Using Template Metaprogramming to Enhance
Reuse 1n Visitor-based Model Interpreters

James H. Hill
Department of Computer and Information Science
Indiana University-Purdue University Indianapolis
Indianapolis, IN USA
Email: hillj@cs.iupui.edu

Abstract—This paper discusses an approach called Metapro-
grammable Interpreters for Model-driven Engineering (MIME),
which integrates C++ meta-programming techniques into model
interpreters for domain-specific modeling languages (DSMLs).
The goal of MIME is to reduce reinvention of core model
interpretation logic across model interpreters that use the Visitor
software design pattern. Experience from applying MIME’s
approach to realistic DSMLs show it overcomes limitations
of existing Visitor-based model interpreters by (1) decoupling
interpreter-logic from generation-logic and (2) allowing devel-
opers to suppress either aspect of the model interpreter, while
promoting maximal reuse of code.

Index Terms—C++ template metaprogramming, model-driven
engineering, model interpreters, Visitor software design pattern

I. INTRODUCTION

Contemporary model-driving engineering (MDE) tech-
niques, particularly those that leverage domain-specific mod-
eling languages (DSMLs) [1], provide developers with mod-
eling notations that are closer to their domain. This makes it
easier and more intuitive to capture various artifacts of the
target domain more accurately. Furthermore, the constraints
incorporated within DSMLs enforce construction of valid
models. If models constructed using the DSML are invalid,
users are notified of such violations and they are either
corrected automatically or manually (with guidance). Tools
that facilitate contemporary MDE techniques include (but are
not limited to): Generic Modeling Environment (GME) [2],
Generic Eclipse Modeling System (GEMS) [3], Domain-
Specific Language Tools included with the Visual Studio Team
System [4].

In addition to facilitating intuitive modeling of domain-
specific concepts, MDE frameworks support model inter-
preters that provide generative capabilities to synthesize a
variety of artifacts. Different model interpreters with the
same interpretation intentions (i.e., interactions with the same
model elements in a similar fashion) can transform a single
model into different representations, such as application and
platform configurations, performance evaluation, analysis of
different system properties. For example, the platform inde-
pendent modeling languages and tools, such as CBML [5],
and V3Studio [6], contain multiple model interpreters with
the same interpretation intentions, but generate different arti-
facts to target different needs, such as opposing architectures,

Aniruddha Gokhale

Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN, USA
Emaila.gokhale @vanderbilt.edu

technologies, and tools.

Existing techniques for implementing model interpreters
simplify model interpretation as much as possible using soft-
ware design patterns [7]. A common implementation technique
used by model interpreters is implementing the interpreter
logic (i.e., how the model is traversed) using the Visitor [7]
design pattern. This enables the model interpreter to determine
how and when to interact with elements of interest. Tools such
as GEMS, GME, and Java Emitter Templates [8] apply this
implementation technique.

Although the Visitor design pattern has its advantages, ex-
perience developing Visitor-based model interpreters indicates
that it does not promote reusability for interpreters with the
same interpretation intentions [5], [8], [9]. This is primarily
because the model visitation and generation logic is tightly
coupled. When other interpreters want to reuse the interpreter
logic, it is hard to do so because the interpreter logic may not
meet its needs (i.e., the interpreter logic is immobile [10]).
This forces each interpreter developer to reinvent the core
interpreter logic.

A promising technique for promoting reuse of core model
interpreter logic is to use generative programming [11] tech-
niques. Generative programming is an attractive choice be-
cause it allows transparent alteration of core implementation
(such as source code) on a per use case basis without affect-
ing other entities that utilize the same core implementation.
Moreover, it allows developers to compose model interpreters
based on what interpreter logic features are needed.

This paper therefore investigates how generative program-
ming techniques can be used to improve the limitations of
Visitor-based model interpreters. The main contributions of
this paper are as follows:

o It describes Metaprogrammable Interpreters for Model-
driven Engineering (MIME), which is a metapro-
grammable model interpretation technique to address the
challenge of reinvent core interpreter logic in Visitor-
based model interpreters;

o It describes two contemporary approaches for developing
Visitor-based model interpreters and outlines the reasons
for reinvention manifested in these approaches; and

o It showcases how template metaprogramming can be
extended to model interpreters by capturing the correct

visitation logic and generation logic of the target DSML,
and enabling composition of model interpreters based on
what features are needed.
Experience using the MIME to implement Visitor-based model
interpreters show that it supports implementing model inter-
preters that not only promote reuse of core interpreter logic,
but can be specialized on a per use case basis, e.g., suppressing
or altering element visitation and varying generated artifacts.
Paper organization. The remainder of this paper is or-
ganized as follows: Section II discusses interpreter writing
techniques wherein we illustrate the reasons for reinvention
of the interpretation logic that use the Visitor pattern; Sec-
tion III discusses, in detail, MIME’s approach to writing
Visitor-based model interpreters; Section IV presents a case
study that illustrates MIME in the context of a real-world
example; Section V compares MIME with related research;
and Section VI provides concluding remarks.

II. REINVENTION CHALLENGES IN VISITOR-BASED
MODEL INTERPRETER DEVELOPMENT

To help illustrate the limitations of Visitor-based model
interpreters, Figure 1 illustrates an example DSML in GME for
modeling messages, such as emails. This example, however,
is not constrained to GME.

Message
==<plodel==
Pt
1 1 1
Greeting Body Signature
=<Atom== =<Atom== ==Atom==
narme : field text: field name : field

Fig. 1. Simple DSML in GME for modeling messages.

There are two primary techniques for implementing Visitor-
based model interpreters: single interpretation and strategized
interpretation. The following provides an overview of the two
approaches and their limitations in the context of reinventing
core interpreter logic.

