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ABSTRACT
There are many application domains, such as distributed
real-time and embedded (DRE) systems, where the domain
constraints are so restrictive and the solution spaces so large
that it is infeasible for modelers to produce correct solution
manually using a conventional graphical model-based ap-
proach. In DRE systems the available resources, such as
memory, CPU, and bandwidth, must be managed carefully
to ensure a certain level of quality of service. This paper
provides three contributions to simplify modeling of complex
application domains: (1) we present our approach of com-
bining model intelligence and domain-specific solvers with
model-driven engineering (MDE) environments, (2) we show
techniques for automatically guiding modelers to correct so-
lutions and how to support the specification of large and
complex systems using intelligent mechanisms to complete
partially specified models, and (3) we present the results
of applying an MDE tool that maps software components
to Electronic Control Units (ECUs) using the AUTOSAR
automotive modeling and middleware standard.

1. INTRODUCTION
Graphical modeling languages, such as UML, can help to
visualise certain aspects of the system and automate partic-
ular development steps via code-generation. Model-driven
engineering (MDE) tools and domain-specific modeling lan-
guages (DSMLs) [7] are graphical modeling technologies that
combine high-level visual abstractions that are specific to
a domain with constraint checking and code-generation to
simplify the development of certain types of systems. In
many application domains, however, the domain constraints
are so restrictive and the solution spaces so large that it is
infeasible for modelers to produce correct solutions manu-
ally. In these domains, MDE tools that simply provide so-
lution correctness checking via constraints provide few ben-
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efits over conventional approaches that use third-generation
languages.

Regardless of the modeling language and notation used,
the inherent complexity in many application domains is the
combinatorial nature of the constraints, and not the code
construction per se. For example, specifying the deploy-
ment of software components to hardware units in a car in
the face of configuration and resource constraints can eas-
ily generate solution spaces with millions or more possible
deployments and few correct ones, even when only scores of
model entities are present. For these combinatorially com-
plex modeling problems, it is impractical, if not impossible,
to create a complete and valid model manually. Even con-
necting hundreds of components to scores of nodes by point-
ing and clicking via a GUI is tedious and error-prone. As the
number of modeling elements increases into the thousands,
manual approaches become infeasible.

To address the challenges of modeling combinatorially com-
plex domains, therefore, we need techniques to reduce the
cost of integrating a graphical modeling environment with
Model Intelligence Guides (MIGs), which are automated
MDE tools that help guide users from partially specified
models, such as a model that specifies components and the
nodes they need to be deployed to but not how they are de-
ployed, to complete and correct ones, such as a model that
not only specifies the components to be deployed but what
node hosts each one. This paper describes techniques for
creating and maintaining a Domain Intelligence Generator
(DIG), which is an MDE that helps modelers solve combi-
natorially challenging modeling problems, such as resource
assignment, configuration matching, and path finding.

The rest of the paper is organised as follows: Section 2 dis-
cusses challenges of creating deployment models in the con-
text of the AUTOSAR[3] middleware and modeling stan-
dard, which we use as a motivating example; Section 3 de-
scribes key concepts used to create and customize MIGs;
Section 4 shows the results of applying MIGs to AUTOSAR
component deployments; and Section 5 presents concluding
remarks and outlines future work.

2. MOTIVATING EXAMPLE



AUTOSAR is a new standard for automotive middleware
and software development modeling [3]. The goal of AU-
TOSAR is to standardize solutions to many problems that
arise when developing large-scale, distributed real-time and
embedded (DRE) systems for the automotive domain. For
instance, concert efforts is required to relocate components
between Electronic Control Units (ECUs), i.e., computers
and micro-controllers running software components within
a car. Key complexities of relocation include: (1) compo-
nents often have a many constraints that need to be met
by the target ECU and (2) there are many possible deploy-
ments of components to ECUs in a car and it is hard to find
the optimal one.

For example, it is hard to manually find a set of inter-
connected nodes able to run a group of components that
communicate via a bus. Modelers must determine whether
the available communication channels between the target
ECUs meet the bandwidth, latency, and framing constraints
of the components that communicate through them. In
the automotive domain—as with other embedded systems
domains— it is also important to reduce the overall cost
of the solution, which necessitates optimizations, such as
finding deployments that use as few ECUs as possible or
minimize bandwidth to allow cheaper buses. It is infeasible
to find these solutions manually for a production systems.

