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Abstract—Vehicular networks are a classic example of mobile, 

peer-to-peer networks. The domain of intelligent transportation 

engineering (ITS) envisions a wide range of services over these 

vehicular networks. Supporting the different quality of service 

properties of these services requires effective dynamic resource 

management solutions in vehicular networks, which cannot be 

realized using vehicles alone due to factors such as varying 

vehicular mobility patterns, varying vehicular traffic density, and 

obstacles. Road side units (RSUs), which serve as event and data 

brokers among the moving vehicles, can alleviate this problem. 

To maximize the value proposition offered by RSUs requires 

their effective placement that holistically accounts for physical 

factors, such as traffic patterns and mobility, with cyber factors, 

such as communication protocols and messaging.   To address 

these requirements, this paper presents a design methodology 

based on the principles of surrogate modeling wherein small-

scale, micro-simulations of the ITS cyber-physical system are 

used to develop training points, which in turn are used to train a 

surrogate model. The surrogate model is subsequently used to 

make planning decisions for ITS. 

Keywords- VANETs; cyber-physical systems; capacity planning 

for resource management; modeling and design 

I.  INTRODUCTION 

Intelligent Transportation Systems (ITS) are envisioned to 

address the numerous challenges faced by the transportation 

sector [1]. One category of solutions envisioned in ITS 

pertains to the real-time and reliable delivery of traffic-related 

information to drivers both for safety-critical applications 

(such as blind spot warnings during lane changing) and for 

applications that improve driving experience and help the 

environment (such as notification of congestion and rerouting 

advise that can help to alleviate traffic congestion and lost 

productivity).  

The ITS services must be realized in the context of 

vehicular ad hoc networks (VANETs). Each of these services 

imposes different quality of service (QoS) demands that 

require effective dynamic resource management. However, 

resource management solutions are hard to realize using 

VANETs alone due to many factors, such as disparate traffic 

mobility patterns, traffic density, and obstacles to name a few. 

One way to alleviate these challenges is to use brokers that 

serve as mediators for event and data dissemination required 

in resource management solutions for the ITS services. In ITS, 

these brokers are called road side units (RSUs). An immediate 

question that arises is how to place these brokers that will 

maximize the efficiency of dynamic resource management 

solutions in VANETs. 

Effective Broker placement in VANETs is a hard problem 

because decision techniques for broker placement must 

account for both the transportation-related challenges—the 

physical dimension, and the information technology 

challenges—the cyber dimension making it a cyber-physical 

system (CPS). It is neither economically feasible to deploy 

real infrastructure elements and test the effectiveness of these 

brokers for resource management, nor is it computationally 

feasible to simulate to conduct detailed simulations. 

Furthermore, a general lack of ITS-specific simulators, which 

can combine both the cyber and physical properties in the 

simulation, make the task even harder. 

Therefore in this paper we present a framework for ITS 

broker (i.e., RSU) placement decisions that can be made 

quickly and inexpensively, moving the design of the cyber-

physical system closer to its real-world goal. To address the 

problems with scalability of simulations, we rely on using a 

surrogate model [2] which is trained using a relatively small 

number of training points obtained from a small set of micro-

simulations that are quite inexpensive to execute. The chosen 

surrogate model is then used to make decisions regarding the 

system. The strength of this framework is such that once the 

system is characterized using a surrogate model, subsequently 

the model can be used in both the planning stages (e.g., 

infrastructure decisions like placement of the RSUs) and at 

runtime once the system is built (e.g., for dynamic resource 

management).  

The rest of the paper is organized as follows: Section II 
discusses related research; Section III provides details of our 
methodology and the associated framework; Section IV 
demonstrates the application of our methodology to a sample 
scenario; and Section V discusses the implications of this 
framework and future work. 
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those of the author(s) and do not necessarily reflect the views of the National 

Science Foundation. 