Single Interpretation. Single interpretation is the
simplest—and sometimes the quickest—approach for writing
Visitor-based model interpreters. In single interpretation,
core interpreter logic visits (or interprets) only elements of
interest. The points in the interpreter code where visitation
occurs are called points-of-visitation. When each element
of interest is visited, the interpreter logic generates artifacts
that correspond to that particular element. The points in the
interpreter logic where an artifact is generated are called
points-of-generation.

As illustrated in Figure 2, two different interpreters

are defined for the example DSML, namely
Business_Msg_Visitor and Empty_Msg Visitor.
Both implementations use the Visitor software design

pattern for traversing models of the message DSML.
Business_Msg_Visitor, however, visits Body elements

void Visit_Message (const Message & m) {
m_greeting ().accept (*this);
m.body ().accept (*this);
m.signature ().accept (*this);

::Business_Msg_Visitor
+Visit_Message(in message) o{—|
+Visit_Greeting(in greeting)
+Visit_Body()
+Visit_Signature(in signature)Q

[
void Visit_Signature (const Signature & s) {

std::cout << "Regards," << std::endl
<< std::endl << s.name () << std::endl;

3

Empty_Msg_Visitor void Visit_Message (const Message & m) {
m.greeting ().accept (*this);

m.signature ().accept (*this);

+Visit_Message(in message) o+—
+Visit_Greeting(in greeting)
+Visit_Signature(in signature)Q T
[
void Visit_Signature (const Signature & s) {
std::cout << "Thanks," << std::endl
<< std::endl << s_.name () << std::endl;

3

Fig. 2. Conceptual model of single interpreter’s implementation.

of the DSML while Empty_Msg_Visitor ignores
Body elements. Business_Msg_Visitor, therefore,
has three points-of-visitation (i.e., Visit_Greeting,
Visit_Body, and Visit_Signature); whereas,
Empty_Msg_Visitor has two points-of-visitation. In
addition, both interpreters have the same number of points-
of-generation as the number of points-of-visitation. All
visit methods (i.e., Visit_+ methods) represent reinvented
interpreter logic in both implementations.

The main advantage of single interpretation model in-
terpreters is that each interpreter contains efficient model
traversing logic (within the limits of the Visitor design pattern)
because it visits only elements of interest. The drawback of
this approach is that each interpreter has to reinvent the core
traversing logic, e.g., Visit_Message, since each inter-
preter implements a different generation logic (i.e., generates
different artifacts) at each point-of-generation.

Strategized Interpretation. Strategized interpretation is an
implementation technique that partially addresses the chal-
lenge of reinvention in core interpretation logic when targeting
multiple metadata formats. In strategized interpreters, devel-
opers use the Strategy [7] design pattern to implement a base
class that contains points-of-generation as methods. The core
interpreter logic is then implemented in terms of the base
strategy class. Each model interpreter implements concrete
classes derived from the base strategy that override the points-
of-generation to generate the appropriate metadata. Lastly, the
concrete class is used to strategize the core interpreter logic
implemented in terms of the base strategy class.

As illustrated in Figure 3, the Dbase class
Message_Strategy contains three points-of-
generation: print_greeting, print_body, and

print_signature. Each concrete class derived from the
base strategy class can override each point-of-generation
to generate the appropriate artifact(s). If a point-of-
generation is not overridden, then the default method—
usually an empty method—is used. Similar to the single
interpretation implementation, the parsing logic for the
DSML is implemented using the Visitor pattern. The main
difference is that instead of coupling the interpreter logic with

::Message_Parser «uses»

-strategy_ : Message_Strategy [~~~ — -~~~ -~ - ~----------—-=--—-—————-

«interface»
Message_Strategy

+init(in s : Message_Strategy) void Visit_M ge (const M

+Visit_Message(in message) O1—
+Visit_Greeting(in greeting)
+Visit_Body(in body)

+Visit_Signature(in signature)o 3

m.greeting ()-accept (*this);
m.body ().accept (*this);
m.signature ().accept (*this);

ge &m {

+print_greeting(in greeting)
+print_body(in body)
+print_signature(in signature)

void Visit_Signature (const Signature & s) {
strategy_->print_signature (s);

::Empty_Msg_Strategy ::Business_Msg_Strategy

+print_greeting(in greeting) +print_greeting(in greeting)
+print_signature(in signature) o +print_body(in body)

3 ‘ +print_signature(in signature)d
void print_signature (const Signature & s) {
std::cout << "Thanks," << std::endl
<< std::endl << s.name () << std::endl;
3 void print_signature (const Signature & s) {

Fig. 3.

the generation logic, the parser (i.e., Message_Parser)
contains a base pointer to the appropriate strategy for the
generation logic (i.e., Message_Strategy), and invokes
the appropriate point-of-generation to generate the correct
artifacts.

The advantage of strategized interpretation is that it avoids
reinvention of core interpreter logic by decoupling inter-
pretation and generation logic. The drawback of this ap-
proach is that all points-of-generation are invoked for each
strategy—even if it is not explicitly overridden. As illus-
trated in Figure 3, Empty_Msg_Strategy does not over-
ride print_body; however, Message_Parser is not
aware that Empty_Msg_Strategy ignores this method.
Instead, Message_Parser uses the default implementation
for print_body because it contains a base pointer to a
Message_Strategy object. Moreover, it is hard to modify
the points-of-visitation (such as suppressing) similar to the
way the points-of-generation are modifiable.

A special case of strategized interpretation is to use a
template approach, which is called parameterized strategy
interpretation. As illustrated in Figure 4, the main interpreter
logic is written as a template class that is parameterizable by
concrete types (e.g., Business_Msg_Strategy or Emp—
ty_Msg_Strategy). Similar to the strategized interpreter,
the interpreter logic is implemented by invoking points-of-
generation on the template class, i.e., STRATEGY_TYPE,
where the template class is implemented using the strategy
design pattern previously explained. This is similar to the
Template Method design pattern [7].

