
Design Considerations in Developing a Mobile
Application for Scalable and Decentralized

Publish/Subscribe-based Weather Alert System

Violetta Vylegzhanina David Harmon Brett Aniruddha Gokhale
Dept of EECS, Vanderbilt University, Nashville, TN 37235, USA
{violetta.vylegzhanina,david.h.brett,a.gokhale}@vanderbilt.edu

Abstract
This paper describes our experience developing a mobile, cloud-
based weather alert system, which was motivated by the need to
overcome the limitations in an existing, centralized severe weather
warning system at Vanderbilt University. We faced different design
choices, integration challenges and a substantial learning curve in
realizing a decentralized, scalable, and easy-to-use solution. In our
solution, Android devices in the vicinity of the hazardous weather
event can post timely data to a server, including the approximate
location of the severe weather incident, and where the server, in
turn, can distribute messages scalably to relevant Android devices
that are in the potential path of the weather incident. Although, the
use case for this research was severe weather alerting, the basic
patterns and design choices used in the mobile application design
can be used in many other related scenarios.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Architectures; C.2.4 [Computer Communication Networks]:
Distributed Systems

General Terms Design, Management

Keywords Mobile app; real-time weather alert; Android; decen-
tralized and scalable; design considerations.

1. Introduction
The work presented in this paper is motivated by the limitations we
observed with an existing severe weather warning system at Van-
derbilt University, which is a centralized solution that sends out
weather notifications to all users who are registered with the sys-
tem. There are major limitations with this solution. First, the cen-
tralized nature of the system adversely impacts scalability. Second,
because alerts are sent to all registered users, a user who is currently
not in the vicinity of hazardous weather may still receive an alert,
thereby resulting in false alarms for that user.

The purpose of our research was thus to overcome the limita-
tions in the existing weather warning system by investigating a so-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobileDeli ’13, Oct 28, 2013, Indianapolis, IN, USA.
Copyright c© 2013 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

lution that will be decentralized, scalable, and easy-to use as well
as provide real-time notifications while minimizing false alarms.

Given the proliferation of mobile devices, it was appropriate
for us to design a mobile app-based solution. Due to multiple
integration challenges we faced and described in this paper, we did
not consider a multi-platform solution yet. Instead, our solution is
built on the Android platform. In our solution, Android devices that
are in the proximity of the severe weather have the ability to post
the approximate location of a severe weather to a server, which in
turn distributes the messages scalably to selected devices that are
in the path of the severe weather event, and eliminate false alarms.

This paper makes the following contributions.

• It focuses on describing our design, the choices we faced in
the design decisions, the challenges we faced in integrating
different technologies, and the learning curve we incurred in
understanding the different technologies.

• It illustrates the key issues prevalent in the development and
maintenance lifecycle of mobile application development.

• It alludes to the inherent patterns of mobile app development
for distributed and cloud-based mobile applications.

The rest of the paper describes the architecture and individ-
ual building blocks of our solution, and is organized as follows.
Section 2 provides an overview of the architecture; Section 3 dis-
cusses the design considerations for a location service focusing
on the Android location service and comparing it with other lo-
cation providers, describes Android location API components, and
the method used to determine a device’s current location; Section 4
discusses the design considerations for a cloud-based mobile de-
vice notification service focusing on the configuration of Google
Cloud Messaging [6] that allows a server to distribute weather no-
tifications to Android devices; Section 5 describes the need for a
web service focusing on the configuration of a web server to al-
low Android devices to post information to the server; Section 6
discusses the improvements needed to the solution after integrat-
ing the different pieces; and finally Section 7 presents concluding
remarks and lessons learned.

2. System Architecture
This section provides an overview of our mobile application ar-
chitecture for distributed, decentralized and scalable cloud-based
mobile application for real-time weather alert. Figure 1 illustrates
the overall architecture of our system. The dissemination pattern
reflects how a weather warning alert will be distributed to the rel-
evant users who must be informed of the impending weather event
in real-time.