II. RELATED RESEARCH 

To the authors’ knowledge the framework presented in this 

paper for decision-making has not been applied to any scale 

VANET problems. Parts of the framework we present, such as 

micro-simulation and optimization techniques, are in use 

within the field for infrastructure decisions as described 

below. Many optimization decisions in deployment of 

traditional event brokers also exist. A general observation is 

that these solutions either address the physical issues or the 

cyber issues in isolation, but not both at once. 

Micro-simulation is suggested as the appropriate method 

for testing ITS services, over both Highway Capacity Manual 

(HCM) procedures and macroscopic simulation [3]. Both [3] 

and [4] provide suggestions on how best to build and validate 

realistic microscopic models for transportation systems. An 

actual ITS deployment is validated against micro-simulation 

models in [5], although the system is for adaptive traffic 

control systems and not for resource management in VANETs.  

There are currently a sparse number of studies that 

compare micro-simulation results of VANETS to actual 

deployments as in [6], but there are studies that compare 

micro-simulation results to other mobility model [7], [8]. The 

general consensus, however, is that micro-simulation models 

can accurately represent real traffic systems when they are 

properly calibrated [3], [5], [9], [10]. In our case too since we 

cannot afford the computationally expensive large-scale 

micro-simulations, our methodology is based on surrogate 

modeling that leverages micro-simulations. Surrogate 

modeling is preferred over related techniques, such as 

response-surface models or even large-scale simulators and 

emulators because they are computationally less expensive 

compared to other techniques and are practical. 

The use of optimization techniques for infrastructure 

deployment and system planning is also already in use within 

the ITS domain. Examples include maximizing coverage while 

guaranteeing a minimum amount of coverage time [11]; 

maximizing the reliability of information dissemination [12]; 

bandwidth minimization as well as travel-time minimization 

[13]; and maximizing the utility that comes from hardware 

distribution and information gathering [14].  

Many prior works exist in the cyber realm on modeling and 

capacity planning. A recent work [15] develops analytical 

models for mission-critical publish/subscribe systems that can 

help to answer a number of questions, such as whether a 

certain deployment topology is effective or not. Although the 

authors account for multiple layers of the networking stack 

including the physical level, this research is still confined to 

the cyber world. The CCD [16] is a content-based pub/sub 

middleware that provides solutions to optimally place 

operators within brokers for customized content delivery to 

subscribers. This work focuses on placing appropriate 

functionality (i.e., operators) within brokers of a pub/sub 

environment but not the placement of brokers.  

Our research proposes extending current decision-making 

practices in ITS development and deployment to include 

surrogate models in order to characterize the system more 

efficiently than just micro-simulation and optimization can do 

alone. In other areas of engineering design, the process of 

using training points found through simulation to train a 

surrogate model has been demonstrated, e.g., Structural 

Engineering [17], Pavement Design [18] and Transportation 

Engineering [19] provide a few examples where this 

framework has been utilized. 

III. A METHODOLOGY FOR CAPACITY PLANNING IN 

INTELLIGENT TRANSPORTATION SYSTEMS 

We now describe the details of our design-time 
methodology for placement of event brokers, such as RSUs, in 
VANETs to support effective resource management. Our 
methodology accounts for both the cyber- and physical-level 
challenges. 

A. Overview of the Capacity Planning Methodology 

Figure 1 illustrates the four steps of our methodology, 
which are described in detail in the rest of this section. 

 

Figure 1: Methodology 

 

1. Collecting training points – A small number of 

micro-simulations involving the CPS properties of 

VANETs are conducted to collect training points 

needed to develop the surrogate models for VANETs.  

2. Building surrogate models – the second step is to 

develop the surrogate models using the training points 

for the system under study. We use the Gaussian 

Process modeling approach to build these surrogate 

models.  

3. Validating the surrogate models – once the surrogate 

models are developed, they must be validated for 

accuracy and correctness, which forms our third step. 
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4. Optimizing the decisions – once the models are 

validated, we use optimization techniques to make 

optimized engineering decisions. 