The advantage of parameterized strategy interpretation is
that each interpreter is capable of reusing the core interpreter
logic and does not pay the penalty of invoking each point-
of-generation. For example, Empty_Msg_Strategy is not
concerned with the print_body point-of-generation and
does not override this method. When Message_Parser is
parameterized with Empty_Msg_Strategy, it will use the
default implementation for print_body—an empty method.

std::cout << "Regards," << std::endl
<< std::endl << s.name () << std::endl;

3

Conceptual model of a strategized interpreter’s implementation.

|
—: STRATEGY_TYPE |

———

::Message_Parser

-strategy_ : STRATEGY_TYPE
+Visit_Message(in message) O
+Visit_Greeting(in greeting)
+Visit_Body(in body)

+Visit_Signature(in signature) Q }

void Visit_Message (const Message & m) {
m.greeting ().accept (*this);
m.body ()-.accept (*this);
m.signature ().accept (*this);

void Visit_Signature (const Signature & s) { ﬁ

strategy_.print_signature (s);

Fig. 4. Conceptual model of a template method interpreter’s implementation.

Since print_body would be considered dead code [12],
the C++ compiler will eliminate it from the executable as an
optimization [13].

The disadvantage of this approach is that each interpreter
is still not able to modify points-of-visitation because it
reuses core interpreter logic that is often implemented for
the general case. For example, Empty_Msg_Strategy
is not able to suppress visiting the Body element because
the accept method is performing a double-dispatch on
Message_Parser through its virtual table [7]. Although
Empty_Msg_Strategy will not generate any metadata in
Visit_Body (not pictured), the method is unnecessarily
invoked.'

Challenges in Enabling Interpreter Logic Reuse

Table I summarizes the advantages and disadvantages of
the current techniques for implementing visitor-based model
interpreters discussed above. There exist two main techniques
for implementing the interpreter logic of a model interpreter
using the Visitor pattern. The most simple and usually the most
common method is single interpretation. Although this method

It can be argued that runtime complexity of a model interpreter does
not matter as long as it generates artifacts faster than a human who does
it manually. Ideally, however, you do not want simple interpreters to incur the
same runtime complexity as complex interpreters when reusing interpreter
logic—especially when traversing large models.

TABLE I
TABLE SUMMARIZING THE ADVANTAGES AND DISADVANTAGES OF DIFFERENT TECHNIQUES FOR IMPLEMENTING VISITOR-BASED MODEL
INTERPRETERS WHILE TRYING TO PROMOTE MAXIMAL REUSE OF CORE INTERPRETER LOGIC AND IMPLEMENT THE MOST SUCCINCT MODEL
INTERPRETER FOR DIFFERENT NEEDS

[Technique

[Reuse of Core Interpretation Logic [Suppress Points-of-Generation [Suppress Points-of-Visitation]

Single Interpretation

Strategized Interpretation

X
Parameterized Strategy Interpretation X

is simple, it forces developers to reinvent the interpreter logic
on a per interpreter basis (as illustrated in Figure 2). To address
the challenge of reuse in interpreter logic, it is possible to use
parameterized strategy implementation. The main limitation of
this approach is its difficultly to customize points-of-visitation.

In order to ensure reusability of interpreter logic across mul-
tiple DSML model interpreters (including composite model
interpreters), developers must address the key challenge of
customizing the interpreter logic without physically modifying
it (i.e., changing its source code). Different model interpreters
that use the same interpreter logic may not be interested
in the same points-of-generation and points-of-visitation as
other model interpreters. As discussed above, the strategized
interpretation partially addresses the challenge of promoting
reuse in the interpreter logic. It promotes reusability because
it separates the interpreter logic from the generation logic. It,
however, disallows developers to strategically alter points-of-
visitation.

When striving to achieve reuse of the interpreter logic,
it is ideal to implement it for the general-case and let it
interact with all the necessary model elements in a pre-
determined order. This will allow as many interpreter im-
plementations as possible to reuse the interpreter logic. As
shown in Section II, the Empty_Msg_Strategy inter-
preter does not handle the same number of elements as the
Business_Msg_Strategy interpreter. In order to promote
reuse of interpreter logic, Visitor-based model interpreters
need a technique to transparently customize interpreter logic
for their needs. In addition, the customization must be done
without altering existing interpreters that use the same inter-
preter logic.

In the case of the generation logic, different interpreters
generate different artifacts from a DSML. As illustrated in
Section II, the Empty_Msg_Strategy interpreter gener-
ates different artifacts from the Business_Msg_Strategy
interpreter. If the interpreter logic is implemented for the
general case to promote reusability, it must also facilitate cus-
tomization of its generation logic since the reusable interpreter
logic will not know how to generate correct artifacts for each
individual model interpreter. Successful reuse of the interpreter
logic using the Visitor design pattern, therefore, should allow
specialization of points-of-generation and points-of-visitation
while keeping the two decoupled.

III. DETAILED DESIGN AND FUNCTIONALITY OF MIME

This section discusses MIME’s approach to resolving the
challenge of reinventing interpreter logic in Visitor-based

model interpreters. MIME builds on the parameterized strategy
implementation technique discussed in Section II, but uses
template metaprogramming techniques to address its limita-
tions.

A. Specializing Visitation Logic via Template Metaprogram-
ming

Specialization of the interpreter logic is the ability to
transparently customize how the model is traversed without
actually modifying the existing interpreter logic. In order to
promote specialization of the interpreter logic one must first
determine the different points-of-visitation. For example, in
Figure 1 there are three points-of-visitation: Visit_Body,
Visit_Greeting, and Visit_Signature.

Some model interpreters may want to visit all the elements
in the model; whereas, other model interpreters may only care
to visit certain elements, such as not visiting the Body element
as exemplified by the Empty_Msg_Strategy interpreter.
In order to facilitate transparent customization of interpreter
logic on a per interpreter basis, MIME applies template
metaprogramming techniques to the points-of-visitation, as
shown in Figure 5.