Figure 1. Architecture of Mobile Applications-based Severe
Weather Alert System

As shown in the figure, Android devices register with a Google
Cloud Messaging (GCM) server (Step 1), which returns an ID to the
device (Step 2). The device then sends an ID to a web service (Step
3), which stores an ID in the database (Step 4). These four steps
are necessary for the system to work. Android devices could then
send geographic coordinates, representing an approximate location
of a severe weather to a web service, which will also be stored in
a database. The web service, in turn, sends the message containing
information about the location of a hazardous weather to the GCM
server. The web service also sends a list of registration IDs of the
devices to GCM server; this helps to identify the devices that will
receive the message. The GCM server then distributes the message
to all relevant Android devices.

3. Design Considerations for a Location Service
Android’s location service provides access to facilities that can be
used to determine a device’s location [18]. A location service is
needed because our solution must eliminate false alarms and allow
devices to send their geographic coordinates to a server. These
facilities are discussed below, including an explanation of how we
have used these in our solution.

3.1 Choice of Location Providers
Android’s location service provides access to location providers
that can be used to determine a device’s location. A device’s ge-
ographic location can be determined using either a Global Posi-
tioning System (GPS) provider or a Network provider. The charac-
teristics, advantages, and limitations of each are described below.

3.1.1 GPS provider
GPS is useful in determining the current location, but it has some
limitations, especially in mobile platforms, such as the time it can
take to calculate the current position. To help circumvent some
drawbacks of standard GPS, modern mobile devices make use of
the following enhancements.
• Assisted GPS (A-GPS): A-GPS uses the mobile network to

transmit the GPS information to a mobile device, thus allowing
for faster transmission of information from satellites and a faster
determination of a device’s current geographic location.
• Simultaneous GPS (S-GPS): Devices that use standard GPS

may use the same hardware to communicate with GPS satellites
and make calls. Hence, only one of these actions can take place at a
time. S-GPS adds an additional hardware component to a mobile

device, which allows GPS radio and the cellular network radio
to operate simultaneously. Considering GPS improvements, some
limitations still exist. GPS receivers are unlikely to work indoors
and may produce erroneous results in urban areas because GPS
signals frequently bounce off of tall buildings.

3.1.2 Network Provider
A network provider can provide location information using wire-
less network information or cell towers, as described below.

• Wireless Network Access Points: Wi-Fi-based location detec-
tion works by having a device track what Wi-Fi access points it
can detect and the current strength of those signals. The device
can then make a query to the Google location service, which
provides location data based on Wi-Fi information. One of the
main benefits of the Wi-Fi location source is that it allows de-
vices to acquire location information in areas where GPS cannot
provide location data. Yet, Wi-Fi networks as a source of loca-
tion data pose several limitations. First, Wi-Fi networks must
be in range. Second, the networks must have a publicly broad-
casted service set identifier (SSID) that has not been configured
to be ignored by Android. Third, changes to the location of Wi-
Fi access points can cause inaccuracies in the location data.

• Cell IDs: The cellular network is used in a similar way as Wi-
Fi access points to determine a device’s location. To function
properly, a cellular device must be in contact with a cell tower.
Knowing the unique ID of the tower that a device is currently
connected to, and possibly the towers that a device was previ-
ously connected to, can explain where the device is located. Cell
ID-based network provider possesses limitations similar to that
of Wi-Fi-based provider, but because the location of cell tow-
ers is less likely to change than the location of wireless access
points, some complications are removed.

Table 1 compares the discussed location providers in terms of
the accuracy and the device’s battery consumption of each. We will
explain which provider we chose to use in our solution further in
the paper.

Location Battery Accuracy
Provider Consumption
GPS
Provider

Consumes more battery
power than the Network
provider

Provides the most
accurate location
data

Net-
work
Provider

Consumes less battery
power than the GPS
provider

Provides less
accuracy than the
GPS provider

Table 1. Comparison of Location Providers and Key Design Con-
siderations

3.2 Android Location API Components
Before we could use the Android location service in our appli-
cation, we had to become familiar with the available tools. The
majority of the classes needed when working with location data
are found in the android.location package. The four most
important classes are LocationManager, LocationProvider,
Location, and Criteria, and a LocationListener interface
described below. Figure 2 illustrates the collaboration between
these entities.

1. LocationManager: This class allows an application to tell a de-
vice when it is interested in receiving updated location informa-
tion and when it no longer wants updates. It also provides infor-
mation about available location providers, enabled providers,
and GPS status information.