Surrogate modeling provides an inexpensive but highly 

accurate design-time solution for designing complex systems. 

We believe that such a methodology has not been exploited in 

VANETs (and ITS in general) though it is popular in 

traditional engineering designs. 

B. Microsimulation to Collect Training Points 

Training points are needed to build surrogate models. The 

challenge lies in how the training points can capture both the 

physical and cyber properties of VANETs all at once unlike 

traditional engineering designs that focus only on the physical 

properties. Thus, in our experimentation, we have chosen 

decision variables (i.e. inputs) for the physical dimension, 

such as vehicular speed and density, and wireless power 

beacon. The decision variables we considered on the cyber 

side included protocols used and data packet sizes. The output 

parameters of the training should ideally provide some 

measure of the quality of the system. For VANETs, the output 

should describe how well communication is being conducted 

throughout the system (e.g., number of successfully 

transmitted packages and available communication window 

for a moving vehicle when communicating with a RSU). The 

example presented here utilizes speed of a vehicle moving by 

an RSU and power beacon level of the RSU. 

The entire domain of the possible region for inputs must be 

covered when collecting the training points. This is easy to 

visualize for one or two dimensional problems (with 1 or 2 

inputs) but can become difficult to verify as dimensionality 

increases. In the case of higher number of dimensions, random 

sampling and importance sampling are promising techniques 

to fulfill this requirement. Due to the iterative nature of our 

approach, refinements to these training points are likely as 

explained in Section III.D where the Predicted Residual Sum 

of Squares (PRESS) test is used to choose the most 

appropriate model. 

C. Surrogate Modeling: Gaussian Process 

In the second step, the collected training points are used to 

train a surrogate model, which is a mathematical model that 

provides a mapping from the input values to the output values 

while obscuring the physics of the system. Currently there are 

several surrogate modeling approaches that are considered 

appropriate to use in a variety of design and decision making 

capacities; some of these are conventional response surface 

models, polynomial chaos, Gaussian Process (GP), and radial 

basis functions [2]. 

Among the many different techniques available for 

surrogate modeling, we have chosen Gaussian Process (GP) 

models due to the flexibility they provide [2]: (1) GPs require 

no specific functional form as in regression-based techniques; 

all systems that are smooth and continuous can be modeled. 

Even the discontinuous nature of wireless systems can be 

captured and modeled in the continuous field of a GP due to 

the aggregation level of the inputs and outputs; (2) The trend 

function of the input variables can be varied and compared in 

order to find the best possible fit; (3) The GP can be refined 

using the locally defined variance function and minimization 

techniques; and (4) GP can also handle a large number of 

inputs (30-50) so it is able to model complex configurations of 

VANETs.  

The process of training a GP-based surrogate model uses 

the training values, a correlation function between the training 

points, and a trend function in order to build a likelihood 

function. Parameters are then estimated by maximizing the 

likelihood. The GP with its estimated parameters can then be 

used to find E[output] and E[Var(output)] for any input 

parameters. The process utilized in this research is described 

below. Note that capitalization indicates that the value is a 

vector or matrix, while lower case letters refer to a scalar.  

1. Put the training values (output) in an m-by-1 vector, Y. 

Enter the normalized training points (input parameters) in 

an m-by-n matrix, where m is the number of training 

points and n is the number of input dimensions (21-by-2 

in our case shown in Section III.D). 