—— STRATEGY_TYPE
[

|
== J
Message_Parser

void Visit_Message (message m) { B
visit <STRATEGY_TYPE> (m.greeting (), this);
visit <STRATEGY_TYPE> (m.body (), this);
visit <STRATEGY_TYPE> (m.signature (), this);

+Visit_Message(in message)O——
+Visit_Greeting(in greeting)
+Visit_Body(in body)
+Visit_Signature(in signature)

Fig. 5. Conceptual model of using template metaprogramming to specialize
points-of-visitation.

As alluded to in Figure 5, each point-of-visitation is
wrapped by a parameterizable visit function. The visit
function determines if the element of interest is vis-
itable by the interpreter of STRATEGY_TYPE type. If the
STRATEGY_TYPE interpreter is interested in the specified ele-
ment type, then the interpreter logic will visit it. Otherwise, the
interpreter logic will ignore it (i.e., remove its implementation
at compile time).

1 | // legend:

2 | // S = interpreter; T = element(s); V = visitor
3 | template <typename S, typename T>

4 | struct visit_type {

5 static const bool result_type = true;

6 |}

7

8 | template <typename S, typename T, typename V>
9

inline bool visit (T t, V v) {
10 if (!visit_type <S, T>:uresult_type)
11 return false;

13 t.accept (v); // visit the element
14 return true;
15 |}
Listing 1. Example point-of-visitation template.

Listing 1 illustrates an example visit function in MIME.
As shown in this listing, each model interpreter can control
whether or not to visit a particular element by specializing
visit_type. By default, each element is visited. MIME
also provides visit functions that iterate over a collection of el-
ements. Finally, each visit function can provide model domain-
specific functionality through customization using template
specialization techniques.

Applying visitation logic templates to message example.
Listing 2 shows a code snippet of the message example
that uses the template approach highlighted in Figure 5. As
illustrated in this listing, Message_Parser is implemented
as a template class that is parameterizable by the con-
crete interpreter’s type (e.g., Business_Msg_Strategy or
Empty_Msg_Strategy). The visit function is then used
to insert customizable points-of-visitation into the interpreter
logic (i.e., lines 5-7). By default, all elements will be visited
by the interpreter logic. Since the Empty_Msg_Strategy
interpreter does not visit Body elements, it specializes the
visit_type trait. This causes Message_Parser’s inter-
preter logic to suppress that point-of-visitation when construct-
ing the implementation of the Visit_Message method for
Empty_Msg_Strategy.

}

10 | // Empty_Message.h
11 | template < >
12 | struct visit_type <Empty_Msg_Strategy , Body> {

1 | // Message_Parser_T.cpp

2 | template <typename S>

3 | void Message_Parser <S>::

4 | Visit_Message (const Message & m) {

5 visit <S> (m. Greeting (), =*this);

6 visit <S> (m.Body (), =*this);

7 visit <S> (m. Signature (), *this);
8

9

13 static const bool result_type = false;

14 |}

15

16 | typedef Message_Parser <Empty_Msg_Strategy>
17 Empty_Message_Parser;

Listing 2. Code snippet of applying a points-of-visitation template to message,

example.

Because of MIME’s points-of-visitation template metapro-
gramming technique, both example model interpreters can
use the same interpreter logic. Moreover, the each model
interpreter can transparently specialize the interpreter logic
without impacting the other model interpreter.

B. Specializing Generation Logic via Template Metaprogram-
ming

The previous section how discussed template metaprogram-
ming is used to promote reuse of interpreter logic for different
model interpreters. This generalized interpreter logic, how-
ever, did not contain any generation-logic because different
interpreters generate different artifacts. If the generalized inter-
preter logic contained generation-logic, then it would mean all

interpreters that used the same interpreter logic would generate
similar artifacts, which is not always the case.

Fm———————

—— STRATEGY_TYPE |
[1

::Message_Parser

+Visit_Body(in body) Write_Greeting <STRATEGY_TYPE>::generate (g);
+Visit_Signature(in signature) @

void Visit_Signature (signature s) {
Write_Signature <STRATEGY_TYPE>::generate (s);
3

+Visit_| in - . - -
+Visit_Greeting(in greeting) o——]| void Visit_Greeting (greeting g) { ﬁ

Fig. 6. Conceptual model of using template metaprogramming to specialize
points-of-generation.

Similar to how template metaprogramming is used to spe-
cialize points-of-visitation, it can also be used it to specialize
points-of-generation. Figure 6 illustrates MIME’s approach
for specializing points-of-generation. As highlighted in this
figure, each point-of-generation is an object that contains a
static generate function. The point-of-generation object
is parameterized by the STRATEGY_TYPE. If the point-of-
generation is not specialized, then the default implementation
of the point-of-generation—usually an empty method whose
implementation is suppressed at compile time—is used.

It is possible to use the parameterizable strategy inter-
preter technique (see Section II) to implement specialization
of points-of-generation. By specifying point-of-generations in
parameterizable objects, however, it is possible to define traits
that explicitly suppress points-of-generation, similar to the
points-of-visitation. This approach, therefore, provides greater
flexibility and control for customizing the generalized inter-
preter logic on a per interpreter basis.

Applying generation logic templates to message ex-
ample. Listing 4 contains a code snippet of the message
example that uses MIME’s approach illustrated in Figure 6
to customize points-of-generation on a per model inter-
preter basis. As shown in this listing, Write_Body and
Write_Signature are two points-of-generation that can be
specialized by concrete interpreters to generate the appropriate
content.

template <typename S>
struct Write_Body {

3 static bool generate (const Body &) {

4 return false;

5 }

6 |}

7

8 | template <typename S>

9 | struct Write_Signature {

10 static bool generate (const Signature &) {
11 return false;

12 }

13 |}

Listing 3. Parameterizable points-of-generation in the Message example.