To illustrate the practical benefits of generating and inte-
grating MIGs with a DSML, we describe an MDE tool we
developed to solve AUTOSAR constraints for validly deploy-
ing software components to ECUs. There are two primary
architectural views in AUTOSAR systems:

• The logical collaboration structure that specifies which
components that should communicate with each other
via which interfaces, and

• The physical deployment structure that captures the
capabilities of each ECU, their interconnecting buses,
and their available resources.

Historically, AUTOSAR developers have manually specified
the mapping from components in the logical view to ECUs
in the physical view via MDE deployment tools, as shown in
Figure 1. This approach worked relatively when when there
were a small number of components and ECU. Modern cars,
however, can be equipped with 80 or more ECUs and several
hundred or more software components. Simply drawing ar-
rows from 160 components to 80 ECUs is tedious. Moreover,
many requirements constrain which ECUs that can host cer-
tain components, including the amount of memory required
to run, CPU power, programming language, operating sys-
tem type and version, etc. These constraints must be con-
sidered carefully when deciding where to deploy a particu-
lar component. The problem is further exacerbated when
developers consider the physical communication paths and
aspects, such as available bandwidth in conjunction with
periodical real-time messaging.

The remainder of this paper how the AUTOSAR MDE tool
we developed helps automate the mapping of software com-
ponents to ECUs in AUTOSAR models without violating
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Figure 1: Mapping from the logical collaboration to

the physical deployment structure

the known constraints. The following sections describe our
approach and show how MIGs can significantly reduce the
complexity of creating AUTOSAR deployment models.

3. DOMAIN-SPECIFIC MODEL INTELLI-
GENCE

Based on the challenges related to the AUTOSAR example
presented in Section 2, the goals of our work on MIGs are
to (1) specify an approach for guiding modelers from par-
tially specified models to complete and coorrect ones and (2)
automate the completion of partially specified models using
information extracted from domain constraints.

In previous work [9, 8], we showed how MDE tools and
DSMLs can improve the modeling experience and bridge the
gap between the problem and solution domain by introduc-
ing domain-specific abstractions. At the heart of these ef-
forts is the Generic Eclipse Modeling System (GEMS), which
provides a convenient way to define the metamodel, i.e., the
visual syntax of the DSML. Given a metamodel, GEMS au-
tomatically generates a graphical editor that enforces the
grammar specified in the DSML. GEMS provides convenient
infrastructure (such as built-in support for the Visitor pat-
tern[5]) to simplify model traversal and code generation. We
used GEMS as the basis for our MIGs AUTOSAR deploy-
ment modeling tool and our work on domain-specific model
intelligence.

3.1 Domain Constraints as the Basis for Auto-
matic Suggestions

A key research challenge was determining how to specify the
set of model constraints so they could be used by MIGs not
only to check the correctness of the model, but also to guide
users through a series of model modifications to bring it to
a state that satisfies the domain constraints. We considered
various approaches for constraint specification language, in-



cluding Java, the Object Constraint Language (OCL), and
Prolog. To evaluate the pros and cons of each approach,
we implemented our AUTOSAR deployment constraints in
each of the three languages.

As a result of this evaluation, we selected Prolog since it pro-
vided both constraint checking and model suggestions. In
particular, Prolog can return the set of possible facts from a
knowledge base that indicate why a rule evaluated to “true.”
The declarative nature of Prolog significantly reduced the
number of lines of code written to transform an instance of
a DSML into a knowledge base and to create constraints (its
roughly comparable to OCL for writing constraints). More-
over, Prolog enables MIGs to derive sequences of modeling
actions that converts the model from an incomplete or in-
valid state to a valid one. As shown in Section 1, this capa-
bility is crucial for domains, such as deployment in complex
DRE systems, where manual model specification is infeasible
or extremely tedious and error-prone.

The remainder of this section describes how Domain Intelli-
gence Generation (DIG) uses Prolog and GEMS to support
the creation of customizable and extensible domain-specific
constraint solver and optimization frameworks for MIGs.
Our research focuses on providing modeling guidance and
automatic model completion, as described below.