 

2. Build the correlation matrix between the training points, R 

(m-by-m). R can take many forms, but the Gaussian form 

is considered in this research, which is built by assigning 

each element, c, according to the following equation. 
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Where 



i  is a scale factor that is estimated in step 4 below 

and 
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x i
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the i
th

 dimension. Note that in practice, it is easiest to 

solve the minimization in step 4 by searching on an 

exponential scale. In Equation 1, 




i
 becomes exp(
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 ) and 

the minimization in Equation 4 is done in terms of 
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and 
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 . R is used to make the covariance function using 

the process variance 



 2
that is estimated in step 4.  
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Cov()  2R        (2) 

 

3. Build the trend function, F (m-by-depends on order) 

according to the mean function found below. The trend 

function can help capture any underlying trends in the 

input variables. 
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Where x1 is the speed (mph) and x2 is the power (mW). If 

a zero order GP is chosen, then the mean function only 

consists of the first term, whereas if a first order GP is 



chosen three terms are included. F is formed so that 

F



=



 . In a zero order GP, F is a vector of ones (m-by-1); 

in a first order GP, F is a vector of ones augmented with 

the matrix of normalized training points (m-by- n+1); in a 

second order GP, F is further augmented with the squared 

values of the normalized training points (m-by- 2n+1). 

 

4. Find the optimum correlation parameters by finding the 

minimum of the negative log likelihood given by the 

following equation. 



min
 , , 2

  ln[L()]  m ln( 2)  lnR 
(Y )T R1 (Y )

 2

 
(4) 

 

Equation 4 in its entirety is not used in practice since it 

can become very computationally expensive. Reference 

[2] recommends using the concentrated ln-likelihood 

function that consists of the first two terms of Equation 4 

(shown in Equation 5). Then the maximum likelihood 

estimates of 



  and 



 2
 can be computed in equations 6 

and 7. 
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5. Use the parameters to calculate the estimated value of 

new points, equation 8. One of the benefits of the GP is 

that the variance of the new points can also be computed 

due to the covariance function and correlation matrix, 

equation 9. Computing the variance can help in any type 

system design since the variance can be minimized as part 

of an optimization statement if that is desired.  

 



E[y(x*)Y ]  f  rTR1 (Y )      (8) 



Var[y(x*)Y ]  2 (1 r TR1r)      (9) 

 

Where r is the correlation vector of the new point x* with the 

training points and f is the trend vector formed with the new 

point. 

D. Model Selection and Validation 

The next step requires us to select the right model and 

validate it for accuracy. We consider three different 

underlying trend functions and choose the model that 

minimizes the error between the predicted values and the 

simulated values. When choosing from a variety of possible 

surrogate models (e.g., zero, first, or second order GP as used 

in our research) our methodology leverages the Predicted 

Residual Sum of Squares (PRESS) test [20], which is chosen 

because it is a computationally less expensive cross validation 

technique. The steps in PRESS are summarized below: 

1. Individually omit each i th observation; recalculate the 

fitted model for remaining n-1 data  

2. Calculate the prediction error for the i th observation 

and square the difference  

3. Repeat the process for all n observations and compute 

the sum of squares  

4. Compare sum of squares value to other candidate 

models, with lowest value preferred 

 
The model that is chosen must also be validated. A 

likelihood ratio metric is used, which involves developing two 

competing hypotheses and the ratio of the likelihood of 

observing the validation data (new points) conditioned on each 

hypothesis (found below) is computed. The likelihoods are 

computed by finding the product of the probabilities for each 

new point given the hypothesis. For our methodology, a Bayes 

validation metric is used. The Bayes method involves 

choosing two competing hypotheses. Ideally they should be 

mutually exclusive and collectively exhaustive. The Bayes 

method provides a flexible framework for drawing inferences, 

which is the reason we chose it in our methodology. 

The Bayes factor (B) for the competing hypotheses is 

computed. A Bayes factor is the ratio of the likelihood of 

observing the validation data (new points) conditioned on each 

hypothesis. The likelihoods are computed by finding the 

product of the probabilities for each new point given the 

hypothesis. If B is greater than one, the model described by H1 

(The zero order GP model) is supported over the model (H2) 

that is not described by equation 10 below. 
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where H1and H2 are described below: 

H1: The simulation output is normally distributed and has a 

conditional mean and variance given by the zero order GP 

model.  