Listing 4 shows how the points-of-generation in
Listing 3 are integrated into the interpreter logic.
As shown in this listing, Visit_Body (line 3) and
Visit_Signature (line 9) invoke their respective

generation methods.
and

Both Business_Msg_Strategy
Empty_Msg_Strategy implement the

Write_Signature point-of-generation (line 28 & 43,
respectively). The Empty_Msg_Strategy interpreter
does not visit Body elements (see Listing 2, line 12).
Empty_Msg_Strategy therefore does not implement
the Write_Body point-of-generation. On the other hand,
Business_Msg_Strategy specializes the Write_Body
point-of-generation (line 19), which enables its interpreter to
generate the necessary content for the Body element.

// Message_Parser_T. cpp

template <typename S>

void Message_Parser ::

Visit_Body (const Body & b) {
Write_Body <S>::generate (b);

}

template <typename S>

void Message_Parser::

10 | Visit_Signature (const Signature & s) {
11 Write_Signature <S>::generate (s);

O 001N B WM~

14 | // Business_Message.h

15 | struct Business_Msg_Strategy {
16 static std::ofstream file;
17 | };

19 | template < >
20 | struct Write_Body <Business_Msg_Strategy> {

21 static bool generate (const Body & b) {
22 typedef Business_Msg_Strategy BMS;

23 BMS:: file << "\n” << b.text () << "\n”;
24 return true;

25

26 |}

27

28 | template < >
29 | struct Write_Signature <Business_Msg_Strategy> {

30 static bool generate (const Signature & s) {

31 typedef Business_Msg_Strategy BMS;

32 BMS:: file << "Regards,\n\n” << s.name () << "\n”;
33 return true;

34 }

35 |}

36

37 | // Empty_Message.h
38 | struct Empty_Msg_Strategy {
39 static std::ofstream file;

42 | template < >
43 | struct Write_Signature <Empty_Msg_Strategy> {

44 static bool generate (const Signature & s) {
45 Empty_Msg_Strategy :: file
46 << 7Thanks,\n\n” << s.name () << ”\n”;
47 return true;
48 }
49 |},
Listing 4. Code snippet of applying points-of-generation templates t

message example to enable reuse of interpreter logic.

Because of MIME’s point-of-generation template technique,
it is possible to reuse the generation-logic with both example
interpreters. Moreover, it is possible to transparently specialize
the generation-logic of the either model interpreter without
affecting each other.

C. Reusing the Metaprogrammable Interpreter Logic within
Composite DSML Model Interpreters

Composite DSMLs are those created from one or more
existing DSMLs. This allows the parent DSML (i.e., the one
created from multiple DSMLs) to use elements from the
child DSML when constructing valid models. One of the

main benefits of this modeling technique is reuse of existing
modeling languages that capture a domain.

Although DSMLs can be composed from other DSMLs,
the parent DSML interpreter is responsible for interpreting
the child DSML. It is ideal for the parent DSML to reuse the
interpreter logic of the child DSML. This would eliminate the
need for parent DSML from having to reinvent the interpreter
logic of the child DSML, which can be a complex task if the
child DSML is complex.

In Section II we showed how current techniques for imple-
menting DSML model interpreters using Visitor pattern do not
support reuse of interpreter logic for single DSMLs. Existing
techniques for implementing DSML model interpreters, there-
fore, do not fully meet the needs of composite DSML model
interpreters. In Section III-A, however, we showed how MIME
can support interpreter logic reuse.

Because MIME’s implementation techniques allowed us to
reuse the interpreter logic for single DSMLs, the interpreter
logic of the child DSML can also be reused by the composite
DSML. To illustrate this concept, we have created a simple
composite DSML that uses the Message DSML introduced
in Figure 1 of Section II. Figure 7 illustrates our composite
DSML example that we created in GME.

EmailAccount Message

==hlodel== m ==modelProxy=:=
owner: field]

[
1
Profile

==htadeal==

Fig. 7. Example composite DSML created in GME.

As illustrated in Figure 7, the EmailAccount model
element has one attribute named owner and contains two
elements: Profile and Message. The Profile element is
a GME Model element that contains other elements (not shown
in Figure 7) to provide details about the email account. The
Message element is a GME Model Proxy (i.e., a placeholder
for external models) that references the Message GME
Model element introduced in the DSML illustrated in Figure 1
of Section II.

Although the composite DSML presented in Figure 7 is
a simple DSML (i.e., contains few elements), the composite
DSML model interpreter is responsible for implementing the
interpreter logic for both the parent and child DSML. If
we apply MIME’s implementation technique, we can then
reuse the interpreter logic of the child DSML (i.e., Listing 2)
to simplify implementing the composite’s interpreter logic.
Listing 5 shows a code snippet of the composite DSML model
interpreter for Figure 7 implemented using MIME.

As illustrated in Listing 5, we implemented a single in-
terpretation style interpreter for the EmailAccount DSML.

When the interpreter visits EmailAccount elements (line 4),
it first visits the contained Profile element (line 6). After
visiting the Profile element, it interprets the contained Mes-
sage elements (or DSML). Because the child DSML (i.e.,
the Message DSML) provides a reusable interpreter logic,
the EmailAccount_Parser reuses Message_Parser
by parameterizing Message_Parser with itself. This al-
lows EmailAccount_Parser to customize the points-of-
visitation and points-of-generation in Message_Parser as
needed using the techniques discussed in previous sections.

// EmailAccount_Parser.cpp
void EmailAccount_Parser::
Visit_EmailAccount (const EmailAccount & e) {

1
2
3
4 e.Profile ().accept (xthis);
5
6 // reuse of Message_Parser
7 Message_Parser <EmailAccount_Parser> generator;
8 e.Message ().accept (generator);
9 |1
Listing 5.

single interpreter technique.