3.2 Modeling Guidance on-the-fly
To provide domain-specific model intelligence, an MDE tool
must capture the current state of a model and reason about
how to assist and guide modelers. To support this function-
ality, MIGs use a Prolog knowledge base format that can be
parameterized by a metamodel to create a domain-specific
knowledge base. GEMS metamodels represent a set of model
entities and the role-based relationships between them. For
each model, DIG populates a Prolog knowledge base using
these metamodel-specified entities and roles. For each en-
tity, DIG generates a unique id and a predicate statement
specifying the type associated with it.

In the context of our AUTOSAR example, a model is trans-
formed into the predicate statement component(id), where
id is the unique id for the component. For each instance of a
role-based relationship in the model, a predicate statement
is generated that takes the id of the entity it is relating and
the value it is relating it to. For example, if a component
with id 23 has a TargetHost relationship to a node with id
25 the predicate statement targethost(23,25) is generated.
This predicate statement specifies that the entity with id
25 is a TargetHost of the entity with id 23. Each knowl-
edge base generated by DIG provides a domain-specific set
of predicate statements.

The domain-specific interface to the knowledge base pro-
vides several advantages over a generic format, such as the
format used by a general-purpose constraint solver like for
exampl CLIPS. First, the knowledge base maintains the
domain-specific notations from the DSML, making the for-
mat more intuitive and readable to domain experts. Sec-
ond, maintaining the domain-specific notations allows the
specification of constraints using domain notations, thereby
enabling developers to understand how requirements map
to constraints. Third, in experiments that we conducted,

writing constraints using the domain-specific predicates pro-
duced rules that had fewer levels of indirection and thus
outperformed rules written using a generic format. In gen-
eral, the size of the performance advantage depended on the
generality of the knowledge base format. To access prop-
erties of the model entities, the predicate syntax presents
the most specific knowledge base format. Given an entity
id and role name, the value can be accessed with the state-
ment role(id,Value), which has exactly zero or one facts that
match it.

Based on this domain-specific knowledge base, modelers can
specify user-defined constraints in form of Prolog rules for
each type of metamodel relationship. These constraints se-
mantically enrich the model to indicate the requirements of
a correct model. They are also used to automatically deduce
the sets of valid model changes to create a correct model.

For example, consider the following constraint to check if a
node (ECU) is a valid host of a component:
is a valid component targethost(Comp, Nodes). It can be
used to both check a Component/Node combination (e.g.,
is a valid component targethost(23,[25]).) and to find valid
Nodes that can play the TargetHost role for a particular com-
ponent (e.g.,
is a valid component targethost(23, Nodes).). The latter ex-
ample uses Prolog’s ability to deduce the correct solution,
i.e., the Nodes variable will be assigned with the list of all
constraint-valid nodes for the TargetHost role of the spec-
ified component. This example illustrates how constraints
can be used to check and to generate the solution, if one
exists.

Figure 2 shows how dynamic suggestions from Prolog are
presented to modelers. The upper part of the figure shows

Figure 2: Highlighting valid target host

the fragment of the metamodel that describes the Deploy-
ment relationship between Component and Node model en-
tities. The lower part of the picture shows how the gen-
erated editor displays the corresponding entity instances.
This screenshot was made at the moment a modeler had be-
gun dragging a connection begining from the “ABS” compo-



nent. The rectangle around “Host10” labelled “Valid Tar-
getHost” is drawn automatically as a result of triggering
the corresponding solver rule and receiving a valid solution
as feeback. GEMS also can also trigger arbitrary Prolog
rules from the modeling tool and incorporate their results
back into a model. This mechanism can be used to solve
for complete component to ECU deployments and automat-
ically add deployment relationships based on a (partially)
complete model.

To enable modeling assistance, different subsystems must
collaborate within the modeling environment. It is the re-
sponsibility of the modeler (or MDE tool creator) to provide
the set of constraints and supply solvers for new constraint
types. The GEMS metamodel editor updates the knowl-
edge base and incorporates the new rules into the generated
MIG. User-defined solver(s) can be based on existing Pro-
log algorithms, the reusable rules generated by GEMS, or a
hybrid of both. Solvers form the core of the basic MIG gen-
erated by GEMS. Below we describe the solver we developed
for completing partially specified models in our AUTOSAR
deployment tool.