2. LocationProvider: This class acts as an abstraction for the dif-
ferent sources of location information in Android. Although
each provider generates location data differently, they all com-
municate with an application in the same way and provide sim-
ilar data to an application.

Figure 2. Android Location API Collaboration

3. Location: This class encapsulates the actual location data pro-
vided to an application from a location provider. The location
data includes latitude, longitude, and altitude.

4. Criteria: This class queries the LocationManager for location
providers that contain certain characteristics, such as how accu-
rate is the location data. Using a Criteria object is useful for
allowing a user to customize the source of location data at run
time.

3.3 Determining a Device’s Location
The Android location service is most often used in applications that
perform the following operations: determining a device’s current
location, tracking a device’s movement, or firing a proximity alert
when a device enters or leaves a user-defined area. For the purposes
of our solution, the application simply needs to detect a device’s
current location when a user sees an impending hazardous weather
event. Hence we used the appropriate methodology described be-
low.

The location service requires an application to declare its in-
tentions to use it in the Android manifest file. We chose to use
the GPS provider in our solution because it provides the most
accurate information, and its battery consumption could be less-
ened by disallowing location updates when they are not needed.
Moreover, people who are outdoors are the ones who must be
alerted even earlier to get inside to avoid the weather event. Since
they are outdoors, the likelihood of them receiving a GPS sig-
nal is higher. In order to use GPS location provider, we declared
the ACCESS FINE LOCATION permission in the manifest file, rather
than the ACCESS COARSE LOCATION permission, which provides
a more accurate location data. For a different application, such as
earthquake alerting, a Wi-Fi-based solution may be preferred.

The implementation of a LocationListener interface re-
quired the Android application to contain the following four meth-
ods:

• The onLocationChanged (Location location) method,
which is called when a new location is ready for consumption
by an application. The parameter to this method is a Location
object that contains the details about the location. We imple-
mented this method to retrieve the latitude and the longitude of
the device’s location via the location.getLatitude() and
location.getLongitude() method calls.

• The onProviderEnabled (String provider) method that
provides a way for an application to be notified when a user
enables a location provider.

• The onProviderDisabled (String provider) method
that provides a way for an application to be notified when a
user disables a location provider.

• The onStatusChanged (String provider, int status,
Bundle extras) method, which is called when a provider ei-
ther goes offline or comes back online.

We created a class in the main activity of the Android applica-
tion that implements the LocationListener interface. To obtain
a reference to the LocationManager class, which is the “front
door” into the location service, the application makes a call to the
Activity.getSystemService (LOCATION SERVICE) in the
onCreate()method. The application calls the LocationManager-
.requestLocationUpdates (String provider, long min-
Time, float minDistance, LocationListener listener)
method so that it could be provided with location information.

Since we chose to use a GPS provider, we pass LocationMana-
ger.GPS PROVIDER as the first parameter to the method. Finally,
and just as importantly, the application unregisters the location
listener when it no longer needs location updates. This is done
with the LocationManager.removeUpdates(this) call in the
onPause() method of the main activity. Forgetting to do so could
cause the provider and underlying hardware to remain active, thus
wasting battery life.

4. Design Considerations for a Cloud-based
Notification Service

Our solution needed a capability that could handle real-time no-
tifications to mobile devices – essentially a publish/subscribe ca-
pability – and that too a scalable solution. One choice was for
us to develop a solution ourselves, however, that would have re-
sulted in reinventing capabilities that already exist. Hence, we
first explored the available solutions in this space. To that end
we identified Google Cloud Messaging (GCM) [6] as an appro-
priate choice because interfacing with Android devices was easier.
GCM is Google’s replacement for its Cloud to Device Messaging
(C2DM) protocol [12]. GCM is a service that allows a server to
send data to Android devices; hence we incorporated GCM into
our solution. Below, we describe the steps taken to configure the
GCM capability in the solution.