Although we use the single interpretation technique in
our composite DSML model interpreter, it is also possi-
ble to use MIME’s template metaprogramming technique
to promote reuse. Similar to the Message_Parser im-
plementation, EmailAccount_Parser would be declared
as a template class. Likewise, instead of directly invok-
ing the accept method on the Profile element (line 6),
the interpreter logic would apply the templates pre-
sented in Section III-A. Finally, instead of parameterizing
Message_Parser with itself (line 9), it would be parame-
terized with EmailAccount_Parser’s template parameter.
This would allow reuse of the EmailAccount_Parser’s
interpreter logic by other EmailAccount model interpreters
and DSMLs that use EmailAccount as a child DSML.
Listing 6 shows the composite model interpreter in Listing 5
updated to use MIME’s template metaprogramming technique.

// EmailAccount_Parser_T.cpp

1
2
3 | template <typename S>
4 | void EmailAccount_Parser <S>::
5 | Visit_EmailAccount (const EmailAccount & e) {
6 visit <S> (e.Profile (), xthis);
7
8 // reuse of Message_Parser
9 Message_Parser <S> generator;
10 visit <S> (e.Message (), generator);
1 |}
Listing 6. Code snippet of parameterized composite model interpret

implemented using MIME’s template metaprogramming technique.

D. Generalization of the MIME'’s Implementation Technique

Situations will arise that offer an opportunity to add cus-
tomization to interpreter logic that the current templates dis-
cussed above can not handle. For example, one interpreter
may want to visit the elements of a container in reverse order;
whereas, another interpreter may want to set an upper bound
on the number of elements visited in a container, or change
the container type. To address this concern, the following are
guidelines for handling such situations:

1) Create a trait class or function with a name that reflects
its purpose. This makes it easier to understand how it
should be used.

2) Regardless of using a trait class or a template function,
the first template parameter is the concrete interpreter’s
type. This allows the concrete interpreter to be the
primary specialization artifact.

3) If there are any remaining template parameters, they are
classified as properties that can influence the template’s
final value (or behavior) via template specialization.

E. Simplifying MIME’s Customization Techniques

One major challenge of template metaprogramming is com-
prehending its implementation. Model interpreters that lever-
age MIME’s implementation technique will have vast amounts
of template logic embedded throughout its implementation.
Although a design goal is to make it easy to identify and

Code snippet of composite model interpreter implemented usingnderstand the templates used by MIME, it may not appear

as simple to novice developers.

To address this concern, it is feasible to define a high-
level language with constructs that allow developers to define
the general parsing logic for the DSML. This high-level
parsing logic would then be transformed into a interpreter that
uses MIME’s implementation technique, which is similar to
template-based generators operator. This would also alleviate
the need for understanding how to write templates for MIME,
and make MIME’s implementation technique more accept-
able to developers who have little experience with template
metaprogramming.

IV. USE CASE: GENERATING DIFFERENT METADATA
FORMATS FROM THE SAME BEHAVIOR AND WORKLOAD
DSML

This section showcases how MIME’s approach was applied
to a more complex and realistic DSML.

A. Overview of the Component Behavior Modeling Language
and the Workload Modeling Language

The Component Behavior Modeling Language (CBML) and
the Workload Modeling Language (WML) [5] are two DSMLs
we developed in GME. CBML is a DSML for capturing the
behavior (i.e., the actions and states) of a component at a high-
level of abstraction. WML is a DSML for capturing the work-

load of operations (or actions). WML complements CBML

“because the workload modeled in WML can parameterize the

operations (or actions) in CBML to create behavior that has
realistic workloads.

CBML and WML are both complex DSMLs in terms of the
number of modeling elements. For example, CBML contains
69 different GME modeling elements and attributes combined
that model interpreters can interpret. WML is less complex
in that it contains only 19 different modeling elements and
attributes combined. Lastly, both languages tend to evolve as
more is learned about their domain.

CBML and WML together are primarily used to generate
source code for component-based distributed systems [5] and

TABLE I
TABLE COMPARING MIME’S APPROACH AGAINST CURRENT TECHNIQUES FOR IMPLEMENTING VISITOR-BASED MODEL INTERPRETERS

[Technique [Reuse of Core Interpretation Logic [Suppress Points-of-Generation [Suppress Points-of-Visitation
Single Interpretation
Strategized Interpretation X
Parameterized Strategy Interpretation X X
MIME X X X

early integration testing [14]. Although the primary use of
CBML and WML is generating source code, the following
are other interpretation needs for both DSMLs:

o Documentation. Users want the option to generate doc-
umentation of the behavior and workload in a natural
language (such as English). This will help simplify
documenting the behavior and workload of individual
components and the entire system for technical reports.

¢ Real-time scheduling analysis. Several users want to
generate configuration files for proprietary real-time
scheduling analysis tools. This will allow them to verify
if a system with the modeled behavior and workload
will honor deadlines under different real-time scheduling
policies.

o Alternative architectures. Stakeholders want to use
CBML and WML to capture the behavior of Data Dis-
tribution Service [15] and Infospherics Common API
(www.infospherics.org/api) client applications. This will
enable them to rapidly create and generate client im-
plementation code for different architectures instead of
writing it manually by hand.

Because we have identified different interpretation needs for
CBML and WML we realized it would be easier to reuse
existing interpreter logic, as opposed to reinventing it. Table II
shows how MIME’s technique compares against the current
approaches for implementing Visitor-based model interpreters.
Because of the needs discussed above and the information
presented in Table II, MIME’s technique is an appropriate
solution for reusing core interpreter logic while customizing
it for the different interpretation needs.

