string representing a variant do
not exceed any resource bound on the device
(e.g. ∑variant_component_resource_demands <
device_resources). For eachComponent Ci that is de-
ployable in the PLA, a presence variableDCi , with domain
[0,1] is created to indicate whether or not theComponentis
present in the chosen variant. For every resource type in the
model, such as CPU, the individualComponentdemands

on that resource,Ci(R), when multiplied by their prescence
variables and summed cannot exceed the available amount
of that resource,Dvc(R), on theDevice.

If the presence variable is assigned 0, indicating the
component is not in the variant, the resource demand con-
tributed by that component to the sum falls to zero. The
constraint∑Ci(R)∗DCi < Dvc(R) is created to enforce this
rule. Components that are not selected by the solver, there-
fore, will haveDCi = 0 and will not add to the resource
demands of the variant.

The solver supports multiple types of composition rela-
tionships betweenComponents. For eachComponent Cj
that Ci depends on, Scatter creates the constraint:Ci >
0 → Cj = 1. Scatter also supports a cardinality composi-
tion constraint that allows at leastMin and at mostMax
components from the dependencies to be present. The car-
dinality operator creates the constraint:Ci > 0 → ∑Cj >
Min,∑Cj < Max. The standard XOR dependencies from
the metamodel are modeled as a special case of cardinal-
ity whereMin/Max= 1. Finally, the solver supports com-
ponent exclusion. For eachComponent Cn that cannot be
present withCi , the constraintCi > 0→ Cn = 0 is created.
The variables that can be referred to by the constraints need
not be direct children of a component or feature and thus
are references.

To support optimization, a variableCost(V) is de-
fined using the user supplied cost function. For exam-
ple, Cost(V) = DC1 ∗ GPRSC1 + DC2 ∗ GPRSC2 + DC3 ∗

GPRSC3 . . .DCn∗GPRSCn could be used to specify the cost
of a variant as the sum of the costs of transferring each com-
ponent to the target device using a GPRS cellular data con-
nection. This cost function would attempt to minimize the
size of the variant deployed within the resource and PLA
composition limits. Once the requirements have been trans-
lated into CLP(FD) constraints, Scatter asks the CLP solver
for a labeling of the variables that maximizes or minimizes
the variableCost(V), which allows the variant selector to
choose components that not only adhere to the composi-
tional and resource constraints but that maximize the value
of the variant. The user therefore supplies a fitness criteria
for selecting the best variant from the population of valid
solutions.

5 Scatter Performance Results

A key question is how fast Scatter performs and whether
or not online variant selection is possible. To test Scat-
ter’s performance, we developed a series of progressively
larger PLA models to evaluate solution time. The tests fo-
cused solely on the time taken by Scatter to derive a solution
and did not involve deploying components. We also tested
how various properties of PLA composition and local non-
functional constraints affected the solution speed. Our test
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were performed on an IBM T43 laptop, with an 1.86ghz
Pentium M CPU and 1 gigabyte of memory.

Note that optimization and satisfaction of resource con-
straints is an NP-Hard problem, where it is always possible
to play the role of an adversary and craft a problem instance
that provides exponential performance [6]. Constraint sat-
isfaction and optimization algorithms often perform well
in practice, however, despite their theoretical worst-case
performance. One challenge when developing a PLA that
needs to support online variant selection is ensuring that the
PLA does not induce worst-case performance of the selec-
tor. We therefore attempted to model realistic PLAs and to
test Scatter’s performance and better understand the effects
of PLA design decisions.

5.1 Pure Resource Constraints

We first tested the brute force speed of Scatter when con-
fronting PLAs with no local non-functional or PLA com-
position requirements that could prune the solution space.
We created models with 18, 21, 26, 30, 40, and 50Com-
ponents. Our models were built incrementally, so each suc-
cessively larger model contained all of the components from
the previous model. In each model, we ensured that not all
of the components could be simultaneously supported by
the device’s resources. Our device was initially allocated
100 units of CPU and 16 megabytes of memory. Scatter’s
performance results on this model can be seen in Figure 6.
As can be seen from the large jump in time from the time

Figure 6: Scatter Performance on Pure Resource Con-
straints

to select a variant from 40 to 50Components, solving for a
variant does not scale well if resource constraints alone are

considered.

5.2 Testing the Effect of Limited Re-
sources

We next investigated how the tightness of the resource
constraints affected solution time. We incrementally in-
creased the available CPU on the modeled device from 100
to 2,500 units for the 50 Component model. The results
can be seen in Figure 7. As shown in Figure 7, expanding

Figure 7: Scatter Performance as CPU Resources Expand
on Device

the CPU units from 100 to 500 units dramatically dropped
the time required to solve for a variant. Moreover, after
increasing the CPU units to 2,500, there was no increase
in performance indicating that the tightness of the CPU re-
source constraints were no longer the limiting bottleneck.