3.3 Model Completion Solvers
Using a global deployment (completion) solver, it is possi-
ble to ask for the completion of partially specified models
constrained by user-defined rules. For example, in the AU-
TOSAR modeling tool, the user can specify the components,
their requirements, the nodes (ECUs), and their resources
and ask the tool to find a valid deployment of components
to nodes. After deploying the most critical components to
some nodes by using MIGs step-wise guidance, modelers can
trigger a MIG global deployment solver to complete the de-
ployment. This solver attempts to calculate an allocation
of components to nodes that observes the deployment con-
straints and update the connections between components
and nodes accordingly. This global solver can aim for an op-
timal deployment structure by using constraint-based Prolog
programs or it could integrate some domain-specific heuris-
tics, such as attempting to find a placement for the compo-
nents that use the most resources first.

In some cases, however, the modeled constraints cannot be
satisfied by the available resources. For example, in a large
AUTOSAR model, a valid bin-packing of the CPU require-
ments for the components into EPUs may not exist. In
these cases the complexity of the rules and entity relation-
ships could make it extremely hard to deduce why there is
no solution and how to change the model to overcome the
problem. For such situations, we developed a solver that
can identify failing constraints and provide suggestions on
how to change the model to make the deployment possible.

4. CASE STUDY: SOLVING AUTOSAR DE-
PLOYMENT PROBLEM

To validate our DIG MDE tool, we created a DSML for
modeling AUTOSAR deployment problems. This DSML
enables developers to specify partial solutions as sets of com-
ponents, requirements, nodes (ECUs), and resources. A fur-
ther requirement was that the MIGs should produce both
valid assignments for a single component’s TargetHost role
and global assignments for the TargetHost role of all com-

ponents. In the automotive domain certain software compo-
nents often cannot be moved between ECUs from one model
car to the next due to manufacturing costs, quality assur-
ance, or other safety concerns. In these situations, develop-
ers must fix the TargetHost role of certain components and
allow MIGs to solve for valid assignments of the remaining
unassigned component TargetHost roles.

For the first step, we created a deployment DSML meta-
model that allows users to model components with arbitrary
configuration and resource requirements and nodes (ECUs)
with arbitrary sets of provided resources. Each component
configuration requirement is specified as an assertion on the
value of a resource of the assigned TargetHost. For example,
OSVersion > 3.2 would be a valid configuration constraint.
Resource constraints were created by specifying a resource
name and the amount of that resource consumed by the
component. Each Node could only have as many compo-
nents deployed to it as its resources could support. Typical
resource requirements were the RAM usage and CPU usage.

Each host can provide an arbitrary number of resources.
Constraints comparisons on resources were specified using
the <, >, -, and = relational operators to denote that the
value of the resource with the same name and type (e.g., OS
version) must be less, greater, or equal to the value specified
in requirement. The “-” relationship indicates a summation
constraint, i.e., the total value of the demands on a resource
by the components deployed to the providing node must not
exceed the amount present on the node. After defining the
metamodel and generating the graphical editor for the de-
ployment DSML using GEMS, we added a set of Prolog con-
straints to enforce the configuration and resource constraint
semantics of our models.

4.1 Defining Constraints and Solvers
Our constraint rules specified that for each child requirement
element of a component, a corresponding resource child of
the TargetHost must satisfy the requirement. Our complete
configuration constraint rules are as following.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% specifying validness of a requirement-resource

% pair

requirement_resource_valid_pair(Req, Res) :-

(requirement_spec(Req, Name, ’>’),!

;

requirement_spec(Req, Name, ’<’),!

;

requirement_spec(Req, Name, ’=’)

),

resource_spec(Res, Name, ’=’).

requirement_to_resource(Req, Host, Res) :-

requirement(Req),

resource_to_node(Res, Host),

requirement_resource_valid_pair(Req, Res).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% configuration requirement resource solver

comparevalue(V1,V2,’>’) :- V1 > V2.

comparevalue(V1,V2,’<’) :- V1 < V2.

comparevalue(V1,V2,’=’) :- V1 == V2.



requirement_resource_constraint(Req, Res) :-

requirement(Req),

self_type(Req, Type),

(Type = ’<’ ; Type = ’>’ ; Type = ’=’),

!,

resource(Res),

self_value(Res, ResValue),

self_value(Req, ReqValue),

comparevalue(ResValue, ReqValue, Type).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% local role base component targethost

% relationship solver

is_a_valid_component_targethost(Owner, Value) :-

( self_targethost(Owner, [Value]), ! %deployed

;

(is_a(Value,node),

self_requires(Owner, Requirements),

forall( member(Req,Requirements)

,

(requirement_to_resource(Req, Value, Res),

requirement_resource_constraint(Req, Res))

) ) ).