B. Interpreter Reuse in CBML and WML using MIME

It is clear that each interpreter requires its own interpreter
logic that generates artifacts based on the needs presented
in Section IV-A. Each interpreter is also not interested in
the same elements. For example, the C++ code generator
interpreter preprocesses the model to gather the required
information when generating C++ source code; whereas the
documentation interpreter does not need to preprocess the
model to generate a textual description of the behavior and
workload. The real-time scheduling interpreter is only con-
cerned with the actions and workload in the behavior; whereas
the XML-based interpreter is concerned with every element in
the behavior and workload model.

Because all interpreters are similar with different require-
ments, MIME’s technique was used to implement the inter-
preter logic once and reuse it for each concrete interpreter.
The following steps, which are also illustrated in Listing 7,

were used to implement the interpreter logic for CBML and
WML:

1) (line 1) The interpreter logic was initially implemented
in terms of the C++ source code generator since it was
the initial use case. At this point, the generation logic
was coupled with the interpreter logic to acting as a
placeholder for respective points-of-generation.

2) (line 13) The single interpreter was converted into a
template method interpreter that is parameterized by
the concrete interpreter’s type (line 14). Instead of
making direct calls on the template parameter’s methods,
point-of-generation were inserted to allow customization
(line 20). The concrete template can opt to define this
point-of-generation.

3) (line 26) Finally, all the direct visitor method calls on
elements were transformedinto points-of-visitation. This
allows each model interpreter to selectively enable and
disable them as needed (line 36).

1 // step 1 (single C++ version)

2 | void CUTS_BE_Execution_Visitor::

3 | Visit_Effect (const PICML:: Effect & effect) {

4 std ::string postcondition = effect.Postcondition ();
5

6 if (!postcondition.empty ())

7 outfile << postcondition << ”;” << std ::endl;
8

9 // visit next state in the behavior

10 effect.dstEffect_end ().Accept (xthis);

11

12

13 | // step 2 (parameterize
14 | template <typename S>
15 | void CUTS_BE_Execution_Visitor <S>::

16 | Visit_Effect (const PICML:: Effect & effect) {

17 std:: string postcondition = effect.Postcondition ();

point—of—generation)

19 if (!postcondition.empty ())
20 Postcondition <S>::generate (postcondition);

22 // visit next state in the behavior
23 effect.dstEffect_end (). Accept (xthis);

26 | // step 3 (parameterize
27 | template <typename S>
28 | void CUTS_BE_Execution_Visitor <S>::

29 Visit_Effect (const PICML:: Effect & effect) {

point—of—visitation)

30 std::string postcondition = effect.Postcondition ();
31
32 if (!postcondition.empty ())
33 Postcondition <S>::generate (postcondition);
34
35 // visit next state in the behavior
36 visit <S> (effect.dstEffect_end (), =xthis);
37 |}
Listing 7. Code snippets of steps used to implement CBML and WML

interpreter logic using template metaprogramming.

The final interpreter logic for CBML and WML spanned
32 files and contained approximately 1,000 source lines of

code (SLOC).? Due to the generality of the interpreter logic, it
contains 39 points-of-visitation and 50 points-of-generation.’
This creates a total of 1950 different customizations for the
implementation (although it is clear many will not be used) be-
cause each point-of-visitation and generation is customizable
on a per interpreter basis.

The C++ interpreter uses all the defined points-of-visitation
and generation. The documentation interpreter uses all the
points-of-visitation, but uses only 19 points-of-generation.
The XML-based and real-time scheduling model interpreters
are currently under development. It is safe to assume they
will use fewer points-of-generation than the C++ interpreter
and possibly use fewer points-of-visitation. Although each
interpreter uses a different number of points-of-generation and
interpretation, the key fact is that each interpreter reuses the
same interpreter logic. Each interpreter is neither rewriting the
interpreter logic each time nor suffering from the limitations
of existing Visitor-based model interpreters.

V. RELATED WORK

Visitor implementation. Nguyen et al. [16] present a
technique for addressing the limitations of Visitor-based im-
plementations in the context of grammar parsers to create
flexible and extensible parsers. In their technique, when a
term in the grammar is visited, the parsing token uses the
Abstract Factory design pattern [7] to generate the correct
visitor for that token. This provides specialization on a per
term basis. MIME is similar to theirs because it can strategize
the visitation of each element type in a model (similar to a
term in a grammar) and the artifacts generated from the model
element. MIME differs from their approach since it completely
decouples generation logic from the visitation logic. When
Nguyen’s technique is applied to large models, it suffers from
the excessive memory allocation anti-pattern [17]. MIME does
not incur this overhead.

Neff [18] and Schordan [19] present a technique for imple-
menting grammar parsers using the bivisit Visitor design pat-
tern. It allows them to perform preprocessing/postprocessing
operations before/after visiting terms in the grammar. The vis-
itation logic however is still coupled with the generation logic.
The bivisit variant of the Visitor can be used in conjunction
with aspects in C++ [11] to achieve similar goals as MIME.
MIME is also able to separate the generation logic from the
visitation logic. Moreover, MIME can transparently customize
the generation and visitation logic on a per use case basis.

Model interpretation. AndroMDA [20] and oAW [21]
provide tools that allow developers to implement model
interpreters using template parsing and workflow engines.
Developers use high-level constructs that dictate how to trans-
form existing models into artifacts. MIME is similar to both
AndroMDA and oAW because all three rely on generative
programming techniques to implement model interpreters. We
have learned, however, that reusability is less of an issue in

2SLOC were obtained using SourceMonitor (http://www.campwoodsw.
com/sourcemonitor.html).
3We manually counted the number of points-of-generation and visitation.

these tools. Finally, MIME is tailored to Visitor-based model
interpreters.

Agrawal et al. [22] and Muller et al. [23] each present
a technique that use DSMLs and model transformations to
implement model interpreters. Developers use a DSML that
models how to transform existing models into artifacts. Model
interpreters are then generated that perform the specified trans-
formations. Although their technique is a level of abstraction
higher, neither has explicitly addressed reusing transformations
and generated interpreters within other use cases as MIME did
with the Visitor design pattern.