4.1 Enabling GCM
We created a Google API Project at the Google API console page
(https://code.google.com/apis/console), where we en-
abled the GCM service to be used in our project. We also received
a project ID, which will be used in the application implementa-
tion, and a browser key that will be used in the server implemen-
tation. Before we could proceed with the application and server
development, GCM helper libraries were installed. This created a
gcm directory under <SDK ROOT>/extras/google, which con-
tains the gcm-client, gcm-server, and other subdirectories. These
libraries aid in the development of Android and server-side appli-
cations. These helper libraries are only one option for creating an
Android application that uses GCM. Another alternative is to use
GoogleCloudMessaging API, which was added later by Google.

4.2 Writing the Android Client Application
We continued to enhance our existing application that retrieved
a device’s location as described before with GCM features. The
gcm.jar file was copied from the gcm-client/dist directory to the

application’s classpath. Several permissions were added to the An-
droid manifest file:

• A custom permission that allows only the given application to
receive GCM messages.

• A permission that allows the application to receive GCM mes-
sages in general.

• A permission that allows GCM to connect to Google Services.
• A permission asking for GCM to require a Google account.

The GCMBroadcastReceiver [4] was also added to the man-
ifest file; it is responsible for handling the Receive and the Reg-
istration intents that can be sent by GCM. It should be defined
in the manifest, rather than programmatically, so that the in-
tents can be received even if the application is not running. The
GCMIntentService, which is an application-provided subclass
of GCMBaseIntentService, was also declared in the manifest.
This service will be called by the GCMBroadcastReceiver class,
which is provided by the GCM library.

In the following we describe the four classes of the application.
Figure 3 illustrates the collaboration between these four classes.

Figure 3. GCM Class Collaboration

1. MainActivity.java: This class stores the URL of a web service
as a string (the configuration of a web service will be described
in later sections). The registration of a device with GCM is usu-
ally done during the onCreate() method, so we implemented the
appropriate call there: the registerClient() method checks
the current device via GCMRegistrar(Context c) call, the
manifest for the appropriate rights via the GCMRegistrar.chec-
kManifest(Context c) call, and then receives a registration
ID from the GCM cloud via the GCMRegistrar.getRegistr-
ationId(Context c) call. If there is no registration ID,
meaning that the device has not yet been registered with
GCM, the GCMRegistrar will register the device for the project
by calling GCMRegistrar.register (Context c, string
webServiceURL) and return the ID by calling the getRegist-
rationId() method, described above. The registration ID
would then be automatically sent to the web server, so that
the server would know which devices to communicate the mes-
sages to (described further).

2. GCMIntentService.java: This class is responsible for handling
GCM messages. It extends GCMBaseIntentService and over-
rides the following important methods.

(a) onRegistered(Context c, String rID): This method
is called when a device registers with GCM. It calls a

method in the ServerUtilities class, ServerUtilities.re-
gister(Context c, string rID), which will send the
device’s ID to the web service.

(b) onUnregistered(Context c, String rID): This method
is called after a device has been unregistered from GCM.

(c) onMessage(Context c, Intent i): This method is
called when a new message is received from a web service.
We implemented the method to retrieve the message from
the intent, passed as a parameter, and issue a notification to
inform the user about the received message. Additionally,
we update the user interface with the new information.

(d) onError(Context c, String e): This method is called
when a device tries to register or unregister, but GCM re-
turns an error. We simply print the message to a log file.

3. ServerUtilities.java: This class is intended to communicate
with the web server when a device registers or unregisters with
GCM. Therefore, it contains the following methods.

(a) post (String URL, Map<String, String> params):
This method posts a device’s registration ID to the web
server by doing a HTTP POST request.

(b) register(final Context c, final String rID):
This method sends a device’s registration ID to the web
server by calling the above described post() method and
passing the URL of a server that handles the storage of the
ID, and the map of name/value pairs representing parame-
ters to be posted to the server. In our case, the map contains
the “regID” name that serves as a tag for the actual regis-
tration ID value. If a registration ID is sent successfully, the
method calls the GCMRegistrar.setRegisteredOnServ-
er(c, true) to assert that an ID was sent.

(c) unregister(final Context c, final String rID):
This method calls the post() method, passing the URL of
a server that handles the removal of the ID from the server.

4. CommonUtilities.java: This class is a helper class that provides
constants such as server URL, Sender ID, intent constant to
display a message on a screen, and the name for the message
to be displayed used as a tag in intent’s extra. It also defines a
method that notifies UI to display a message. These constants
and the method are needed in other classes of the application.