We then proceeded to increase the memory on the de-
vice while keeping 2,500 units of CPU. The results are
shown in Figure 8. Doubling the memory immediately
halved the solution time. Doubling the memory again to
128 megabytes provided little benefit since the initial dou-
bling to 64 megabytes made deployment of all of the com-
ponents possible. As we had hypothesized initially, the so-
lution speed when pure resource constraints are considered
is highly dependent on how tight the resource constraints
are.

5.3 Testing the Effect of PLA Composi-
tion Constraints

Our next set of experiments evaluated how well the de-
pendency constraints within a PLA could filter the solution
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Figure 8: Scatter Performance as Memory Resources Ex-
pand on Device

space and reduce solution time. We modified our models
so that theComponentscomposed sets of applications that
should be deployed together. For example, ourTrainTicke-
tReservationServicewas paired with theTrainScheduleSer-
viceand other complementary components.

As with the first experiment 5.1, we used our 50 compo-
nent model as the initial baseline. We first constructed a tree
of dependencies that tied 10 components into an application
set that led the root of the tree, the reservation service, to
only be deployed if all children where deployed. Each level
in the tree depended on the deployment of the layer beneath
it. The max depth of the tree was 5. We continued to cre-
ate new dependencies between the components to produce
trees and see the effect. The results are shown in Figure 9.

As can be seen from the results in Figure 9, by adding de-
pendencies between components and creating a dependency
tree, there was an immediate drop in selection time. This is
presumably because it reduces the number of possible com-
binations of the components that must be considered for a
variant. Adding more dependencies to the model to add
other trees provided only a very small gain over the original
large performance increase.

5.4 Results Analysis: Mobile PLA Design
Strategies

Based on the results we collected from the experiments,
we devised a set of mobile PLA design rules to help im-
prove variant selection performance. The remainder of this
section presents the lessons we learned from our results.

Figure 9: Scatter Performance as PLA Dependency Trees
are Introduced

Exploit non-functional requirements Non-functional
requirements can be used to further increase the perfor-
mance of Scatter. Each component with an unmet non-
functional requirement is completely eliminated from con-
sideration. When PLA dependency trees are present, this
pruning can have a cascading effect that completely elimi-
nates large numbers of components. One PLA construction
rule based on non-functional requirements that was particu-
larly powerful and natural to implement in Scatter exploited
the relative lack of variation in packaging of a PLA variant.

Prune using low-granularity requirements The re-
quirements with the lowest granularity filter the largest
numbers of variants. For example, when deploying vari-
ants, especially from a PLA with high configuration-based
variability, such as varying input parameters, the disk foot-
print of various classes of variants can be used to greatly
prune the solution space. If a PLA with 50 components
is composed of 5 Java Archive Resource (JAR) files, al-
though there are a large number of ways that the PLA can
be composed, there are relatively few valid combinations of
the JAR files.

Many variants may also require common sets of these
JAR files with various footprints. These variants can be
grouped based on their JAR configurations. For each group,
a non-functional requirement can be added to the compo-
nents to ensure that a target Device provide sufficient disk
space or communication bandwidth to receive the JARs. For
small devices that usually have little availabe disk space,
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where resource constraints are tighter and solving takes
more time, large numbers of Components can be pruned
solely due to the lack of packaging variability and need for
disk space. This footprint-based strategy works even if there
are few functional PLA dependencies between components.

Limit resource tightness Due to the increased cost of
finding a variant for small devices where resources are more
limited, we developed another design rule. To decrease the
difficulty of finding a deployment on small devices, PLA
developers should provide local non-functional constraints
to immediately filter out unessential resource consumptive
Componentswhen the resource requirements of the deploy-
ableComponentsgreatly exceed the available resources on
the device. Although the cost function can be used to per-
form this tradeoff analysis and filter theseComponentsdur-
ing optimization, this method is time consuming. Filtering
some components out ahead of time may lead to less op-
timal solutions but it can greatly improve solution speed.
Even by selecting only the least valued components to ex-
clude from consideration, performance can be increased
significantly.

Create service classes Another effective mechanism for
pruning the solution space with non-functional require-
ments is to provide various classes of service that divide
the components into broad categories. In our train example,
for instance, by annotating numerousComponentswith the
CabinClassand other similar context-based requirements,
the solution space can be quickly pruned to only search the
correct class of service for the target device. In general,
the more non-functional requirements that can be specified,
the quicker Scatter can prune away invalid solutions and
hone in on the correct configuration. Moreover, each non-
functional requirement gives the solver more insight into
how Components are meant to be used and thus reduces the
likelihood of unanticipated variants that fail.