H2: The simulation output is normally distributed and is 

not conditioned on the zero order GP model; the mean and 

variance are given by the observed values (i.e., training 

points). 

E. Optimization of Engineering Decisions 

The final step in our process is that of optimizing the 

chosen surrogate model, which can then be used to make 

design and real-time decisions regarding engineering systems.  

An optimization statement that utilizes a surrogate model can 

either use the surrogate model as part of the objective 

statement or within the constraints. For there often are 

multiple objectives that need to be maintained -- some 

regarding the physical possibilities and limitations of the 

system and some regarding the cyber aspects. This framework 



utilizes the method of reducing multiple objectives to a single 

statement with a weighting scheme [2], [21]. The surrogate 

model output is then used as a constraint that sets some 

minimum expectation of quality for the system.  

A generalized statement can be found below in equation 

11.  
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                    (11) 

Where Fi(x) represents the various objectives that can be 

positive when Fi should be minimized and negative when Fi 

should be maximized; wi>0 describes the relative weights 

given to each design variable such that Σwi=1; p>0 higher 

values of p can more effectively lead to a full Pareto front 

[21]; q describes some quality of service measure (the 

surrogate model output for this framework) and qmin describes 

the minimum acceptable value of q; and the last two 

constraints represent constraints that ensure the design 

variables remain within realistic bounds. 

IV. DEMONSTRATING THE METHODOLOGY ON A RESOURCE 

MANAGEMENT USE CASE 

The example we provide demonstrates the use of the 
proposed methodology using simulation results previously 
done in [22]. This research sends a car through the 
communication range of an RSU in order to test the quality of 
the information under different system configurations using the 
802.11p standard. The speed of the vehicle and level of the 
power beacon are varied in an attempt to characterize the 
performance of the system using the length of the 
communication window. We re-examine the system under the 
new methodology and provide a more thorough 
characterization of the system, which can then be 
systematically used in decision-making. This methodology 
addresses the need that cyber-physical system research has 
regarding a new and more integrated approach to system design 
and functionality [23]. 

A. Obtaining Training Points 

In this example, inputs were chosen as speed and level of 

the power beacon. The output of the model is the length of the 

communication window. Speed and power both have 

significant relationships with the communication window, 

which is a key parameter in making the right resource 

management decisions. For example, based on the QoS needs 

of the application, power level can be increased or decreased, 

or speed can be slowed or increased. Note that this is just one 

of the many possibilities, which forms our future work.  

The configuration of the VANET is set up in OMNeT++, 

which is an open source software using the 802.11p protocol. 

The RSU sends packets of information to the vehicle. The 

information that is logged from this simulation is the time at 

which the RSU finds, authenticates, associates with, and loses 

the vehicle. The communication window is defined as the 

difference in the time the RSU loses the vehicle and the time 

at which the RSU associates with the vehicle and constitutes 

all of the conceivable time that the vehicle and RSU can 

communicate with each other.  

In initial simulations of this system performed in [22] the 
power of the beacon was held steady at 5mW while the speed 
of the vehicle varied from 15 mph to 70 mph using 11 discrete 
speeds. The speed was then held constant at 60 mph while the 
power beacon was varied from 5 mW to 50 mW (shown in 
Figure 2). The communication window results were intuitive in 
that as power beacon increased while speed was held constant, 
the communication window also increased. Speed and 
communication window had an inverse relationship, as 
expected. 

While these original test locations give some insight into 

the cyber-physical system, they are not ideal for the next step 

in the framework: building a surrogate model. In order to trust 

the surrogate model, the training data should cover the entire 

domain. New simulations were run using training points that 

covered the desired prediction area. Figure 3 shows the 

location of the newly selected points.  

