Enhancing Distributed Object Middleware Qualities

Arvind S. Krishna
Electrical Engineering & Computer Science Department
Vanderbilt University, Nashville, TN
arvindk@dre.vanderbilt.edu

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object Oriented Programming—
Design Patterns; D.2.5 [Testing Debugging]: Distributed Contin-
uous Quality Assurance—maodel driven development

General Terms
Design, Performance, Experimentation, Standardization

1. RESEARCH MOTIVATION

Distributed Real-time and Embedded (DRE) systems are becom-
ing increasingly widespread and important in a range of domains,
including process automation (e.g., hot rolling mills) and aviation
(e.g., avionics mission computing systems). As distributed systems,
DRE systems require capabilities to manage connections and mes-
sage transfers between separate machines; as real-time systems,
DRE systems require predictable and efficient control over end-
to-end system resources; and as embedded systems, DRE systems
have weight, cost, and power constraints that limit their computing
and memory resources. Designing DRE systems that (1) imple-
ment all the required capabilities, (2) are efficient and dependable,
and (3) use limited computing resources is hard; building them on
time and within budget is even harder. Researchers and develop-
ers of DRE systems must therefore address the following research
challenges:

1. Tedious and error-prone development — Many DRE sys-
tems are developed using low-level languages, such as C and
assembly languages, thereby increasing accidental complex-
ities arising from complicated memory management, syn-
chronization, etc.

2. Configuration and tuning complexities — It is hard to con-
figure and tune key quality of service (QoS) properties, such
as (1) pooling concurrency resources, (2) synchronizing con-
current operations, (3) enforcing sensor input and actuator
output timing.

3. Middleware customization complexities — Operating con-
ditions for large-scale DRE systems can change dynamically
based on the domain of application, making it hard to provide
customized solutions for each operating context.

The remainder of this paper describes how my research is (1) ad-
dressing the challenges outlined above and (2) being integrated and
validated in the context of several representative DRE systems us-
ing middleware based on Real-time Java and C++.

Copyright is held by the author/owner.
OOPSLA’04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

2. TEDIOUS AND ERROR-PRONE DEVEL-
OPMENT COMPLEXITIES

The emergences of Distributed object computing (DOC) mid-
dleware over the past decade has helped reduce the complexity
of developing DRE systems. A standard DOC middleware solu-
tion for DRE applications is Real-time CORBA (RTCORBA) [6].
RTCORBA adds QoS control capabilities to improve DRE system
predictability by bounding priority inversions, providing end-to-
end priority enforcement, and end-to-end system resource manage-
ment.

Although RTCORBA has been an OMG standard for several
years, it has not been adopted universally due in part to its steep
learning curve. Current RTCORBA implementations are mostly in
C and C++. Technologies such as Java, which are easier to program
and type-safe, have not proven themselves as suitable for DRE ap-
plications due to the unpredictability of garbage collection. The
Real-time Specification for Java (RTSJ) [2] adds real-time exten-
sions to the Java programming language, in particular a new mem-
ory management model that can be used in lieu of garbage collec-
tion. The Java mapping of the RTCORBA specification, however,
does not yet leverage any RTSJ features. A key research challenge
therefore involves the integration of RTCORBA with RTSJ to sim-
plify the programming model for DRE applications. Another bar-
rier to broader adoption of RTCORBA is the runtime and memory
footprint overhead stemming from implementations that include all
the code for supporting various ORB services, such as connection
and data transfer protocols. In this case, a key research challenge
is to develop optimization techniques that can reduce this overhead
without unduly sacrificing functionality.

To address the challenges outlined above, my research focuses
on developing higher-level programming language abstractions, in-
cluding optimization strategies and patterns [7], for enhancing Real-
time CORBA middleware using Java and the RTSJ. These strate-
gies and patterns help make Java more suitable for DRE system
development by enabling the application of RTSJ features (such as
Scoped Memory and Real-time Threads) together with RTCORBA
features (such as thread-pool lanes) to ensure the predictability of
Java-based DRE applications. These patterns are also applicable to
implementations designed using C++. The RTSJ features, in turn,
leverage (1) algorithmic and data-structural optimizations for pre-
dictable ORB concurrency and request processing. To address the
challenge of minimizing middleware footprint, my research has ap-
plied the Virtual Component Pattern [3] to factor out functionality
from the ORB to reduce middleware footprint significantly.

3. CONFIGURATION AND TUNING COM-
PLEXITIES

DRE systems often execute on a multitude of platforms and user



contexts. To ensure that DRE applications and middleware meet

their QoS requirements, they must be fine-tuned to specific platforms/-

contexts by adjusting many (i.e., 10°s-100’s) of configuration op-
tions. Time and resource constraints often limit developers to as-
sessing the QoS of their DRE systems on very few configurations
and extrapolate these to the much larger configuration space. In
this context, the research challenges include developing (1) soft-
ware processes to systematically and efficiently evaluate system
QoS and (2) design tools to synthesize necessary artifacts, such as
benchmarking code to evaluate system QoS for various configura-
tion options.