5. Design Considerations for a Web Service
Note that GCM is just a messaging capability that can handle large-
scale notifications to mobile devices. However, it cannot by itself
understand the semantics of a weather alert nor can it know whom
to notify. This and any other information, in case of applications
with different purposes, must be provided through external means,
and that is why GCM requires a 3rd party web server. To that end
we developed a cloud-based server that can track all the registered
devices and current alerts.

In order to write a server-side application hosted in the cloud for
our solution, we created an Amazon EC2 Instance using Amazon
Web Services [1, 16]. The Amazon EC2 Instance runs Linux 3.4.
We installed Apache HTTP Server [2, 15] to create the required by
GCM 3rd party web server, MySQL [7, 14] to have a relational
database management system, and PHP [13] to run server-side
scripts to interact with the MySQL database. The MySQL database
will help our server to track and use important for our solution
information, such as the registered devices’ IDs and current alerts.

5.1 MySQL Database
We created a ”gcm” database that contains two tables: ”data” and
”gcm users”. The ”gcm users” table stores GCM registration IDs
of registered devices and the timestamp indicating the time when
those IDs were saved on the server. The ”data” table stores the
approximate latitude and longitude of a severe weather event, as
well as the registration ID of a device that posted the location
information to a server, and the timestamp when the data was saved.

5.2 Server-side Programming
We created several PHP files to handle a device’s registration on
a server, an automatic receiving of an incoming notification, and
a dissemination of the message to other registered devices. The
purpose and implementation of each class defined in the PHP file
is described below.

• db connect.php: This file defines a DB Connect class that con-
tains connect() and close() functions to open a connection
to a database and close it, respectively. The connect() func-
tion uses a mysql connect(server, user, password)
PHP function to connect to a server, and the mysql select db-
(database) to select the corresponding database. It then re-
turns a database handler to the caller. The close() function
calls mysql close() PHP function to close the database con-
nection.

• db functions.php: This file defines a DB Functions class
that implements functions, which perform database queries.
The constructor of the class contains code to connect to a
database using functions from the file db connect.php. The
storeUser($regID) function takes a device’s GCM regis-
tration ID as a parameter and uses the mysql query(query)
PHP function to insert the ID into the “gcm users” database
table. The storeData($latitude, $longitude, $regID)
function takes the location of a severe weather event in terms of
latitude and longitude, and a device’s registration ID as param-
eters and inserts the given information into the “data” table of
the database along with a timestamp.

• GCM.php: This file has a class GCM that takes care of send-
ing push notifications to Android devices. It contains the
send notification($registration ids, $message) func-
tion that handles the transmission of a message. It defines a
URL of a GCM server where the message should be sent, an
associative array ’fields’, an abstract data type composed of
a collection of unique key/value pairs, containing registration
IDs and the message, and an associative array ’headers’ con-
taining the Google API Key and the JSON format content-type
specification that will be used for the HTTP header.
The function then initializes the cURL via curl init() PHP
function. cURL is a library that lets one to make HTTP
requests in PHP [8]. It is important in our solution since
we are trying to make a HTTP request to the GCM server.
The function then sets the URL via the curl setopt(curl
instance, CURLOPT URL, url) PHP function. It then calls
curl setopt(curl instance, CURLOPT POST, true) to
define a regular HTTP POST to the GCM server. The curl set-
opt(curl instance, CURLOPT HTTPHEADER, headers)
sets an array of HTTP header fields. The curl setopt(curl
instance, CURLOPT RETURNTRANSFER, true) function al-
lows the transfer to return as a string of the return value
of curl exec() instead of outputting it out directly. The
curl setop(curl instance, CURLOPT POSTFIELDS, js-
on encode(fields)) function sets the data, formatted as
JSON, to post in an HTTP POST operation to a GCM server.
The POST request is finally executed using the curl exec(curl

instance), and the connection is closed via curl close(curl
instance).