 

Figure 2. Original Data 

 
 

Figure 3. New potential training points 
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As this framework progresses, however, more training 

points were added in strategic locations to decrease the error in 

the competing models. These new training point locations 

(shown in Figure 4) represent the parts of the system that 

undergo the most change in the communication window with 

respect to changes in power and/or speed. This process is 

explained in Section III.D where the PRESS test is used to 

choose the most appropriate model. 

The communication window results from the complete set 

of training data are shown below as a set of three tuples 1 

sorted by the length of the communication window. Each tuple 

is arranged as input values (speed in mph and power in mW)–

the training points, and the output value (communication 

window in seconds) – the training values. The final training 

points and values are: 

 
<75, 5, 9.45>, <55, 5, 12.78>, <75, 15, 

16.47>, <35, 5, 20.36>, <55, 15, 22.27>, <75, 

30, 23.57>, <75, 45, 28.57>, <70, 40, 28.77>, 

<55, 30, 31.87>, <35, 15, 35.17>, <55, 45, 

39.07>, <25, 10, 40.37>, <15, 5, 47.82>, <35, 

30, 50.47>, <35m 45, 61.47>, <25, 40, 81.17>, 

<15, 15, 83.47>, <25, 45, 86.07>, <15, 30, 

117.57>, <15, 40, 136.37>, <15, 45, 144.67> 

 

Figure 4. Complete and Final set of training points 

B. Building, Selecting and Validating a Surrogate Model 

We used Matlab to build each Gaussian Process model using 

several m-files originally written and used in [17]. Both the 

PRESS test and the Bayes validation method is demonstrated 

in this section. 

1) Model Selection 
Originally the PRESS values computed when using the 

training points found in Figure 3 were high, as seen in Table I. 
Therefore, an analysis of the error produced by omitting each 
point during the PRESS test was performed. This analysis is 
shown in Figure 5.  

The three numbers next to each point represent the squared 
error that arises from removing that point from the set of 
training data while training the zero, first, and second order GP 

                                                           
1 Due to space constraints the data could not be presented in tabular 

form. 

models respectively and then trying to predict the point. The 
points that were not predicted well while using any of the three 
models (i.e. contributed a value greater than 100 to the entire 
PRESS value) are circled in Figure 5. The behavior of the 
system around these areas (note that the areas are near the 
edges of the GP) is harder to predict from the remaining 
training points after the point in that each area is removed. In 
order to better predict these points, training points closer to 
them are added, resulting in the full set of training points 
presented earlier in Figure 4. This provides lower PRESS 
values for all models as seen in Table I. 

Table I. PRESS values for GP models 

 

Order of trend function 0 1 2 

Figure 3 training points 655.48 868.03 1143.56 

Figure 4 training points 225.75 302.47 375.88 

    

 

Figure 5. PRESS value resulting from each point (0,1,2 order) 

 

 

Both sets of training data support the zero order GP, which 
is what was adopted for this research; the model is shown in 
Figure 6 and the contours describe the length of the 
communication window with respect to the Power Beacon and 
Speed. The estimated values for the parameters are:  
exp(ψ)=[-0.421, -1.987] or ξ=[0.656, 0.137]; β=38.412; and 

= 4121.990. 

2) Model Validation using Bayes Factor 

Before the chosen model is used, it must be validated. A 

Bayesian form of validation is used in this research as 

explained earlier. The GP predictions for five new arbitrarily 

chosen points and all other information necessary to finding 

the Bayes factor2 resulted in a factor of about 588,270, which 

supports the hypothesis that our data is normally distributed 

conditioned on the model, as opposed to being normally 

distributed not conditioned on the model. Therefore, the zero 

order GP is retained and used to make optimized decisions 

regarding the VANETs. 