From our experiments, we have seen that when a PLA for
a mobile device is properly specified with good constraints,
Scatter can solve models involving 50 or fewer components
in seconds. This performance should be more than ade-
quate for many pervasive environments, particularly when
device signature and variants are cached to eliminate repet-
itive solving for known solutions. In future work, we intend
to test Scatter with larger models and evaluate more charac-
teristics of PLAs that can be used to reduce variant selection
time.

6 Related Work

In [15], Mannion et al present a method for specify-
ing PLA compositional requirements using first-order logic.

The validity of a variant can then be checked by determin-
ing if a PLA satisfies a logical statement. Although Scatter’s
approach to PLA composition also checks variant validity,
it extends the work in [15] by including the evaluation of
non-functional requirements not related to composition. In
particular, Scatter automates the variant selection process
using these boolean expressions and augments the selection
process to take into account resource constraints, as well
as optimization criteria. Although the idea of automated
theorem proving is enhanced in [16], this approach does
not provide a requirements-driven optimal variant selection
engine like Scatter. Further differences between Scatter’s
constraint-based and Mannion’s logic-based approaches is
available in [3].

A mapping from feature selection to a CSP is provided
by Benavides et al. [3]. Scatter uses this same reduction
but also extends it with the capability to handle references
and resource constraints. Resource constraints are a key re-
quirement type in mobile devices with limited capabilities.
Moreover, the approach presented by Benavides does not
show how this constraint-based mechanism could utilize a
mobile device discovery service as Scatter does. Finally,
Benavides et al. do not address how PLA design decisions
can be used to improve constraint solver performance as this
paper does.

In [14], Lemlouma et. al, present a framework for adapt-
ing and customizing content before delivering it to a mobile
device. Their strategy takes into account device preferences
and capabilities, as does Scatter. The approaches are com-
parable in that each attempts to deliver customized data to
a device that handles its capabilities and preferences. Re-
source constraints are a key difference that makes the selec-
tion of software for a device more challenging than adapting
content. Unlike [14], Scatter not only provides adaptation
for a device, but also optimizes adaptation of the software
with respect to its provided PLA cost function.

Many complex modeling tools are available for describ-
ing and solving combinatorial constraint problems, such as
those presented in [18, 7, 23, 4, 11]. These modeling tools
provide mechanisms for describing domain-constraints, a
set of knowledge, and finding solutions to the constraints.
These tools, however, do not provide a high-level mecha-
nism to capture non-functional requirements and PLA com-
position rules geared towards mobile devices. These tools
also do not provide a mechanism for incorporating data
from a device discovery service. Finally, these papers have
not addressed how PLA design decisions influence variant
selection speed.

7 Concluding Remarks

Online PLA variant selection for mobile devices is a
challenging domain that can benefit from automation since
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there are too many complexities and unknown device char-
acteristics to manually account for all possibilities ahead
of time. Constraint-solver based automation is a promising
technique for online variant selection. This paper describes
how our Scatter tool supports efficient online variant selec-
tion. Moreover, by carefully evaluating and constructing a
PLA selection model based on the rules we presented, de-
velopers can alleviate the effects of worst-case solver be-
havior.

From our experience developing and evaluating Scatter,
we learned the following lessons:

• PLA composition and non-functional requirements
can be used to efficiently prune the variant selection
space and provide good performance. There are many
patterns of requirements specification that can be used
to optimize a PLA for automated variant selection. In
future work, we intend to further explore these pat-
terns.

• Although Scatter can automate variant selection, it
works best when a PLA is crafted with performance
in mind. An arbitrary PLA may or may not allow for
rapid variant selection. PLA’s that will be used in con-
junction with an automated variant selector should be
carefully constructed to avoid poor performance.

• A key challenge of automating product variant selec-
tion is debugging mistakes in the product-line’s speci-
fication. A simple mistake, such as a misplaced exclu-
sion constraint between components, can cause variant
selection to fail. Moreover, the failure may only ap-
pear intermittently for certain device types and be hard
to identify during testing. Even once it is discerned
that there is a problem, identifying the source of the
problem can be extremely challenging (we have expe-
rienced this phenomenon).

• More work must be done to understand how to merge
and integrate the various information sources that will
provide device characterizations. Device characteriza-
tions may come from customer databases, discovery
services, and location services. Finding the right trans-
formations to correlate and utilize these diverse infor-
mation streams is important to provide customized and
correct variant selection.

• Developers normally focus on the functional variabil-
ity in a product. Looking at other aspects of variability,
such as packaging variability, is important too. As we
have shown, although a product may have high func-
tional variability, it can be significantly less variable
with respect to packaging or memory footprint. These
non-functional aspects can be exploited to reduce the
complexity of automated variant selection.

In future work, we plan to integrate and test various dis-
covery mechanisms and resource, context, and device char-
acterization schemas to see how Scatter performs. We also
plan to extend Scatter to interface with various types of run-
time deployment middleware infrastructure.
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