• register.php: This file handles the registration of a device on a
server. As mentioned earlier, upon a registration with a GCM
server, a device receives a GCM registration ID, which is then
sent automatically to our server. The code in register.php
checks if the POST request to our server contains the regis-
tration ID via isset($ POST[‘‘regID’’]), where “regID”
is the name that distinguishes the registration ID value. We
used this name as a tag in the Android app when we cre-
ated a map of name/value pairs to be used as a parameter
in the POST request to our server, where the name was the
“regID” and the value was the actual registration ID. There-
fore, if the POST request contains the registration ID, ’reg-
ister.php’ then stores this ID in the ’gcm users’ database
table via the storeUser(regID) function, defined in the
db functions.php class. It then creates an array contain-
ing the registration ID, and an associative array containing a
message, signifying a successful registration. These arrays are
the passed to the send notification(registration IDs,
message) function of the GCM.php class, which notifies the
device of a successful registration.

• store location.php: This file contains PHP code that receives
a latitude, a longitude, and a registration ID data in a simi-
lar way the code in the register.php receives a registration ID.
It then stores information in the ’data’ database table using
storeData(latitude, longitude, regID) function of
the db functions.php class. It then calls the prepare for s-
ending(latitude, longitude) function of the send mess-
age.php file (described below) to distribute severe weather
location to registered Android devices.

• send message.php: This file defines a class Send which con-
tains the prepare for sending(latitude, longitude)
function. The function performs a connection to a database and
executes a query to fetch all devices’ registration IDs from the
’gcm users’ table. The IDs are stored in an array. The function
then defines an associative array containing a message, and
finally calls the send notification(regIDs, message)
function of GCM.php to distribute the message to the regis-
tered devices.

6. System Improvements on the Mobile Device
Our earlier discussion focused on server-side and cloud-based ca-
pabilities that we introduced in our solution. We were required to
make a few enhancements on the mobile devices. When the server
we built was ready to both send and receive data, the Android ap-
plication still required the implementation of how the location data
would be sent to the server, which will be described shortly. We also
added several improvements to the Android application, which also
will be described in this section.

6.1 Posting Location Information to the Web Service
We allowed a user to send the device’s geographic coordinates
by clicking a button on the device’s screen. For example, when
a user sees an approaching severe weather event, he/she can start
the application on a smartphone, and click “Send My Coordinates”
button. The onCreate() method of the main activity monitors
when the button will be clicked via the View.OnClickListener,
which implements the onClick(View v) method that calls the
onSendButtonClicked() method. This method retrieves the cur-
rent location of a device as we discussed before, constructs an ob-
ject that will post the location data to a server in a background
thread, and calls the execute() method of that class.

The class is a private class in the main activity that handles
POST requests to the web service in the background. It extends
AsyncTask [3] which encapsulates the creation of Threads and
Handlers. It defines an array of NameValuePairs to hold parameters
to be posted to a server, such as latitude and longitude. Any class
that extends AsyncTask needs to implement the three methods,
described below.

• onPreExecute(): This method creates and shows a progress
dialog to the user while a lengthy POST operation is being
executed.

• doInBackground(String ...urls): This method performs
a lengthy operation, such as HTTP POST, in the background
thread. We generalized the method to perform both POST and
GET tasks.

• onPostExecute(String response): This method is called
after a lengthy operation has completed. It dismisses the
progress dialog and synchronizes itself with the user interface
thread.

6.2 Detecting Internet Connection
We created a ConnectionDetector.java class, which serves to
detect the Internet connection status via the Android’s Connectivi-
tyManager [5]. For this feature to work, a permission was added to
the Android manifest file that allows an application to detect the In-
ternet status. We also added an AlertDialogManager.java class
which simply shows an alert dialog, such as to inform a user when
there is no Internet connection.

The onCreate() method of the MainActivity.java calls the
isConnectingToInternet()method of the ConnectionDetector.java
class which returns a boolean result. If the Internet connec-
tion is not detected, the showAlertDialog() method of the
AlertDialogManager.java class is called in response, asking
a user to connect a device to the Internet.

6.3 Waking up a Device on Receiving a Notification
We created a WakeLocker.java class, which serves to wake up a
device on receiving a new notification if a device is sleeping [17].
A permission that allows the application to wake up a device was
also added to the Android manifest file. This is important, because
a user must receive a notification about approaching weather event
even when he or she is not using a device. Therefore, if a message is
received when a device is sleeping, the Broadcast Receiver defined
in the MainActivity.java acquires the wake lock in the main
activity via acquire() call to a WakeLocker.java class; this
wakes up the phone to show the message to a user. When a user has
been notified, the release() method call releases a wake lock.