VI. CONCLUDING REMARKS

This paper presented a generative programming technique,
called MIME, that used C++ template metaprogramming to
promote reuse in Visitor-based model interpeters. The main
goal of MIME is to enable reuse of core interpreter logic so
that different interpreters for the same DSML with the same
interpretation goal do not have to reinvent it. Each individual
model interpreter can then customize the interpreter logic to
meet its needs while reusing the core interpreter logic. Based
on experience using MIME to implement several Visitor-based
model interpreters, the following lessons were learned:

o If a DSML has only one use case, then single inter-
pretation is the preferred implementation technique for
its model interpreters. If multiple use cases have been
identified, then the template metaprogramming technique
is the preferred implementation technique for Visitor-
based model interpreters.

o It is not hard to convert a single interpretation style in-
terpreter to a template metaprogramming style interpreter
because the main interpreter logic is already defined.
It is “harder” to create a template metaprogramming
interpreter from scratch because the different use cases
for interpreters may not fully be understood a priori.

o C++ template metaprogramming incurs a steep learning
curve for developers. When combined with a complex
visitor hierarchy generated by modeling tools for a given
modeling language, significant efforts must be expended
to develop the interpreters. It is desirable for model-
ing frameworks to hide the complex visitor hierarchy
but expose only the points-of-visitation and points-of-
generation to the developers, which can enable rapid
development of interpreters. This forms part of our future
work.

MIME's templates has been integrated into the CUTS system
execution modeling tool and is available in open-source format
for download from the following location: http://cuts.cs.iupui.
edu.

REFERENCES

[1] Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.. Model-Integrated
Development of Embedded Software. Proceedings of the IEEE 91(1)
(January 2003) 145-164

[2] Lédeczi, A., Bakay, A., Maréti, M., Volgyesi, P., Nordstrom, G., Sprin-
kle, J., Karsai, G.: Composing Domain-Specific Design Environments.
Computer 34(11) (2001) 44-51

[3]

[4]

[5]

[7]

[8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

White, J., Schmidt, D., Gokhale, A.: Simplifying Autonomic Enterprise
Java Bean Applications via Model-driven Development: a Case Study.
In: MODELS 2006: 8th International Conference on Model Driven En-
gineering Languages and Systems, Montego Bay, Jamaica, IEEE/ACM,
ACM Press (October 2005)

Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools.
John Wiley & Sons, New York (2004)

Hill, J.H., Tambe, S., Gokhale, A.: Model-driven Engineering for
Development-time QoS Validation of Component-based Software Sys-
tems. In: Proceedings of 14th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems (ECBS
07), Tucson, AZ (Mar 2007) 307-316

Alonso, D., Vicente-Chicote, C., Barais, O.: V3Studio: A Component-
Based Architecture Modeling Language. In: Proceedings of the 15th In-
ternatoinal Conference and Workshop on the Engineering of Computer-
based Systems (ECBS ’05). (2008) 346-355

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA (1995)

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse
Modeling Framework. Addison-Wesley, Reading, MA (2003)
google-ctemplate: google-ctemplate. code.google.com/p/
google-ctemplate (2007)

Martin, R.: Design principles and design patterns. Object Mentor (2000)
Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, Reading, Massachusetts
(2000)

Chen, Y.FR., Gansner, E.R., Koutsofios, E.: A C++ Data Model
Supporting Reachability Analysis and Dead Code Detection. In:
Proceedings of the 6th European Conference held jointly with the Sth
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, New York, NY, USA, Springer-Verlag New York, Inc.
(1997) 414-431

Veldhuizen, T.L.: Five Compilation Models for C++ Templates. In: First
Workshop on C++ Template Programming, Erfurt, Germany (October
2000)

Hill, J.H., Slaby, J., Baker, S., Schmidt, D.C.: Applying System
Execution Modeling Tools to Evaluate Enterprise Distributed Real-time
and Embedded System QoS. In: Proceedings of the 12th International
Conference on Embedded and Real-Time Computing Systems and
Applications, Sydney, Australia (August 2006)

Object Management Group: Data Distribution Service for Real-time
Systems Specification. 1.2 edn. (January 2007)

Nguyen, D.Z., Ricken, M., Wong, S.: Design Patterns for Parsing. In:
Proceedings of the 36th Technical Symposium on Computer Science
Education (SIGCSE 05), New York, NY, USA, ACM Press (2005) 477-
481

Smith, C., Williams, L.: Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software. Addison-Wesley Professional,
Boston, MA, USA (September 2001)

Neff, N.: Attribute Based Compiler Implemented Using Visitor Pattern.
In: Proceedings of the 35th Technical Symposium on Computer Science
Education (SIGCSE 04), New York, NY, USA, ACM Press (2004) 130—
134

Schordan, M.: The Language of the Visitor Design Pattern. Journal of
Universal Computer Science 12(7) (2006) 849-867

Kozikowski, J.: A Bird’s Eye View of AndroMDA. galaxy.andromda.
org/docs-3.1/contrib/birds-eye-view.html

openArchitectureWare: openArchitectureWare. WWW.
openarchitectureware.org (2007)

Agrawal, A., Levendovszky, T., Sprinkle, J., Shi, F., Karsai, G.: Gen-
erative Programming via Graph Transformations in the Model-Driven
Architecture. In: Workshop on Generative Techniques in the Context of
Model Driven Architecture (OOPSLA 02). (2002)

Muller, PA., Fleurey, F., Fondement, F., Hassenforder, M., Schneck-
enburger, R., Gérard, S., Jézéquel, J.M.: Model-Driven Analysis and
Synthesis of Concrete Syntax. In: International Conference on Model-
ing Driven Engineering and Languages Symposium (MoDELS 2006).
(2006) 98-110