These lines of code are the entire solution, providing not
only configuration constraint checking for an arbitrary set
of requirements and resources but also enabling domain-
specific GEMS editors to provide valid suggestions for de-
ploying a component. Moreover, this solution was intended
as a proof-of-concept to validate the approach and thus
could be implemented with even fewer lines of code. The
rest of the required predicates to implement the solver were
generated by GEMS.

In our experiments with global solvers, Prolog solved a valid
global deployment of 900 components to 300 nodes in ap-
proximately 0.08 seconds. This solution met all configura-
tion constraints.

The rules required for solving for valid assignments using re-
source constraints were significantly more complicated since
resource constraints are a form of bin-packing (an NP-Hard
problem). We were able to devise heuristic rules in Prolog,
however, that could solve a 160 component and 80 ECU
model deployment in approximately 1.5 seconds and an en-
tire 300 component and 80 ECU deployment, a typical AU-
TOSAR sized problem, in about 3.5 seconds. These solu-
tion times are directly tied to the difficulty of the problem
instance. For certain instances, times could be much higher,
which would make the suggestive solver from Section 3 dis-
cussed in the previous section applicable. In cases where
the solver ran too long, the suggestive solver could be used
to suggest ways of expanding the underlying resources and
making the problem more tractable.

5. RELATED WORK
Many complex modeling tools are available for describing
and solving combinatorial constraint problems, such as those
presented in [2, 6, 4]. These tools provide mechanisms for
describing domain-constraints, a set of knowledge, and find-
ing solutions to the constraints. These tools, however, are
not designed to generated domain-specific solvers based on a

metamodel. These tools also do not support the generation
of a DSML graphical environment and integrated graphical
suggestions. In contrast, our domain-specific model intel-
ligence, based on GEMS, is automatically integrated with
any DSML tool generated from a GEMS metamodel.

Decision support systems are similar to the domain-specific
model intelligence approach proposed in this paper. In [1],
Achour and all propose a modeling tool based on the Uni-
fied Medical Language System (UMLS), to create knowledge
bases for diagnosing and treating diseases. Both their UMLS
approach and our approach attempt to glean domain knowl-
edge and constraints from an expert and simplify users abil-
ities to find the correct solution to a partially specified prob-
lem. Their approach, however, differs significantly from our
approach in several ways. First, our approach is designed
to facilitate the creation of decision support systems for any
domain-specific modeling language. In particular, MIGs are
not limited solely to decision tree type guidance but also
complex analysis and optimizations specified by users. Sec-
ond, MIGs are automatically generated from a metamodel
and integrated with a graphical modeling tool via GEMS,
which supports the creation of graphical modeling tools with
integrated modeling decision support for arbitrary domains.

6. CONCLUDING REMARKS
The work presented in this paper addresses scalability prob-
lems of conventional manual modeling approaches. These
scalability issues are particularly problematic for domains
that have large solutions spaces and few correct solutions.
In such domains, it is often infeasible to create correct mod-
els manually, so constraint solvers are therefore needed.

Turning a DSML instance into a format that can be used
by a constraint solver is a time-consuming task. Our DIG
MDE tool generates a domain-specific constraint solver that
leverages a semantically rich knowledge base in Prolog for-
mat. It also allows users to specify constraints in declarative
format that can be used to derive modeling suggestions.

In future work, we plan to continue our development of tem-
platized solver-frameworks for modeling tools and incorpo-
rate new types of constraint solvers into the framework. We
plan to investigate the use of both automatic control and
monitoring of running systems using domain-specific model
intelligence and human-assisted monitoring and control. Fi-
nally, we intend to extend our infrastructure to allow other
types of constraint solving platforms, such as bin-packing
solvers written in C, to be integrated into a GEMS-based
modeling environment.

GEMS and the MIGs generation framework is an open-
source project available from:
http://www.sf.net/projects/gems.
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