Whether to create a Wake Lock or not is a key design consider-
ation. It can have a dramatic impact on a device’s battery life. If an
application needs Wake Locks, it is a good design practice to cre-
ate them only when necessary, and holding them for short period of
time only.

6.4 Adding a Notification Sound and Device Vibration
We allowed our application to play a custom notification sound, and
also to vibrate the device when a message is received. This design
consideration was made to better alert users when an important
notification is received.

6.5 Eliminating False Alarms
As we discussed before, one of the goals of the solution was to
disallow a user to be notified of a severe weather event if the user is
not located in the area of hazardous weather even though the device
may be registered. We described how the onMessage() method in

the GCMIntentService.java class of the Android application is
called when a new message is received from the web service. This
method retrieves the message from a parameter passed as Intent and
generates a notification to the user.

To eliminate false alarms, the method needs to get a device’s
present location as discussed previously and calculate its proximity
to the location where the hazardous weather event might occur next.
We still have to work on this improvement. The application would
need to define a radius, or even allow a user to define a radius,
around a possible hazardous weather location, such that if a user’s
device is located within the radius, a user would receive a notifica-
tion, and a user would not receive a notification if his/her device’s
location is outside the radius. This work is part of our future work
agenda. A key consideration is to understand the dynamics of the
event (since the direction of the weather event may change).

7. Conclusions and Lessons Learned
This paper described the design of a decentralized, scalable,
and easy-to-use severe weather warning system based on pub-
lish/subscribe communications and implemented as a mobile appli-
cation on Android devices, and cloud-based servers. This project
incurred a steep learning curve and integration challenges, particu-
larly for two undergraduate students who worked on this problem
as an independent study/summer research projects. The insights we
gained thus far are qualitative.

The project helped us to learn the following lessons and address-
ing current limitations forms part of our future work:

• GCM technology eliminates extra work: We learned that the
GCM technology makes it possible to eliminate the requirement
for an application to query the server for the content because
the server itself initializes the distribution of data to relevant
devices. Thus, application developers can use this insight to
avoid duplicating work.

• Patterns of reuse: Our solution could be easily adapted to work
in similar situations with minimal changes. In other words the
basic communication and integration patterns from our work
can be applied to a variety of related application problems.
However, some configuration changes are needed. For example,
currently it uses GPS provider, which gives more accurate alerts
to people who are outdoors to make them go inside to avoid
severe weather event. For an earthquake system, however, it
would be more efficient to use the Wi-Fi provider instead,
which would work better to alert people who are inside for them
to get outside. Similar other scenarios, such as app development
in alerting for flash floods, is an area we are working on to get
additional insights in documenting the patterns of reuse from
our work.

• Notification alternatives: Our solution uses Google Cloud Mes-
saging as a means for sending push notifications to Android
devices. There are other alternatives possible. For example, one
could use Urban Airship [10], which itself uses GCM to support
push notifications. It allows sending notifications both from the
Google side and the Urban Airship side. Another alternative
could be Xtify [11], which offers APIs that allow developers to
integrate push notifications within existing applications. It also
provides Location Services that allow location-triggered mes-
sages. Yet another alternative is Parse [9]. Its library provides
push notifications by running a background service that keeps
an Internet connection to the Parse Cloud.

• Dealing with accidental complexities using model-driven en-
gineering: We created our solution using an approach that
involves significant accidental complexity, and hence manual
development is error-prone. For example, when our applica-

tion calls the LocationManager.requestLocationUpdates
(String provider, long minTime, float minDistance,
LocationListener listener)method, we pass LocationM-
anager.GPS PROVIDER as the first parameter to the method to
ensure that the application uses GPS provider, and not any other
one. Such a programmatic tight coupling that is application-
dependent is the responsibility of a programmer. Any mistake
will lead to the solution becoming unreliable. Many such in-
stances may exist in a mobile application design, which con-
strains reuse and becomes a maintenance nightmare.
To overcome this problem requires configurability and automa-
tion. We concluded that it might be beneficial to automate some
of the code generation, possibly using model-driven engineer-
ing. We could, for example, use generators that analyze mod-
els and synthesize source code, thus avoiding software develop-
ment approaches that are tedious and error prone. Another situ-
ation in which model-driven engineering would be beneficial is
the declaration of permissions in the Android manifest file. Per-
missions are specific to a particular application, and the devel-
oper must be certain to include them for the application to oper-
ate properly. This could be another opportunity for automation,
where specific permissions would be auto-generated for a par-
ticular application requirements. Yet another error-prone situa-
tion is the definition of the GCMBroadcastReceiver in the mani-
fest file rather than programmatically handling intents when the
application is not running.