                                                           
2 Bayes validation table not presented due to space constraints 
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Figure 6. Zero order GP model 

 

C. Optimizing the Decisions 

In this example, the decisions that need to be made involve 

the speed of the vehicle and the strength of the power beacon 

such that a certain communication window is maintained in 

the system. It would be unrealistic to assume that policy 

makers would significantly lower speed limits in order to meet 

communication window lengths, so part of the optimization 

statement in this example maximizes the speed, while still 

keeping it within the accepted speed limit. In a VANET, the 

power of the beacon affects cost in both power consumption 

and the necessity to recharge the battery. In order to preserve 

energy and cost, the optimization statement minimizes the 

strength of the power beacon. This research sets the 

communication window that is desired as 15 seconds and 

performed the optimization using the statement below.  
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minimize w
2
(x

2
*) - w

1
(x

1
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y(x
1
x

2
)  15 (s)

45 x
2
 75 (mph)

1 x
1
 50 (mW)

   

Where x1 is the speed (mph) and x2 is the power (mW), and 

the asterisk on both indicates that the values have been 

normalized in the minimization statement; y(x1, x2) is the 

communication window that is predicted using the zero order 

GP model with the potential new input values, [x1, x2].  

The first constraint requires using the GP model to 

compute the communication window for potential input 

values, which requires computing the correlation vector, r, 

between the new potential point and the training points. Then 

E[y(x*)|Y] is computed as described in Section III.C step 5. If 

the value computed for the communication window is less 

than 15 seconds, then a very high value is returned for the 

value of the objective function in order to deter a solution at 

that point.  

The previous result assumes that the decisions regarding 

speed and power in this system are weighted equally (or are 

equally important). The optimization statement could easily be 

altered in order to weight one of the input parameters over the 

other. This is dependent on the resource management decision. 

Therefore, the weight of each parameter is varied from 0 to 1 

such that the sum of the weights is one. In Figure 7, the weight 

of the speed term is plotted versus the solution found for speed 

to see the trade-off between the two.  

 

Figure 7. Weight and speed trade-off 

 

The results are intuitive, when the weight in front of the 

speed term is higher than the solution results in a higher speed 

as expected from the objective to maximize speed. In order to 

effect a change in the optimal speed and power allocation of 

the system, the speed must be weighted at close to 0.35. The 

outcome would also be different if the constraints were 

relaxed on the second constraint regarding speed.  

This demonstration has yielded optimal system parameters 

for the system at hand. In general, the results show that this 

framework can be used when developing an ITS. The 

framework can be used for the deployment of a full scale ITS 

when input and output variables are chosen carefully. The 

framework has been described in a way that also allows the 

surrogate model to be used when the system is deployed for 

real-time computation and information dissemination. 

V. CONCLUSIONS 

In building a model for solving resource management 

problems in VANETs using brokers, this research has 

extended the surrogate modeling technique used in traditional 

engineering design to characterize a cyber-physical system. 

Our preliminary results have yielded optimal system 

parameters for the system at hand. The results show significant 

promise for the framework in developing ITS services. The 

framework can be used for the deployment of a full scale ITS 

services in VANETs when input and output variables are 

chosen carefully.  
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Several challenges were encountered and lessons learned 

when building the surrogate model. The location of training 

points must be perfected for systems. Future work will include 

methods of adaptive sampling in order to minimize the 

number of training points needed. Also, the PRESS test results 

seemed too high for most of the competing models. Perhaps 

better training points would help to reduce the PRESS test 

results. A wider range of surrogate models could be tested for 

better possible models. The GP model that was ultimately 

adopted is very intuitive, but so were the ones that were 

rejected in that they all show an inverse relationship between 

speed and communication window and a direct relationship 

between power beacon and communication window.  

A Bayes hypothesis test was performed that supported 
choosing the zero order GP with conditional mean and variance 
over a normal distribution with a mean and standard deviation 
that came from the observed training values. In the future a 
complete error analysis should be performed in order to 
guarantee that competing errors are not cancelling out, leading 
to a high Bayes factor, and incorrectly leading us to adopt the 
model. 

Our future work is identifying ways to generalize the 
framework to solve multiple different problems in 
collaborative, peer-to-peer networks. 
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