A promising approach for addressing the problem of ensuring
QoS satisfaction for DRE systems on a range of hardware, OS, and
compiler platforms involves model-driven distributed continuous
quality assurance (DCQA) techniques [5], which are designed to
improve software quality and performance iteratively, opportunisti-
cally, efficiently, and continuously in multiple, geographically dis-
tributed locations. My research in this area focuses on (1) domain-
specific modeling languages (DSMLs) and tools that allow devel-
opers to compose regression tests and benchmarking experiments
to validate and tune the QoS of DRE systems by adjusting mid-
dleware configurations systematically and (2) documenting config-
uration and customization (C&C) patterns, which are tuple spaces
consisting of configuration parameters along with their settings for
each individual platform. C&C patterns benefit system architects
and performance engineers by providing feedback that allows them
to choose configurations that maximize QoS.

I am developing the Test Generation Modeling Language (TGML),

which is a DSML that minimizes the cost of QA activities by cap-
turing the customizability of middleware within models and auto-
matically generating interface definitions, configuration files, test
applications and scaffolding code from these models. The code
generated using TGML can then be validated over a range of plat-
forms using DCQA techniques to (re)validate and discover most
significant configuration options impacting performance.

4. MIDDLEWARE CUSTOMIZATION COM-

PLEXITIES

DRE system infrastructure continues to expand in scope and ca-
pabilities as new protocols and mechanisms are defined at the net-
work, OS, and middleware layers. For instance, middleware pro-
vides various protocol implementations tailored towards changing
operation contexts, e.g., the Internet Inter-ORB Protocol (110OP) can
be used for web-based communication, whereas the Stream Control
Transmission Protocol (SCTP) can be used for fault-tolerant DRE
applications.

To be applicable across many domains, middleware implemen-
tations are often designed to be general-purpose services that are
pluggable and reusable. The C&C patterns described in Section 3
help configure middleware strategies by using information from a
system’s operational context, which can change statically and dy-
namically, to override certain general-purpose configurations. These
patterns cannot, however, remove the footprint and performance
overhead incurred by middleware designs that are layered to sup-
port pluggable context-specific implementations. In this context,
the research challenges involve developing software environments
that evaluate system properties (such as concurrency mechanisms
and types of protocol implementation that are fixed at design and/or
installation time) and use this information to customize middleware
implementations and eliminate additional layers of indirection.

A promising approach for addressing middleware specialization

complexities involve partial evaluation and specialization techniques.

These techniques are an inter-procedural constant propagation tech-

nique that can improve performance and footprint by (1) tailoring
services to the specific needs of software systems and (2) bypass-
ing layers of abstraction to call directly to underlying platform pro-
tocols and mechanisms. Partial evaluation techniques can be ap-
plied to customize middleware for DRE systems at various levels,
such as at assembly-, deployment-, and run-time. My research in
this area focuses on refactoring middleware and services so they
are amenable to automatic customization and optimization by us-
ing middleware specialization patterns [4]. These patterns are then
mapped to middleware implementations via specialization tools,
such as the DMS [1] toolkit used for domain specific program gen-
eration from language-independent models.

5. RESEARCH INTEGRATION AND VALI-
DATION

The contributions of my research can be classified hierarchically.
At the base are novel optimization strategies and patterns that help
enhance DRE system QoS and facilitate the application of promis-
ing new technologies (such as integrating RTSJ and RTCORBA)
to DRE systems. These strategies and patterns have been vali-
dated and applied on ZEN (Wwww. zen. uci . edu) which is an
open-source RTCORBA ORB implemented using the RTSJ used
in various R&D efforts. At the next level, my work on C&C pat-
terns and TGML help configure and tune ORB implementations.
These patterns can then be mapped to optimization strategies for
ORB implementations in C++ and RTSJ. The C&C patterns have
been validated and applied in the context of CIAO (www. dr e.
vander bi | t . edu/ Cl AO) QoS-enabled component middleware
framework widely used the DRE domain. The Skoll DCQA en-
vironment (ww. cs. und. edu/ proj ect s/ skol | /) is being
used to validate C&C patterns on a range of hardware, OS, and
compiler platforms. Finally, my work on partial evaluation ex-
tends the C&C patterns by customizing middleware directly via
removing unnecessary layers of indirection. This work will be
showcased in the context of CoOSMIC (wwww. dr e. vander bi | t.
edu/ cosmi c¢), which is a toolsuite for composing, configuring
and deploying DRE systems via DSMLs.

6. REFERENCES

[1] 1. Baxter. DMS: A Tool for Automating Software Quality
Enhancement. Semantic Designs (www.semdesigns.com), 2001.

[2] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Hardin, and
M. Turnbull. The Real-Time Specification for Java. Addison-Wesley,
2000.

[3] A. Corsaro, D. C. Schmidt, R. Klefstad, and C. O’Ryan. Virtual
Component: a Design Pattern for Memory-Constrained Embedded
Applications. In Proceedings of the 9t» Annual Conference on the
Pattern Languages of Programs, Monticello, Illinois, Sept. 2002.

[4] G. Daugherty. A proposal for the specialization of ha/dre systems. In
Proceedings of the ACM SIGPLAN 2004 Symposium on Partial
Evaluation and Program Manipulation (PEPM 04), Verona, Italy,
Aug. 2004. ACM.

[5] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C. Schmidt, and
B. Natarajan. Skoll: Distributed Continuous Quality Assurance. In
Proceedings of the 26th IEEE/ACM International Conference on
Software Engineering, Edinburgh, Scotland, May 2004. IEEE/ACM.

[6] Object Management Group. Real-time CORBA Specification, OMG
Document formal/02-08-02 edition, Aug. 2002.

[7] D.C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects, Volume 2. Wiley & Sons, New York, 2000.