• Integration challenges and dealing with evolution: We also re-
alized that usage of 3rd party tools, such as Google Cloud Mes-
saging and Amazon Web Services, implies that we must cater
to their requirements and also changes, if any, they make. As
an example, before GCM, Google provided the Android Cloud
to Device Messaging (C2DM) to support push notifications
on Android devices. Now C2DM is deprecated, and develop-
ers using it are encouraged to move to GCM. Thus, there is
always a maintenance challenge and also a threat of vendor
lock-in. Model-driven engineering may be useful to abstract out
the technology- and vendor-specific details and use generative
mechanisms to synthesize glue code thereby avoiding vendor
lock-in.

• Supporting an app from app store: Our Android client applica-
tion can be made available as a downloadable application from
the App Store, which will automatically connect to the GCM
server, and our Amazon cloud server on its use. We have yet
to analyze how much our application adheres to the compli-
ance policies of Android. We were able to test the system with
a server and only a few Android devices. Experiments of large-
scale setup are needed to understand the scalability of the de-
sign. Moreover, handling the dynamics of the weather event is
another consideration we need to handle. Finally, applicability
of the design to other societal challenges needs to be studied.

Acknowledgments
We would like to thank the generous support of the EECS Depart-
ment in supporting this work. Part of the work was also supported
by NSF CAREER award 0845789 REU grant. Any opinions, find-
ings, and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

References
[1] Amazon Web Services. http://aws.amazon.com/. Accessed Aug

2013.
[2] Apache HTTP Server Project. http://httpd.apache.org/. Ac-

cessed Aug 2013.
[3] Android AsyncTask. http://developer.android.com/

reference/android/os/AsyncTask.html. Accessed Aug
2013.

[4] Android BroadcastReceiver. http://developer.android.com/
reference/android/content/BroadcastReceiver.html. Ac-
cessed Aug 2013.

[5] Android Connectivity Manager. http://developer.android.
com/reference/android/net/ConnectivityManager.html.
Accessed Aug 2013.

[6] Cloud Messaging for Android. http://developer.android.com/
google/gcm/index.html. Accessed Aug 2013.

[7] MySQL: The World’s Most Popular Open Source Database. http:
//www.mysql.com/. Accessed Aug 2013.

[8] PHP Client URL Library. http://php.net/manual/en/book.
curl.php. Accessed Aug 2013.

[9] Android Push Notifications. https://www.parse.com/
tutorials/android-push-notifications. Accessed Aug
2013.

[10] Android: Getting Started with Push. http://docs.urbanairship.
com/build/android.html. Accessed Aug 2013.

[11] xtify: Mobile Customer Engagement. http://www.xtify.com/.
Accessed Aug 2013.

[12] Android Cloud to Device Messaging Framework. https://
developers.google.com/android/c2dm/. Accessed Aug 2013.

[13] M. Achour, F. Betz, A. Dovgal, N. Lopes, H. Magnusson, G. Richter,
D. Seguy, and J. Vrana. PHP: Hypetext Processor. http://www.
php.net/manual/en/index.php. Accessed Aug 2013.

[14] P. DuBois. MySQL. Pearson Education, 2008.
[15] R. T. Fielding and G. Kaiser. The apache http server project. Internet

Computing, IEEE, 1(4):88–90, 1997.
[16] R. S. Huckman, G. P. Pisano, and L. Kind. Amazon Web Services.

Harvard Business School Case, (609-048), 2008.
[17] R. Meier. Professional Android 4 Application Development. John

Wiley & Sons, 2012.
[18] G. Milette and A. Stroud. Professional Android Sensor Programming.

John Wiley and Sons, 2012.

